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(6.13) w(x,T) 0.

Nous allons maintenant montrer comment les égalités et inégalités

(6.9) (6.13), caractérisent la fonction w (pourvu d'ajouter des conditions
de croissance à l'infini en x sur w). L'unicité résulte des raisonnements

probabilistes conduisant aux inégalités précédentes. On donne seulement
dans la suite des indications sur l'existence d'une solution.

6.2. Réduction à une inéquation quasi variationnelle d'évolution

On introduit:

(6.14) w •

N{t)

Les conditions (6.9) (6.13) deviennent:

(6.15) u(x, 0<1 + inf u(x + Ç,t)
£>i

(6.16) - ^ + A(t)u</(*,0 ,fdt

(6.17) u(x,t) l+ inf u(x + ^,t) x ^I1(t),

dw
(6.18) + (r) w / pour x > I1 (t),

et

(6.19) u{x,T) 0,

où ^4(0 est défini par:

1
2 5<p W(/)

2 dx dx jV(/)
(6.20) ^ (0ç> --^(O^ + ^O^ -^V

On va maintenant transformer (6.15) (6.19) en une inéquation quasi
variationnelle.

Remarque 6.1.

La transformation simple (6.14) a pour but de transformer (6.9)
en (6.15). La condition (6.9) conduit à introduire l'ensemble des fonctions
(p sur R, à croissance convenable à l'infini, et telles que:
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(6.21) cp (x) < N (t) + inf cp (x+£)$
s>o

ensemble qui dépend de t\ sous la forme (6.15), cela revient à prendre
N (t) 1 dans (6.21) et l'ensemble correspondant ne dépend plus de /;
cette simplification est techniquement utile.

On va utiliser des espaces fonctionnels hilbertiens contenant des poids
choisis de manière que l(x) appartienne à ces espaces.

Pour X > 0 *), on pose :

(6.22)

et l'on introduit:

(6.23)

(6.24)

mx (x)exp (-A | x |)

Hx {(,p\mxcpe)},

Vx {(p\(peHx, ~eHx};

l'espage Hk est un Hilbert pour la norme | mx cp | | (p |A (où
| mx <p |2 ml (x) (p (x)2 dx) et V\ est un Hilbert pour la norme:

,1/2
(6.25) <pu +

dcp

dx

Pour u, veVx, on pose:

(6.26)
bx (t ; u, v)

1 du dv
<72(0JRm\-r~rdx -x°2 (OjRWij—j

x du

2

if)\dx J

dx dx

N'(t)

x | \dx
v dx

+ A»(0Jr»»î( X )vdx ~

On vérifie que u, v -> bx (t; u, v) est une forme bilinéaire continue sur

Vk et on a fait ce qu'il fallait pour avoir:

(6.27) bx (t;u,v)JR m\ v dx

(si par exemple v est à support compact et u assez régulière).
On introduit :

(6.28) M(cp)(x) 1 + inf <p(x + £),
£>0

K [q> | <p e Vx(p (x) < M {(p) (x)}

x) On pourra prendre X arbitrairement petit.



— 161 —

ce qui définit un ensemble convexe fermé non vide de Vx.

On considère alors 1' « inéquation quasi variationnelle d'évolution »

suivante: trouver une fonction t —> u (t) de [0, telle que:

(6.29)

(6.30)

(6.31)

u(t)eK p.p.,

ôu \
— (t),v — u(t) ] + bx(t;u(t),v — u(t))
ôt Jx

> (f(t\ v-u(t))x, Vv < M(u)

u (T) 0.

Remarque 6.2.

Il s'agit d'une « quasi inéquation » — l'inéquation variationnelle
correspondant au convexe K étant obtenue lorsque dans (6.30) on prend
v dans K, i.e. v < M (v) (au lieu de v < M (u)).

On va maintenant donner quelques indications brèves sur la solution
de la quasi inéquation précédente. On renvoie à Bensoussan-Goursat-
Lions [1] pour la comparaison entre la solution de l'inéquation et de la
quasi inéquation.

Commençons par le cas stationnaire.
On a alors une forme bx (iu, v) coercive sur Vx et on considère la quasi

inéquation :

(6.32) bx(u,v-u)>(/,«- u)x, Vu<M(m),

U < M (w) U,VE Vx.

On montre Yexistence d 'une solution u > 0 lorsque f est donnée 0,

par le procédé itératif suivant; on part de u° solution de:

(6.33) bx (u°, v) (/; v)x,Vve Vk.

puis l'on définit u1par la solution de Y inéquation variationnelle'.

(6.34) bxiu1,"" — u1)>(/,f— u1)^, v avec v <
u1 < M(w°)

et l'on définit de proche en proche un à partir de u" ~1
par la solution de

l'inéquation variationnelle :



(6.35)
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bk (un, v — un) > (/, v — u")k V f < M(if~J),

un < M(un~l).

On démontre que:

(6.36) w° > u1 > > wn_1 > wn > > 0

et que un demeure dans un borné de Vk. Donc:

un -> u dans Vx faible, u satisfait à (6.32) et u est > 0.

Dans le cas d'évolution on introduit (Cf. Bensoussan-Lions [3]) les

solutions faibles de la quasi inéquation, de la même façon que la solution
faible des inéquations. On considère la classe de fonctions:

(6.37) r {v| v,j eL2(0, VÀ), v 0}

Supposons que u soit solution de (6.29) (6.30) (6.31) et calculons la
quantité :

(6.38) dv
— — v—m + bx (t;u,v- ~ dt,

v e V v < M(u).

On a:

(6.39) + bx(t;u,v-u) - (f,v-u+ Y,*=fo

Y f0T( (v — u), v — u\ dtJ
V sr A 2

v(0)-u (0) 0.

D'après (6.30) le premier terme du deuxième membre de (6.39) est > 0,

et par conséquent X > 0.

On définit alors une solution faible du problème (6.29) (6.30) (6.31)

comme étant une fonction u telle que:

(6.40) u e L2 (0, T; VÀ) u < M (u),
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(6.41)
v — u) + bx(t\ u, v — u) — (f,v — ü)x dt > 0

X

Vvef tel que v <M(«).

On montre encore (cf. Bensoussan, Lions [3]) Yexistence d'une solution

z/ > 0 de (6.40) (6.41) lorsque f est donnée > 0.

Le principe d'une démonstration est d'utiliser un processus d'itération
analogue à (6.35) mais où l'on doit alors régulariser M de façon convenable

(pour que l'inéquation varationnelle correspondante admette une solution

forte). Une autre démonstration repose sur la méthode des différences

finies.

Remarque 6.3.

Naturellement on rencontre les problèmes analogues en dimension

quelconque d'espace — la dimension de l'espace correspondant au nombre
de biens à gérer. On rencontre aussi de nombreuses autres fonctionnelles
M correspondant à diverses situations économiques. Nous renvoyons à

Bensoussan, Lions [2]; on trouvera dans M. Goursat [1] l'étude de
l'approximation numérique de la solution de ces inéquations quasi variation-
nelles.

Remarque 6.4.

Les inéquations variationnelles, stationnaires ou d'évolution,
interviennent dans de nombreux problèmes de Physique et de Mécanique
(cf. Duvaut, Lions [1] et la bibliographie de ce livre, C. Baiocchi et
E. Magenes [1], H. Brezis et G. Duvaut [1], H. Brezis et G. Stampacchia [1]).

On a montré dans Bensoussan-Lions [1] comment des problèmes de

temps d'arrêt optimal se ramènent à l'étude d'inéquations variationnelles
du type suivant:

6.3. Problèmes de temps d'arrêt optimal

(6.42)
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