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Theoreme 5.3. Pour geLp(r), 1 </?<oo, le problème (5.45) admet

une solution 0 (g) unique dans Lp (Q).

On a en outre :

(5.51) ||0(g) Il < c H g II
LP(Q) LP (n

Remarque 5.5.

On peut en outre montrer que dans les conditions du Théorème

précédent :

(5.52) ôllp ß (0) eLp(Q).

Remarque 5.6.

Si en particulier g e L2 (F), alors la solution faible de (5.44) vérifie:

0eL2(£), ô1/2 ß((j))eL2(Q) (donc Ô1'2 A 0 eL2 (Q)).
Ô(j)

Il ne semble pas que l'on puisse définir — dans ces conditions. Mais
dv

30
si g eLp (T), p > 2, alors on peut définir — dans un espace de distribu-

ôv

tions sur T, par adaptation des méthodes de Lions-Magenes [1].
Pour d'autres résultats et d'autres applications de l'interpolation non

linéaire, cf. L. Tartar [2].

6. Problèmes de gestion optimale et inéquations variationnelles

6.1. Un problème de gestion optimale x)

Soit l'instant initial, 5 e [0, T] et soit x le stock de produits à l'instant s.

On se donne un processus de Wiener f(t) (/(0) 0) qui représente
la demande cumulée jusqu'à l'instant t; si l'on pose:

(6-1) Ef(t) — jx{t)

on a:

(6.2) E(f(t) - n (0 (/(s) - n(s))J0min er2 (t) dx.

Q Les résultats des n° 6.1 et 6.2 sont dus à Bensoussan et l'auteur [2] [3] et à Bensoussan,
Goursat et l'auteur [1]; nous renvoyons aux articles détaillés des ces auteurs pour les
(longs) détails techniques.

L'Enseignement mathém., t. XIX, fasc. 1-2. j {
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On se donne des temps d'arrêts en nombre fini mais quelconques, avec:

(6.3) 0 < x1 < t2 < < ti < tn < T p.s.

et des v.a. wx wt wN avec wt adaptée à f(t), te [0, tJ.
La suite (finie) th wt est la variable de contrôle (stochastique).
L'état y (t) du système est donné par:

(6.4) y(t) X - (f{t) -f(s)) + £ Wf TÄ < f < Tf+1.
j=i

Soit t -> JY (t) une fonction de R R, de classe C1, > 0, telle que
iV (t) désigne le coût d'une commande de produits à l'instant t.

La fonction coût du problème est alors :

(6.5)

ou

(6.6)

Js ((Ti> w;» E[çN (t.) + 1/ / (t))

l (A) > 0 2 -> / (2) continue / (0) 0,

/ étant décroissante si A < 0, croissante si A > 0.

Pour fixer les idées :

(6.7) / (A) Ci A~ + c2 A+ c2 > 0, > 0.

On pose :

(6.8) w (x, «s) inf J* ((zh wf) ;

(*; wi)

notre objet essentiel est d'obtenir une caractérisation fonctionnelle de w

(fonction définie sur R Xx ] 0, T [).

Nous renvoyons à Bensoussan et Lions [2] pour la vérification du résultat

suivant :

(6.9) w(x, t)<iN(t) + inf w(x+Ç, t) VxeR £e]0, T[,
£>0

ôw 1
^

d2w ôw
(6.10) - —- + n(t) — leR, te~\Ç),T[,

et 2 ox ôx

(6.11) w(x91) N(t)+ inf w(x + Ç, t) pour x<L1(0?
— o

ôw 1
0

ô2w ôw
(6.12) - - - a2 (t) + m (t) — l(x) pour x >

ôt 2 ôx ôx
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(6.13) w(x,T) 0.

Nous allons maintenant montrer comment les égalités et inégalités

(6.9) (6.13), caractérisent la fonction w (pourvu d'ajouter des conditions
de croissance à l'infini en x sur w). L'unicité résulte des raisonnements

probabilistes conduisant aux inégalités précédentes. On donne seulement
dans la suite des indications sur l'existence d'une solution.

6.2. Réduction à une inéquation quasi variationnelle d'évolution

On introduit:

(6.14) w •

N{t)

Les conditions (6.9) (6.13) deviennent:

(6.15) u(x, 0<1 + inf u(x + Ç,t)
£>i

(6.16) - ^ + A(t)u</(*,0 ,fdt

(6.17) u(x,t) l+ inf u(x + ^,t) x ^I1(t),

dw
(6.18) + (r) w / pour x > I1 (t),

et

(6.19) u{x,T) 0,

où ^4(0 est défini par:

1
2 5<p W(/)

2 dx dx jV(/)
(6.20) ^ (0ç> --^(O^ + ^O^ -^V

On va maintenant transformer (6.15) (6.19) en une inéquation quasi
variationnelle.

Remarque 6.1.

La transformation simple (6.14) a pour but de transformer (6.9)
en (6.15). La condition (6.9) conduit à introduire l'ensemble des fonctions
(p sur R, à croissance convenable à l'infini, et telles que:
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