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- THEOREME 5.3. Pour geLP(I), 1 <p < oo, le probléeme (5.45) admet
une solution ¢ (g) unique dans LP ().
On a en outre :

(3.51) ¢ (9) ] <cllgll

Lp(92) Lp(I')

- Remarque 5.5.

On peut en outre montrer que dans les conditions du Théoreme
précédent:

(5.52) 51P B ($) € LP (Q).

Remarque 5.6.

Si en particulier ge L* (I'), alors la solution faible de (5.44) vérifie:
peL?*(Q), 612 B(p)eL*(Q) (donc 6% A ¢ eL?(Q)).

Il ne semble pas que ’on puisse définir ™ dans ces conditions. Mais
A

0
si geLP(I"), p > 2, alors on peut définir —;—)~ dans un espace de distribu-
v

tions sur I', par adaptation des méthodes de Lions-Magenes [1].
Pour d’autres résultats et d’autres applications de l'interpolation non
linéaire, cf. L. Tartar [2].

6. PROBLEMES DE GESTION OPTIMALE ET INEQUATIONS VARIATIONNELLES

6.1. Un probleme de gestion optimale *)

Soit s 'instant initial, s € [0, T'] et soit x le stock de produits & I’instant s.

On se donne un processus de Wiener f(¢) (f(0) = 0) qui représente
la demande cumulée jusqu’a linstant ¢; si 'on pose:

(6.1) Ef@) = u()

on a:

(6.2) E(f(O) —u®(f(s) = p(s)) = [5 ¢ 6 () dr.

1) Les résultats des n° 6.1 et 6.2 sont dus 2 Bensoussan et ’auteur [2]1[3] et a Bensoussan,

Goursat et ’auteur [1]; nous renvoyons aux articles détaillés des ces auteurs pour les
(Iongs) détails techniques.
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On se donne des temps d’arréts en nombre fini mais quelconques, avec:
(6.3) 0<T; <1, <. <; <ty T pss.

et des v.a. wy ... Wi aeenn wy avec w; adaptée a f(¢), te [0, 7,].
La suite (finie) t;, w; est la variable de controle (stochastique).
L’état y (t) du systéme est donné par'

(6.4) y(t)-x—(f(t)—f(S))+Zw T << Tigg

Soit ¢ — N (¢) une fonction de R — R, de classe C!, > 0, telle que
N () désigne le colit d’une commande de produits a I'instant t.
La fonction coiit du probléme est alors:

(6.5) Ji((taw) = E [zzv(ra + 171y (1) dt]
ou
(6.6) 1(2) >0, A— I(}) continue , I (0) = 0,

[ étant décroissante si A <0, croissante si A > 0.

Pour fixer les idées:

6.7) [0) = c, A= + ¢, A%, ¢, >0, ¢; >0.
On pose:
(6.8) w(x,s) = inf J5 ((7;, wy);

(i wi)

notre objet essentiel est d’obtenir une caractérisation fonctionnelle de w
(fonction définie sur R ,x]0, T [).

Nous renvoyons a Bensoussan et Lions [2] pour la vérification du résul-
tat suivant:

(6.9 w(x,t)<<N(@#)+ inf wx+&,2),VxeR,te]0,T],

=20
(6.10) —%—‘;——1 2(1‘) +,u(t)——\l(x) xeR,te]0,T],
(6.11) w(x,t) = N(¢) + inf w(x+¢, t) pour x <X, (1),
£20
2
(6.12) ~—aa—:}—%az(t)g 3 m(t)—— = [(x) pour x > X, (¢),
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(6.13) w(x,T) = 0.

Nous allons maintenant montrer comment les égalités et inégalités
%(6.9) ... (6.13), caractérisent la fonction w (pourvu d’ajoutér des condiﬁons
1de croissance a l'infini en x sur w). L’unicité résulte des raisonnements
i probabilistes conduisant aux inégalités précédentes. On donne seulement
‘dans la suite des indications sur Pexistence d’une solution.

'6.2. Réduction a une inéquation quasi variationnelle d’évolution

On introduit:

w

Les conditions (6.9) ... (6.13) deviennent:

(6:15) u(x t) <1+ inf u(x+f t)

=1
ou | _(x)

(6.16) —a—t—}—A(t)u <f(x,t), f(x,t) = N
6.17) w(x,t) = 1+ inf u(x+6,1), x < 5, (1),

Ex1
| ' ou
(6.18) — 5;—*— A@)u = f pour x > X, (1),
(6.19) u(x,T) =0,
ou A(t) est défini par:
| 1 Zq) op N’ (t)
6.20 A — - > X _
(6.20) (e = 50 (t) 5 1 () v NGO

On va maintenant transformer (6.15) ... (6.19) en une inéquation quasi
‘variationnelle.

: Remarque 6.1.

La transformation simple (6.14) a pour seul but de transformer (6.9)
en (6.15). La condition (6.9) conduit 2 introduire I'ensemble des fonctions
@ sur R, a croissance convenable & I’infini, et telles que: |
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