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(5.40) u, étant une solution quelconque de (5.37), u, — uy dans
L*(I') faible.

En effet, on note que (en posant | ¢ |* = | ¢*dI):
r

glu,|* < T, () < J,(uo) = &|ug >
donc:
(5.41) Iusl < [ U [
On peut donc extraire une suite, encore notée u,, telle que:
(5.42) u, = w dans L? (I') faible.
~ On vérifie sans peine que y (1) — y (w) dans H' (I') faible et qu’alors:
(5.43) J,(u) > J(w) = jr |y W) — z, |* dI.

Mais:

J, (u) <J,(v) VwvelL? () donne, avec (5.43):
Jw) <J@ YveL?)

donc J(w) <J(uy) =0 donc y(w)| = z; donc y(w) = ¢,, donc

r
W = u,, dou (5.40).

A la lumiére des résultats du n° 5.2., on peut conjecturer que sans
I’hypothése de régularité (5.39), u, converge vers u, dans un espace « plus
- grand » que L* ().
| Ce probléme est ouvert; pour un peu en préciser I’énoncé, on est
conduit & la question des probléemes « non linéaires non homogénes » qui
~est abordée au n° suivant.

5.4. Remarques sur certains problémes elliptiques
non linéaires non homogeénes

Avec un changement de notations par rapport a (5.38), on étudie le
probléme suivant: trouver ¢ solution de

(5.44) - —4¢ + B(¢) = 0,
¢| =g

r
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ou g est, par exemple, donné dans L*(I') (le probléme est facile si
ge H'*(I)). |

Il faut évidemment introduire (puisqu’il en est déja ainsi dans les cas
linéaires analogues; Cf. Lions-Magenes [1], Chapitre 2) des solutions
faibles de (5.44): on dira que ¢ est solution faible de (5.44) si:

oy
ov

(5.45) (6, —4Y) + (B(P), ¥) = — Irg =i

pour toute fonction Y «réguliere » dans Q et nulle sur I' (on a posé

(p, ) = de) Y dx).

Cela posé, on a le résultat suivant, dt 2 H. Brezis [1].

THEOREME 5.2. Soit & (x) = distance de x & I'. Si g est donné duns L' (I')
le probleme (5.45) admet une solution unique telle que : |

(5.46) bell(Q), |

(3.47) 5 B()eL (),

et ot dans (5.45) on peut prendre € H**(Q) n Hlb‘”(Q) 1),
En outre ’application g — ¢ = ¢ (g) est Lipschitzienne, au sens suivant :
Si g,el* () et si ¢ (g;) = ¢, on a:

(5.48) | [ 41 — o2l + 1 0f (@) — 0 B(P2) |l

L1(2) L1(2)

<cllgy — g2l
LI(I)

On va maintenant appliquer la théorie de [’interpolation non linéaire
(Cf. Lions [6], J. Peetre [1]).
On vérifie sans peine que:

(5.49) el <llgll

L% () L™ (I')

L’application g — ¢ = ¢ (g) vérifie donc (5.49) et

(5.50) ¢ (g) — ¢ (g2) |l <cllgr — g2l

L1(Q) Li(r)

On peut alors interpoler entre ces estimations (Cf. Lions [6]) et I'on
en déduit le

oY 02y
0x; ’ 0xi 0xj

Dle ¢,

eL® (Q)), ¢ =OsurI.
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- THEOREME 5.3. Pour geLP(I), 1 <p < oo, le probléeme (5.45) admet
une solution ¢ (g) unique dans LP ().
On a en outre :

(3.51) ¢ (9) ] <cllgll

Lp(92) Lp(I')

- Remarque 5.5.

On peut en outre montrer que dans les conditions du Théoreme
précédent:

(5.52) 51P B ($) € LP (Q).

Remarque 5.6.

Si en particulier ge L* (I'), alors la solution faible de (5.44) vérifie:
peL?*(Q), 612 B(p)eL*(Q) (donc 6% A ¢ eL?(Q)).

Il ne semble pas que ’on puisse définir ™ dans ces conditions. Mais
A

0
si geLP(I"), p > 2, alors on peut définir —;—)~ dans un espace de distribu-
v

tions sur I', par adaptation des méthodes de Lions-Magenes [1].
Pour d’autres résultats et d’autres applications de l'interpolation non
linéaire, cf. L. Tartar [2].

6. PROBLEMES DE GESTION OPTIMALE ET INEQUATIONS VARIATIONNELLES

6.1. Un probleme de gestion optimale *)

Soit s 'instant initial, s € [0, T'] et soit x le stock de produits & I’instant s.

On se donne un processus de Wiener f(¢) (f(0) = 0) qui représente
la demande cumulée jusqu’a linstant ¢; si 'on pose:

(6.1) Ef@) = u()

on a:

(6.2) E(f(O) —u®(f(s) = p(s)) = [5 ¢ 6 () dr.

1) Les résultats des n° 6.1 et 6.2 sont dus 2 Bensoussan et ’auteur [2]1[3] et a Bensoussan,

Goursat et ’auteur [1]; nous renvoyons aux articles détaillés des ces auteurs pour les
(Iongs) détails techniques.
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