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(5.40) uE étant une solution quelconque de (5.37), us -> u0 dans

L2 (F) faible.

En effet, on note que (en posant | (p \2 J cp2 dT):
r

s\ue\2 <J£(ue) <Je(u0)e I Wo I2

donc:

(5.41) |n,|<|«0|.
On peut donc extraire une suite, encore notée uE, telle que:

(5.42) uE -» w dans L2 (r) faible.

On vérifie sans peine que y (w£) -> y (w) dans H1 (T) faible et qu'alors:

(5.43) Je (us)-+ J(w)J | (w) - zd |2 dT.
r

Mais:

Js (ue) < J£ (p) V v g L2 (r) donne, avec (5.43) :

J(w)<J(y) \/veL2{T)

donc /(w) </(w0) 0 donc j (w) zd donc y (w) </>0, donc
r

w w0, d'où (5.40).
A la lumière des résultats du n° 5.2., on peut conjecturer que sans

l'hypothèse de régularité (5.39), uE converge vers u0 dans un espace «plus
grand » que L2 (r).

Ce problème est ouvert; pour un peu en préciser l'énoncé, on est
conduit à la question des problèmes « non linéaires non homogènes » qui
est abordée au n° suivant.

5.4. Remarques sur certains problèmes elliptiques
non linéaires non homogènes

Avec un changement de notations par rapport à (5.38), on étudie le
problème suivant: trouver cj) solution de

(5.44) - Acj) + ß ((/)) 0,

=8
r
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où g est, par exemple, donné dans 2 (T) (le problème est facile si

geHll2(ni
11 faut évidemment introduire (puisqu'il en est déjà ainsi dans les cas

linéaires analogues; Cf. Lions-Magenes [1], Chapitre 2) des solutions
faibles de (5.44): on dira que 0 est solution faible de (5.44) si:

(5.45) (4>, -A*) + (ß (4>), *)= -1
r dv

pour toute fonction 0 « régulière » dans Q et nulle sur r (on a posé

(0, 0) J 4> 0 dx).
Q

Cela posé, on a le résultat suivant, dû à H. Brezis [1].

Théorème 5.2. Soit ô (x) distance de x à F. Si g est donné dans L1 (T)
le problème (5.45) admet une solution unique telle que :

(5.46) cj) eL1 (Q),

(5.47) ô ß (0) g L1 0Q),

et où dans (5.45) on peut prendre \j/ e H2,co(Q) n Hll^°(Q) 1).

En outre l 'application g -» 0 0 (g) est Lipschitzienne, au sens suivant :

Si gt eL1 (T) et si 0 (gf) (ßb on a:

(5.48) ||^ -02 H + Il öß((ßi) ~ b ß (02) H

Ll(ß) Ll(ß)

< C 110! - g2IILi(r)

On va maintenant appliquer la théorie de l'interpolation non linéaire

(Cf. Lions [6], J. Peetre [1]).
On vérifie sans peine que :

(5.49) ||0 II <|| g II
Lœ(Q) L°°(r)

L'application g -> 0 0 (g) vérifie donc (5.49) et

(5.50) 11 <Kfi) - «K&t) 11 <c||gi-g2||
ii(fl) Li(n

On peut alors interpoler entre ces estimations (Cf. Lions [6]) et l'on
en déduit le

1)Ie- 41 0 sur r.
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Theoreme 5.3. Pour geLp(r), 1 </?<oo, le problème (5.45) admet

une solution 0 (g) unique dans Lp (Q).

On a en outre :

(5.51) ||0(g) Il < c H g II
LP(Q) LP (n

Remarque 5.5.

On peut en outre montrer que dans les conditions du Théorème

précédent :

(5.52) ôllp ß (0) eLp(Q).

Remarque 5.6.

Si en particulier g e L2 (F), alors la solution faible de (5.44) vérifie:

0eL2(£), ô1/2 ß((j))eL2(Q) (donc Ô1'2 A 0 eL2 (Q)).
Ô(j)

Il ne semble pas que l'on puisse définir — dans ces conditions. Mais
dv

30
si g eLp (T), p > 2, alors on peut définir — dans un espace de distribu-

ôv

tions sur T, par adaptation des méthodes de Lions-Magenes [1].
Pour d'autres résultats et d'autres applications de l'interpolation non

linéaire, cf. L. Tartar [2].

6. Problèmes de gestion optimale et inéquations variationnelles

6.1. Un problème de gestion optimale x)

Soit l'instant initial, 5 e [0, T] et soit x le stock de produits à l'instant s.

On se donne un processus de Wiener f(t) (/(0) 0) qui représente
la demande cumulée jusqu'à l'instant t; si l'on pose:

(6-1) Ef(t) — jx{t)

on a:

(6.2) E(f(t) - n (0 (/(s) - n(s))J0min er2 (t) dx.

Q Les résultats des n° 6.1 et 6.2 sont dus à Bensoussan et l'auteur [2] [3] et à Bensoussan,
Goursat et l'auteur [1]; nous renvoyons aux articles détaillés des ces auteurs pour les
(longs) détails techniques.
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