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On a alors:

(5.31) o, — (g+0,) —» 0 dans H' (I).

Le calcul de 0, est un calcul de couche limite pour un opérateur pseudo-
différentiel (o). Nous renvoyons pour cela & Demidov [1], Pokrovski [1].
Comme variante on peut prendre:

(5.29 bis) A ={p|loeH" (I), 0 = y(0) sur &}.

Cela signifie que %,, est ’ensemble des v tels que:

(5.32) ‘ y (@) = 0 sur Z.

Donc U, est définie a partir des contraintes sur [’état, une situation
fréquente dans les applications. |

Evidemment, on a encore ici un phénoméne de couche limite au voisinage
de Z lorsque ¢ — 0.

Remarque 5.2.

On trouvera dans Lions [4] [5] I’analyse d’autres situations du méme

{ type (mais plus délicates).

5.3. Cas d’un systéme non linéaire

On considére maintenant le systéme dont I’état est donné par:

(5.33) — 4y + B(y) = 0 dans Q,

0
—Z=vsur1“
A"

f ol A — B (1) est une fonction continue strictement croissante de R — R,

nulle a Torigine. Dans (5.33), on suppose que v e L?(I); le probléme
(5.33) admet une solution unique telle que:
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(5.34) ye H' (Q)
et
(5.35) jgy B (y)dx < oo.

La fonction cofit est encore donnée par:
(5.36) J.)= [ |y@ — 2z, |*dl + e[ v*dr,
r r
et %,q est encore un ensemble fermé convexe non vide de L? (I).
On vérifie sans peine qu’il existe u, €, tel que:
(5.37) J.(u) = inf J, (v) ,veU,y

mais la fonction v — J, (v) n’ayant pas de raison d’étre convexe, il n’y a
aucune raison pour que u, soit unique.

Remarque 5.3.

On pourra trouver dans Lions [2], Chapitre 3, n° 2, des exemples
d’équations d’état non linéaires conduisant a des fonctions cofit convexes.

Remarque 5.4.

11 serait intéressant de pouvoir donner des « estimations topologiques »
du nombre éventuel de solutions du probléme (5.37).

Notre objet est maintenant de faire tendre ¢ vers 0.
De maniére formelle, lorsque %,, = L* (I'), on considére le probléme
de Dirichlet non homogéne

(5.38) — 4o + f(do) = O,
bo

=Zd
r

qui admet une solution unique dans H'(Q) si z;e HY* ().
Faisons [’hypothése (de régularité sur z; et sur ) que:
_ 3,

5.39 e
( ) Uy oy

e L*(IN).
r

On a alors:
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(5.40) u, étant une solution quelconque de (5.37), u, — uy dans
L*(I') faible.

En effet, on note que (en posant | ¢ |* = | ¢*dI):
r

glu,|* < T, () < J,(uo) = &|ug >
donc:
(5.41) Iusl < [ U [
On peut donc extraire une suite, encore notée u,, telle que:
(5.42) u, = w dans L? (I') faible.
~ On vérifie sans peine que y (1) — y (w) dans H' (I') faible et qu’alors:
(5.43) J,(u) > J(w) = jr |y W) — z, |* dI.

Mais:

J, (u) <J,(v) VwvelL? () donne, avec (5.43):
Jw) <J@ YveL?)

donc J(w) <J(uy) =0 donc y(w)| = z; donc y(w) = ¢,, donc

r
W = u,, dou (5.40).

A la lumiére des résultats du n° 5.2., on peut conjecturer que sans
I’hypothése de régularité (5.39), u, converge vers u, dans un espace « plus
- grand » que L* ().
| Ce probléme est ouvert; pour un peu en préciser I’énoncé, on est
conduit & la question des probléemes « non linéaires non homogénes » qui
~est abordée au n° suivant.

5.4. Remarques sur certains problémes elliptiques
non linéaires non homogeénes

Avec un changement de notations par rapport a (5.38), on étudie le
probléme suivant: trouver ¢ solution de

(5.44) - —4¢ + B(¢) = 0,
¢| =g

r
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