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où

J Qeitydr c 11 (p | |^i(r)5 V (p £ $£,
r

J gElcpdr <c H cp ||L2(r>? \7>eJf.
r

On a alors:

(5.31) <Ps ~ (g+0e) - 0 dans H1 (L).

Le calcul de 0£ est un calcul de couche limite pour un opérateur
pseudodifférentiel (s/). Nous renvoyons pour cela à Demidov [1], Pokrovski [1].

Comme variante on peut prendre :

Donc °Uad est définie à partir des contraintes sur l'état, une situation
fréquente dans les applications.

Evidemment, on a encore ici un phénomène de couche limite au voisinage
de if lorsque s -> 0.

Remarque 5.2.

On trouvera dans Lions [4] [5] l'analyse d'autres situations du même

type (mais plus délicates).

(5.29 bis) {(p | <p g H1 (r) (p y (o) sur if}.
Cela signifie que %ad est l'ensemble des v tels que:

(5.32) y (v) 0 sur if.

5.3. Cas d'un système non linéaire

On considère maintenant le système dont l'état est donné par:

(5.33) — Ay + ß (y) 0 dans Q,

dy
— v sur rôv

où À -> ß (2) est une fonction continue strictement croissante de R -> R,
nulle à l'origine. Dans (5.33), on suppose que veL2(r); le problème
(5.33) admet une solution unique telle que:
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(5.34) y e H1 (Q)

et

(5.35) J yß(y)dx< oo.

r r
et °Uad est encore un ensemble fermé convexe non vide de L2 (r).

On vérifie sans peine qu'il existe uE tel que:

mais la fonction v J£ (v) n'ayant pas de raison d'être convexe, il n'y a

aucune raison pour que ue soit unique.

Remarque 5.3.

On pourra trouver dans Lions [2], Chapitre 3, n° 2, des exemples
d'équations d'état non linéaires conduisant à des fonctions coût convexes.

Remarque 5.4.

Il serait intéressant de pouvoir donner des « estimations topologiques »
du nombre éventuel de solutions du problème (5.37).

Notre objet est maintenant de faire tendre e vers 0.

De manière formelle, lorsque ^éad L2 (L), on considère le problème
de Dirichlet non homogène

(5.37) Je (ue) inf Je (v) v g %ad

(5.38) - A<$>o + ß((j)o) 0,

<£o — Zd

r
qui admet une solution unique dans H1 (Q) si zde H1/2 (r).

Faisons l'hypothèse (de régularité sur zd et sur ß) que:

(5.39) o ~ eL2(r).
3v r

On a alors:
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(5.40) uE étant une solution quelconque de (5.37), us -> u0 dans

L2 (F) faible.

En effet, on note que (en posant | (p \2 J cp2 dT):
r

s\ue\2 <J£(ue) <Je(u0)e I Wo I2

donc:

(5.41) |n,|<|«0|.
On peut donc extraire une suite, encore notée uE, telle que:

(5.42) uE -» w dans L2 (r) faible.

On vérifie sans peine que y (w£) -> y (w) dans H1 (T) faible et qu'alors:

(5.43) Je (us)-+ J(w)J | (w) - zd |2 dT.
r

Mais:

Js (ue) < J£ (p) V v g L2 (r) donne, avec (5.43) :

J(w)<J(y) \/veL2{T)

donc /(w) </(w0) 0 donc j (w) zd donc y (w) </>0, donc
r

w w0, d'où (5.40).
A la lumière des résultats du n° 5.2., on peut conjecturer que sans

l'hypothèse de régularité (5.39), uE converge vers u0 dans un espace «plus
grand » que L2 (r).

Ce problème est ouvert; pour un peu en préciser l'énoncé, on est
conduit à la question des problèmes « non linéaires non homogènes » qui
est abordée au n° suivant.

5.4. Remarques sur certains problèmes elliptiques
non linéaires non homogènes

Avec un changement de notations par rapport à (5.38), on étudie le
problème suivant: trouver cj) solution de

(5.44) - Acj) + ß ((/)) 0,

=8
r
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