Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 19 (1973)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LE CONTRÔLE OPTIMAL DE SYSTÈMES DISTRIBUÉS

Autor: Lions, J. L.

Kapitel: 5.3. Cas d'un système non linéaire **DOI:** https://doi.org/10.5169/seals-46289

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

où

$$\left| \int_{\Gamma} g_{\varepsilon_{1}} \varphi \, d\Gamma \right| \leq c ||\varphi||_{H^{1}(\Gamma)}, \quad \forall \varphi \in \mathcal{K},$$
$$\left| \int_{\Gamma} g_{\varepsilon_{1}} \varphi \, d\Gamma \right| \leq c ||\varphi||_{L^{2}(\Gamma)}, \quad \forall \varphi \in \mathcal{K}.$$

On a alors:

(5.31)
$$\varphi_{\varepsilon} - (g + \theta_{\varepsilon}) \to 0 \text{ dans } H^{1}(\Gamma).$$

Le calcul de θ_{ε} est un calcul de couche limite pour un opérateur pseudodifférentiel (\mathscr{A}). Nous renvoyons pour cela à Demidov [1], Pokrovski [1].

Comme variante on peut prendre:

(5.29 bis)
$$\mathcal{K} = \{ \varphi \mid \varphi \in H^1(\Gamma), \varphi = y \text{ (o) sur } \mathcal{L} \}.$$

Cela signifie que \mathcal{U}_{ad} est l'ensemble des v tels que:

$$(5.32) y(v) = 0 sur \mathscr{L}.$$

Donc \mathcal{U}_{ad} est définie à partir des contraintes sur l'état, une situation fréquente dans les applications.

Evidemment, on a encore ici un phénomène de couche limite au voisinage de \mathscr{L} lorsque $\varepsilon \to 0$.

Remarque 5.2.

On trouvera dans Lions [4] [5] l'analyse d'autres situations du même type (mais plus délicates).

5.3. Cas d'un système non linéaire

On considère maintenant le système dont l'état est donné par:

(5.33)
$$-\Delta y + \beta(y) = 0 \text{ dans } \Omega,$$

$$\frac{\partial y}{\partial y} = v \text{ sur } \Gamma$$

où $\lambda \to \beta(\lambda)$ est une fonction continue strictement croissante de $\mathbf{R} \to \mathbf{R}$, nulle à l'origine. Dans (5.33), on suppose que $v \in L^2(\Gamma)$; le problème (5.33) admet une solution unique telle que:

$$(5.34) y \in H^1(\Omega)$$

et

$$\int_{\Omega} y \, \beta(y) \, dx < \infty.$$

La fonction coût est encore donnée par:

(5.36)
$$J_{\varepsilon}(v) = \int_{\Gamma} |y(v) - z_d|^2 d\Gamma + \varepsilon \int_{\Gamma} v^2 d\Gamma,$$

et \mathcal{U}_{ad} est encore un ensemble fermé convexe non vide de $L^2(\Gamma)$.

On vérifie sans peine qu'il existe $u_{\varepsilon} \in \mathcal{U}_{ad}$ tel que:

$$J_{\varepsilon}(u_{\varepsilon}) = \inf J_{\varepsilon}(v), v \in \mathcal{U}_{ad}$$

mais la fonction $v \to J_{\varepsilon}(v)$ n'ayant pas de raison d'être convexe, il n'y a aucune raison pour que u_{ε} soit unique.

Remarque 5.3.

On pourra trouver dans Lions [2], Chapitre 3, nº 2, des exemples d'équations d'état non linéaires conduisant à des fonctions coût *convexes*.

Remarque 5.4.

Il serait intéressant de pouvoir donner des « estimations topologiques » du nombre éventuel de solutions du problème (5.37).

Notre objet est maintenant de faire tendre & vers 0.

De manière formelle, lorsque $\mathcal{U}_{ad} = L^2(\Gamma)$, on considère le problème de Dirichlet non homogène

(5.38)
$$-\Delta\phi_0 + \beta(\phi_0) = 0,$$

$$\phi_0 \Big|_{\Gamma} = z_d$$

qui admet une solution unique dans $H^{1}(\Omega)$ si $z_{d} \in H^{1/2}(\Gamma)$.

Faisons l'hypothèse (de régularité sur z_d et sur β) que:

(5.39)
$$u_0 = \frac{\partial \phi_0}{\partial \nu} \Big|_{\Gamma} \in L^2(\Gamma).$$

On a alors:

(5.40) u_{ε} étant une solution quelconque de (5.37), $u_{\varepsilon} \to u_0$ dans $L^2(\Gamma)$ faible.

En effet, on note que (en posant $|\varphi|^2 = \int_{\Gamma} \varphi^2 d\Gamma$):

$$\varepsilon |u_{\varepsilon}|^2 \leqslant J_{\varepsilon}(u_{\varepsilon}) \leqslant J_{\varepsilon}(u_0) = \varepsilon |u_0|^2$$

donc:

$$|u_{\varepsilon}| \leqslant |u_0|.$$

On peut donc extraire une suite, encore notée u_{ε} , telle que:

(5.42)
$$u_{\varepsilon} \to w \text{ dans } L^2(\Gamma) \text{ faible.}$$

On vérifie sans peine que $y(u_{\varepsilon}) \to y(w)$ dans $H^1(\Gamma)$ faible et qu'alors:

(5.43)
$$J_{\varepsilon}(u_{\varepsilon}) \to J(w) = \int_{\Gamma} |y(w) - z_{d}|^{2} d\Gamma.$$

Mais:

$$J_{\varepsilon}(u_{\varepsilon}) \leqslant J_{\varepsilon}(v) \quad \forall v \in L^{2}(\Gamma) \text{ donne, avec (5.43):}$$

 $J(w) \leqslant J(v) \quad \forall v \in L^{2}(\Gamma)$

donc
$$J(w) \leqslant J(u_0) = 0$$
 donc $y(w) \Big|_{\Gamma} = z_d$ donc $y(w) = \phi_0$, donc $w = u_0$, d'où (5.40).

A la lumière des résultats du n° 5.2., on peut conjecturer que sans l'hypothèse de régularité (5.39), u_{ε} converge vers u_0 dans un espace « plus grand » que $L^2(\Gamma)$.

Ce problème est ouvert; pour un peu en préciser l'énoncé, on est conduit à la question des problèmes « non linéaires non homogènes » qui est abordée au n° suivant.

5.4. Remarques sur certains problèmes elliptiques non linéaires non homogènes

Avec un changement de notations par rapport à (5.38), on étudie le problème suivant: trouver ϕ solution de

(5.44)
$$\left| -\Delta \phi + \beta (\phi) \right| = 0,$$

$$\left| \phi \right|_{\Gamma} = g$$