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correspondant aux couches limites; si 0,(v) désigne une telle correction,

- on est donc conduit & remplacer y, (v) par y (v) + 6, (v) — ce qui conduit

4 un probléme de contrdle optimal approché qui peut étre plus simple;

une question est alors évidemment d’analyser en fonction de & l'erreur

~ ainsi commise; nous ne développons pas ici ce point de vue, renvoyant
a Lions [3], Chapitre 7;

(ii) la fonction cofit contient, en général, un terme de la forme N || v ||?
ou H v || est une norme sur l’espace des contrdles et ou N est un para-
meétre > 0 d’autant plus petit que v est « bon marché ». Cela conduit aux
problémes de contrdle ot N — 0; ce sont, comme on va voir, des problémes
de perturbations singuliéres.

5.2. Cas d’un systéme linéaire

Commengons par un exemple trés simple. Dans un ouvert Q borné de
R” de frontiere réguliére I', on considére un systéme dont 1’état y = y (x, v)
= y (v) est donné par:

5.1 Ay @) = fdans Q,
(5.2) 9 ©) = ysur I’
ov

. . - d :
ou A est un opérateur elliptique du 2¢ ordre, ™ la dérivée conormale
\Y

associée a A, et ol f (resp. v) est pris dans L* (Q) (resp. L* (I).
On prendra par exemple A donné par:

"0 do
5.3 Ap = — — | g.. -
G- ¢ i,jzél 0x; <aj{ @x,-) v AP

ou les a;; -vérifient (2.3) et ol ay e L2(Q), a,(x) > o, > op.p.
Le probléme (5.1) (5.2) admet une solution unique:

(5.4) y (v) e HY(Q).
La fonction codt est donnée par:
(5.5) L@ =[ |y@ -z |*dl + ¢ v*dr,
r r

ou z, est donné dans L (I') et ol ¢ > 0 « petit ».
Soit: par ailleurs: -
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(5.6) U, = ensemble fermé convexe non vide de L? (I').

Le probléme de contrdle optimal:
5.7 inf J, (v) ,veU,,

admet une solution unique, soit u,.
Notre objet est maintenant 1’étude du comportement de u, lorsque ¢ — 0.
Si ’on pose:

Y (ue) = Y
le controle optimal u, est caractérisé par:

(5.8) '[r y.—z) (v W) —y,) dIl + ¢ ".r u, (v—u)dlr >0,Y ve,.

On pose:
(5.9) (y @) =y©)r =@,y W) —yO)r = @,

Alors v est donné a partir de ¢ de la fagon suivante: on résout

(5.10) Ap =0dans Q, ¢ | = — ¢
et I’on pose:
(5.11) Ao = g?r'
Alors:
(5.12) v = o Q.

L’opérateur &7 est un isomorphisme de H(I') - H*"'(I'), VseR
(Cf. Lions-Magenes [1], Chapitres 1 et 2).
L’opérateur inverse &/ ~! est donné comme suit: on résout

ow

(5.13) Aw=0,— =vsurl,
ov

et alors:

(5.14) wlp= o .

On introduit:

(5.15 A = o YU%,) = ensemble convexe fermé (non vide) de H*(I).
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Avec ces notations, le probléme (5.8) équivaut a:

(5.16) [ (9= (za—y(0))) (9 —0,) dl’ + ¢ Ir A, A (p—@)dl >0,
o, e VN oeX.

Posons:
(5.17) g =2,—y()
Alors (5.16) équivaut a:
(5.18) afr Ao, o (p—¢)dl + Jrsos (p—o@)dl >
| g(o=gndl. Y pe.
C’est un probléeme de perturbations singuliéres pour des inéquations

variationnelles (Cf. D. Huet [1], J. L. Lions [4] [5]). Le résultat est alors
le suivant: on introduit

(5.19) A4 = adhérence de " dans L* (),

et soit ¢, la solution dans J de:

(5.20) Jrcoo (<o—<oo)df>§rg(<p—-¢o)d1“, Voed,
1.e.

(521) @, = Proj. g = projection sur & dans L* (I') de g.
On a alors:
(5.22) ¢, > @, dans L? (D).

Par conséquent:

THEOREME 5.1. Lorsque ¢ - 0, on a:

(5.23) y, — y(0) + Proj. z (z;,—y(0)) dans L? (I").

r

= y (u,)
r

On en déduit que :
(5.24) u, = o ¢, - uy, = o ¢, dans H™ ! ().

En général ¢, n’est pas dans H' (I') de sorte que o/ Qo n'est pas dans
L? (I') de sorte que le résultat (5.24) ne peut pas en général étre amélioré.
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Remarque 5.1.
Si o€ H'(I'). (et donc & ') alors ¢, — ¢, dans H' (I') et dans ce
cas u, — u, dans L*(I).
Exemple 5.1.
Prenons le cas « sans contraintes »
(5.25) U, = L*(T).

Alors o ', = H' (I etgf L*>(I'). Donc ¢, = z; — y(0) et
par conséquent:

(5.26) y (W) | — z, dans L* ().
r

Pour obtenir u,, on résout:

(5.27) Ay =0,dy =z, sur I’
et alors:
0
(5.28) uy = 2o
ov
Exemple 5.2.

Soit % une variété réguliére de dimension (n—2) contenue dans F
Supposons que:

(5.29) A = 1(plcpc-:Hl(r),q;=0sur 2.
Alors " = L*(I'). On a alors: -
¢, — g dans L* (D).

Si I'on fait I’hypothése que ge H* ('), on peut utiliser L1ons [4] [5]
pour définir des correcteurs 0, par:

(530) | 0 +geH,

sj A0, 4 (o— eg)dru 0,(p—0,)dl >
j(8g81+81/2g£2)(€0 Ge)dr

Vo avec ¢ +geA,




BRA b oot Sl s
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ou

j gslq)drt<cll(/)”H1(I‘): Voed,
r

f gs1§0dr! <cllolleaqy, VoeX.
r

On a alors:

(5.31) o, — (g+0,) —» 0 dans H' (I).

Le calcul de 0, est un calcul de couche limite pour un opérateur pseudo-
différentiel (o). Nous renvoyons pour cela & Demidov [1], Pokrovski [1].
Comme variante on peut prendre:

(5.29 bis) A ={p|loeH" (I), 0 = y(0) sur &}.

Cela signifie que %,, est ’ensemble des v tels que:

(5.32) ‘ y (@) = 0 sur Z.

Donc U, est définie a partir des contraintes sur [’état, une situation
fréquente dans les applications. |

Evidemment, on a encore ici un phénoméne de couche limite au voisinage
de Z lorsque ¢ — 0.

Remarque 5.2.

On trouvera dans Lions [4] [5] I’analyse d’autres situations du méme

{ type (mais plus délicates).

5.3. Cas d’un systéme non linéaire

On considére maintenant le systéme dont I’état est donné par:

(5.33) — 4y + B(y) = 0 dans Q,

0
—Z=vsur1“
A"

f ol A — B (1) est une fonction continue strictement croissante de R — R,

nulle a Torigine. Dans (5.33), on suppose que v e L?(I); le probléme
(5.33) admet une solution unique telle que:
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