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Soit yy (y) le nouvel état, correspondant à (4.16). On montre que
yy (v) y (v) dans L2 (Q) lorsque y converge vers A + (avec y (A) A pour
A > A0 > 0) et l'on résout le problème de contrôle correspondant à yy (<v),

la fonction v -> yy (v) étant cette fois differentiate.

Remarque 4.4.

La situation décrite à la Remarque 4.3. précédente est typique des

inéquations variationnelles intervenant en Physique et en Mécanique (Cf.
Duvaut-Lions [1]) et pour la résolution numérique desquelles on emploie
constamment des processus de régularisation analogues à ceux de la

Remarque précédente (Cf. Glowinski, Lions, Tremolières [1] et la
bibliographie de ce livre).

Remarque 4.5.

Dans tous les problèmes considérés jusqu'ici, mais en particulier dans

le cas des problèmes multiphases, on peut avoir à considérer des fonctions
coût de la forme:

(4.17) J (y) j \y-(y) — zd\2 dxdt
E(v)

où E (v) est un ensemble géométrique défini à partir de y (v) (par exemple
E (v) peut être l'ensemble où y (v) > 0).

De nombreux problèmes restent à résoudre dans cette direction. Un
exemple, relatif aux équations de Stefan, est résolu dans Vasiliev [1].

5. Phénomènes de perturbations singulières

5.1. Orientations

Des phénomènes de perturbations singulières apparaissent dans la
théorie du contrôle optimal pour deux raisons:

(i) l'état du système peut être décrit par une équation (ou un ensemble

d'équations) contenant un petit paramètre e, soit ys (y) cet état,
correspondant à un contrôle v; alors la théorie des perturbations {singulières si,

comme c'est le cas le plus important, e apparaît dans des dérivées d'ordre

supérieur) permet de « remplacer » ye {v) par un « état approché » plus

simple y (v) correspondant à la valeur s 0 et avec des « corrections »
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correspondant aux couches limites; si 9e(y) désigne une telle correction,
on est donc conduit à remplacer ys (y) par y (y) + 9e (v) — ce qui conduit
à un problème de contrôle optimal approché qui peut être plus simple;
une question est alors évidemment d'analyser en fonction de s l'erreur
ainsi commise; nous ne développons pas ici ce point de vue, renvoyant
à Lions [3], Chapitre 7;

(ii) la fonction coût contient, en général, un terme de la forme N || v ||2

où y v y est une norme sur l'espace des contrôles et où N est un
paramètre > 0 d'autant plus petit que v est « bon marché ». Cela conduit aux
problèmes de contrôle où N -» 0; ce sont, comme on va voir, des problèmes
de perturbations singulières.

5.2. Cas dun système linéaire

Commençons par un exemple très simple. Dans un ouvert Q borné de
R" de frontière régulière T, on considère un système dont l'état y y (x, v)

y (v) est donné par:

(5.1) ri y (v) f dans Q,

,<• ~ 8y (v)
(5.2) v sur T

dv

où A est un opérateur elliptique du 2e ordre, — la dérivée conormale
ôv

associée à A, et où / (resp. v) est pris dans L2 (Q) (resp. L2 (r)).
On prendra par exemple A donné par :

(5.3, Av=-i±^+aoV,
où les atj vérifient (2.3) et où a0 e L"'(Çl), a0 (x) > <x0 > o p.p.

Le problème (5.1) (5.2) admet une solution unique:

(5-4) y (v)eH\Q).
La fonction coût est donnée par:

(5.5) Je(v)j | y(v) - zd\2dr + Ë\
r 'r

où zd est donné dans L2(L) et où e > 0 « petit ».
Soit par ailleurs:
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