Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 19 (1973)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LE CONTRÔLE OPTIMAL DE SYSTÈMES DISTRIBUÉS

Autor: Lions, J. L.

Kapitel: 5. Phénomènes de perturbations singulières

DOI: https://doi.org/10.5169/seals-46289

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Soit $y^{\gamma}(v)$ le nouvel état, correspondant à (4.16). On montre que $y^{\gamma}(v) \to y(v)$ dans $L^{2}(Q)$ lorsque γ converge vers λ^{+} (avec $\gamma(\lambda) = \lambda$ pour $\lambda \geqslant \lambda_{0} > 0$) et l'on résout le problème de contrôle correspondant à $y^{\gamma}(v)$, la fonction $v \to y^{\gamma}(v)$ étant cette fois différentiable.

Remarque 4.4.

La situation décrite à la Remarque 4.3. précédente est typique des inéquations variationnelles intervenant en Physique et en Mécanique (Cf. Duvaut-Lions [1]) et pour la résolution numérique desquelles on emploie constamment des processus de régularisation analogues à ceux de la Remarque précédente (Cf. Glowinski, Lions, Tremolières [1] et la bibliographie de ce livre).

Remarque 4.5.

Dans tous les problèmes considérés jusqu'ici, mais en particulier dans le cas des problèmes multiphases, on peut avoir à considérer des fonctions coût de la forme:

(4.17)
$$J(v) = \int_{E(v)} |y(v) - z_d|^2 dx dt$$

où E(v) est un ensemble géométrique défini à partir de y(v) (par exemple E(v) peut être l'ensemble où y(v) > 0).

De nombreux problèmes restent à résoudre dans cette direction. Un exemple, relatif aux équations de Stefan, est résolu dans Vasiliev [1].

5. Phénomènes de perturbations singulières

5.1. Orientations

Des phénomènes de perturbations singulières apparaissent dans la théorie du contrôle optimal pour deux raisons:

(i) l'état du système peut être décrit par une équation (ou un ensemble d'équations) contenant un petit paramètre ε , soit $y_{\varepsilon}(v)$ cet état, correspondant à un contrôle v; alors la théorie des perturbations (singulières si, comme c'est le cas le plus important, ε apparaît dans des dérivées d'ordre supérieur) permet de «remplacer» $y_{\varepsilon}(v)$ par un «état approché» plus simple y(v) correspondant à la valeur $\varepsilon = 0$ et avec des «corrections»

correspondant aux couches limites; si $\theta_{\varepsilon}(v)$ désigne une telle correction, on est donc conduit à remplacer $y_{\varepsilon}(v)$ par $y(v) + \theta_{\varepsilon}(v)$ — ce qui conduit à un problème de contrôle optimal approché qui peut être plus simple; une question est alors évidemment d'analyser en fonction de ε l'erreur ainsi commise; nous ne développons pas ici ce point de vue, renvoyant à Lions [3], Chapitre 7;

(ii) la fonction coût contient, en général, un terme de la forme $N ||v||^2$ où ||v|| est une norme sur l'espace des contrôles et où N est un paramètre > 0 d'autant plus petit que v est « bon marché ». Cela conduit aux problèmes de contrôle où $N \to 0$; ce sont, comme on va voir, des problèmes de perturbations singulières.

5.2. Cas d'un système linéaire

Commençons par un exemple très simple. Dans un ouvert Ω borné de \mathbb{R}^n de frontière régulière Γ , on considère un système dont l'état y = y(x, v) = y(v) est donné par:

$$(5.1) A y(v) = f \operatorname{dans} \Omega,$$

(5.2)
$$\frac{\partial y(v)}{\partial v} = v \operatorname{sur} \Gamma$$

où A est un opérateur elliptique du 2^e ordre, $\frac{\partial}{\partial v}$ la dérivée conormale associée à A, et où f (resp. v) est pris dans $L^2(\Omega)$ (resp. $L^2(\Gamma)$). On prendra par exemple A donné par:

(5.3)
$$A \varphi = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left(a_{ij} \frac{\partial \varphi}{\partial x_{i}} \right) + a_{0} \varphi,$$

où les a_{ij} vérifient (2.3) et où $a_0 \in L^{\infty}(\Omega)$, $a_0(x) \geqslant \alpha_0 > 0$ p.p. Le problème (5.1) (5.2) admet une solution unique:

$$(5.4) y(v) \in H^1(\Omega).$$

La fonction coût est donnée par:

(5.5)
$$J_{\varepsilon}(v) = \int_{\Gamma} |y(v) - z_d|^2 d\Gamma + \varepsilon \int_{\Gamma} v^2 d\Gamma,$$

où z_d est donné dans $L^2(\Gamma)$ et où $\varepsilon > 0$ « petit ». Soit par ailleurs:

(5.6) \mathcal{U}_{ad} = ensemble fermé convexe non vide de $L^2(\Gamma)$.

Le problème de contrôle optimal:

(5.7)
$$\inf J_{\varepsilon}(v) , v \in \mathcal{U}_{ad},$$

admet une solution unique, soit u_{ε} .

Notre objet est maintenant l'étude du comportement de u_{ε} lorsque $\varepsilon \to 0$. Si l'on pose:

$$y(u_{\varepsilon}) = y_{\varepsilon}$$

le contrôle optimal u_{ε} est caractérisé par:

(5.8)
$$\int_{\Gamma} (y_{\varepsilon} - z_{d}) (y(v) - y_{\varepsilon}) d\Gamma + \varepsilon \int_{\Gamma} u_{\varepsilon} (v - u_{\varepsilon}) d\Gamma \geqslant 0, \forall v \in \mathcal{U}_{ad}.$$

On pose:

$$(5.9) (y(v) - y(o))_{\Gamma} = \varphi, (y(u_{\varepsilon}) - y(o))_{\Gamma} = \varphi_{\varepsilon}.$$

Alors v est donné à partir de φ de la façon suivante: on résout

(5.10)
$$A \phi = 0 \operatorname{dans} \Omega, \ \phi |_{\Gamma} = -\varphi$$

et l'on pose:

$$\mathscr{A} \varphi = \frac{\partial \phi}{\partial \nu} \bigg|_{\Gamma}.$$

Alors:

$$(5.12) v = \mathscr{A} \varphi.$$

L'opérateur \mathscr{A} est un isomorphisme de $H^s(\Gamma) \to H^{s-1}(\Gamma)$, $\forall s \in \mathbb{R}$ (Cf. Lions-Magenes [1], Chapitres 1 et 2).

L'opérateur inverse \mathcal{A}^{-1} est donné comme suit: on résout

(5.13)
$$A w = 0, \frac{\partial w}{\partial v} = v \operatorname{sur} \Gamma,$$

et alors:

$$(5.14) w \mid_{\Gamma} = \mathscr{A}^{-1} v.$$

On introduit:

(5.15)
$$\mathcal{K} = \mathcal{A}^{-1}(\mathcal{U}_{ad}) = \text{ensemble convexe fermé (non vide) de } H^1(\Gamma).$$

Avec ces notations, le problème (5.8) équivaut à:

(5.16)
$$\int_{\Gamma} \left(\varphi_{\varepsilon} - (z_{d} - y(o)) \right) (\varphi - \varphi_{\varepsilon}) d\Gamma + \varepsilon \int_{\Gamma} \mathscr{A} \varphi_{\varepsilon} \mathscr{A} (\varphi - \varphi_{\varepsilon}) d\Gamma \geqslant 0,$$
$$\varphi_{\varepsilon} \in \mathscr{K}, \forall \varphi \in \mathscr{K}.$$

Posons:

$$(5.17) g = z_d - y(0).$$

Alors (5.16) équivaut à:

(5.18)
$$\varepsilon \int_{\Gamma} \mathscr{A} \varphi_{\varepsilon} \mathscr{A} (\varphi - \varphi_{\varepsilon}) d\Gamma + \int_{\Gamma} \varphi_{\varepsilon} (\varphi - \varphi_{\varepsilon}) d\Gamma \geqslant \int_{\Gamma} g (\varphi - \varphi_{\varepsilon}) d\Gamma, \ \forall \ \varphi \in \mathscr{K}.$$

C'est un problème de perturbations singulières pour des inéquations variationnelles (Cf. D. Huet [1], J. L. Lions [4] [5]). Le résultat est alors le suivant: on introduit

(5.19)
$$\overline{\mathscr{K}} = \text{adh\'erence de } \mathscr{K} \text{ dans } L^2(\Gamma),$$

et soit φ_0 la solution dans $\overline{\mathscr{K}}$ de:

(5.20)
$$\int_{\Gamma} \varphi_0 (\varphi - \varphi_0) d\Gamma \geqslant \int_{\Gamma} g (\varphi - \varphi_0) d\Gamma, \ \forall \ \varphi \in \overline{\mathcal{K}},$$

i.e.

(5.21)
$$\varphi_0 = \text{Proj. } \overline{\mathscr{K}} g = \text{projection sur } \overline{\mathscr{K}} \text{ dans } L^2(\Gamma) \text{ de g.}$$

On a alors:

(5.22)
$$\varphi_{\varepsilon} \to \varphi_{0} \operatorname{dans} L^{2}(\Gamma).$$

Par conséquent:

Théorème 5.1. Lorsque $\varepsilon \to 0$, on a:

(5.23)
$$y_{\varepsilon}\Big|_{\Gamma} = y(u_{\varepsilon})\Big|_{\Gamma} \to y(o) + \text{Proj.}_{\overline{\mathcal{K}}}(z_d - y(o)) \text{ dans } L^2(\Gamma).$$

On en déduit que :

$$(5.24) u_{\varepsilon} = \mathscr{A} \varphi_{\varepsilon} \to u_{0} = \mathscr{A} \varphi_{0} \text{ dans } H^{-1}(\Gamma).$$

En général φ_0 n'est pas dans $H^1(\Gamma)$ de sorte que $\mathscr{A} \varphi_0$ n'est pas dans $L^2(\Gamma)$ de sorte que le résultat (5.24) ne peut pas en général être amélioré.

Remarque 5.1.

Si $\varphi_0 \in H^1(\Gamma)$ (et donc à \mathcal{K}) alors $\varphi_{\varepsilon} \to \varphi_0$ dans $H^1(\Gamma)$ et dans ce cas $u_{\varepsilon} \to u_0$ dans $L^2(\Gamma)$.

Exemple 5.1.

Prenons le cas « sans contraintes »

$$\mathscr{U}_{ad} = L^2(\Gamma).$$

Alors $\mathscr{A}^{-1}\mathscr{U}_{ad}=H^1(\Gamma)$ et $\overline{\mathscr{K}}=L^2(\Gamma)$. Donc $\varphi_0=z_d-y(0)$ et par conséquent:

$$(5.26) y(u_{\varepsilon}) \Big|_{\Gamma} \to z_d \text{ dans } L^2(\Gamma).$$

Pour obtenir u_0 , on résout:

$$(5.27) A \phi_0 = 0, \phi_0 = z_d \text{ sur } \Gamma$$

et alors:

$$u_0 = \frac{\partial \phi_0}{\partial y}.$$

Exemple 5.2.

Soit \mathcal{L} une variété régulière de dimension (n-2) contenue dans Γ . Supposons que:

(5.29)
$$\mathscr{K} = \{ \varphi \mid \varphi \in H^1(\Gamma), \varphi = 0 \text{ sur } \mathscr{L} \}.$$

Alors $\overline{\mathscr{K}} = L^2(\Gamma)$. On a alors:

$$\varphi_{\varepsilon} \to g \text{ dans } L^2(\Gamma).$$

Si l'on fait *l'hypothèse* que $g \in H^1(\Gamma)$, on peut utiliser Lions [4] [5] pour définir des correcteurs θ_{ε} par:

où

$$\left| \int_{\Gamma} g_{\varepsilon 1} \varphi \, d\Gamma \right| \leqslant c \mid \mid \varphi \mid \mid_{H^{1}(\Gamma)}, \quad \forall \varphi \in \mathcal{K},$$
$$\left| \int_{\Gamma} g_{\varepsilon 1} \varphi \, d\Gamma \right| \leqslant c \mid \mid \varphi \mid \mid_{L^{2}(\Gamma)}, \quad \forall \varphi \in \mathcal{K}.$$

On a alors:

(5.31)
$$\varphi_{\varepsilon} - (g + \theta_{\varepsilon}) \to 0 \text{ dans } H^{1}(\Gamma).$$

Le calcul de θ_{ε} est un calcul de couche limite pour un opérateur pseudodifférentiel (\mathscr{A}). Nous renvoyons pour cela à Demidov [1], Pokrovski [1].

Comme variante on peut prendre:

(5.29 bis)
$$\mathscr{K} = \{ \varphi \mid \varphi \in H^1(\Gamma), \varphi = y \text{ (o) sur } \mathscr{L} \}.$$

Cela signifie que \mathcal{U}_{ad} est l'ensemble des v tels que:

$$(5.32) y(v) = 0 sur \mathscr{L}.$$

Donc \mathcal{U}_{ad} est définie à partir des contraintes sur l'état, une situation fréquente dans les applications.

Evidemment, on a encore ici un phénomène de couche limite au voisinage de \mathscr{L} lorsque $\varepsilon \to 0$.

Remarque 5.2.

On trouvera dans Lions [4] [5] l'analyse d'autres situations du même type (mais plus délicates).

5.3. Cas d'un système non linéaire

On considère maintenant le système dont l'état est donné par:

(5.33)
$$-\Delta y + \beta(y) = 0 \text{ dans } \Omega,$$

$$\frac{\partial y}{\partial y} = v \text{ sur } \Gamma$$

où $\lambda \to \beta(\lambda)$ est une fonction continue strictement croissante de $\mathbf{R} \to \mathbf{R}$, nulle à l'origine. Dans (5.33), on suppose que $v \in L^2(\Gamma)$; le problème (5.33) admet une solution unique telle que:

$$(5.34) y \in H^1(\Omega)$$

et

$$\int_{\Omega} y \, \beta(y) \, dx < \infty.$$

La fonction coût est encore donnée par:

(5.36)
$$J_{\varepsilon}(v) = \int_{\Gamma} |y(v) - z_d|^2 d\Gamma + \varepsilon \int_{\Gamma} v^2 d\Gamma,$$

et \mathcal{U}_{ad} est encore un ensemble fermé convexe non vide de $L^2(\Gamma)$.

On vérifie sans peine qu'il existe $u_{\varepsilon} \in \mathcal{U}_{ad}$ tel que:

$$J_{\varepsilon}(u_{\varepsilon}) = \inf J_{\varepsilon}(v), v \in \mathcal{U}_{ad}$$

mais la fonction $v \to J_{\varepsilon}(v)$ n'ayant pas de raison d'être convexe, il n'y a aucune raison pour que u_{ε} soit unique.

Remarque 5.3.

On pourra trouver dans Lions [2], Chapitre 3, nº 2, des exemples d'équations d'état non linéaires conduisant à des fonctions coût *convexes*.

Remarque 5.4.

Il serait intéressant de pouvoir donner des « estimations topologiques » du nombre éventuel de solutions du problème (5.37).

Notre objet est maintenant de faire tendre & vers 0.

De manière formelle, lorsque $\mathcal{U}_{ad} = L^2(\Gamma)$, on considère le problème de Dirichlet non homogène

(5.38)
$$-\Delta\phi_0 + \beta(\phi_0) = 0,$$

$$\phi_0 \Big|_{\Gamma} = z_d$$

qui admet une solution unique dans $H^{1}(\Omega)$ si $z_{d} \in H^{1/2}(\Gamma)$.

Faisons l'hypothèse (de régularité sur z_d et sur β) que:

(5.39)
$$u_0 = \frac{\partial \phi_0}{\partial \nu} \Big|_{\Gamma} \in L^2(\Gamma).$$

On a alors:

(5.40) u_{ε} étant une solution quelconque de (5.37), $u_{\varepsilon} \to u_0$ dans $L^2(\Gamma)$ faible.

En effet, on note que (en posant $|\varphi|^2 = \int_{\Gamma} \varphi^2 d\Gamma$):

$$\varepsilon |u_{\varepsilon}|^2 \leqslant J_{\varepsilon}(u_{\varepsilon}) \leqslant J_{\varepsilon}(u_0) = \varepsilon |u_0|^2$$

donc:

$$|u_{\varepsilon}| \leqslant |u_0|.$$

On peut donc extraire une suite, encore notée u_{ε} , telle que:

(5.42)
$$u_{\varepsilon} \to w \text{ dans } L^2(\Gamma) \text{ faible.}$$

On vérifie sans peine que $y(u_{\varepsilon}) \to y(w)$ dans $H^1(\Gamma)$ faible et qu'alors:

(5.43)
$$J_{\varepsilon}(u_{\varepsilon}) \to J(w) = \int_{\Gamma} |y(w) - z_{d}|^{2} d\Gamma.$$

Mais:

$$J_{\varepsilon}(u_{\varepsilon}) \leqslant J_{\varepsilon}(v) \quad \forall v \in L^{2}(\Gamma) \text{ donne, avec (5.43):}$$

 $J(w) \leqslant J(v) \quad \forall v \in L^{2}(\Gamma)$

donc
$$J(w) \leqslant J(u_0) = 0$$
 donc $y(w) \Big|_{\Gamma} = z_d$ donc $y(w) = \phi_0$, donc $w = u_0$, d'où (5.40).

A la lumière des résultats du n° 5.2., on peut conjecturer que sans l'hypothèse de régularité (5.39), u_{ε} converge vers u_0 dans un espace « plus grand » que $L^2(\Gamma)$.

Ce problème est ouvert; pour un peu en préciser l'énoncé, on est conduit à la question des problèmes « non linéaires non homogènes » qui est abordée au n° suivant.

5.4. Remarques sur certains problèmes elliptiques non linéaires non homogènes

Avec un changement de notations par rapport à (5.38), on étudie le problème suivant: trouver ϕ solution de

(5.44)
$$\left| -\Delta \phi + \beta (\phi) \right| = 0,$$

$$\left| \phi \right|_{\Gamma} = g$$

où g est, par exemple, donné dans $L^{2}(\Gamma)$ (le problème est facile si $g \in H^{1/2}(\Gamma)$).

Il faut évidemment introduire (puisqu'il en est déjà ainsi dans les cas linéaires analogues; Cf. Lions-Magenes [1], Chapitre 2) des solutions faibles de (5.44): on dira que ϕ est solution faible de (5.44) si:

(5.45)
$$(\phi, -\Delta\psi) + (\beta(\phi), \psi) = -\int_{\Gamma} g \frac{\partial \psi}{\partial \nu} d\Gamma$$

pour toute fonction ψ « régulière » dans Ω et nulle sur Γ (on a posé $(\phi, \psi) = \int_{\Omega} \phi \psi dx$).

Cela posé, on a le résultat suivant, dû à H. Brezis [1].

Théorème 5.2. Soit $\delta(x) = distance de x à \Gamma$. Si g est donné dans $L^1(\Gamma)$ le problème (5.45) admet une solution unique telle que :

$$\phi \in L^1(\Omega),$$

$$\delta \beta (\phi) \in L^1 (\Omega),$$

et où dans (5.45) on peut prendre $\psi \in H^{2,\infty}(\Omega) \cap H^{1,\infty}_0(\Omega)$ 1). En outre l'application $g \to \phi = \phi(g)$ est Lipschitzienne, au sens suivant : Si $g_i \in L^1(\Gamma)$ et si $\phi(g_i) = \phi_i$, on a :

$$(5.48) \left| \begin{array}{c} ||\phi_{1} - \phi_{2}||_{L^{1}(\Omega)} + ||\delta\beta(\phi_{1}) - \delta\beta(\phi_{2})||_{L^{1}(\Omega)} \\ \leqslant c ||g_{1} - g_{2}||_{L^{1}(\Gamma)}. \end{array} \right|$$

On va maintenant appliquer la théorie de l'interpolation non linéaire (Cf. Lions [6], J. Peetre [1]).

On vérifie sans peine que:

L'application $g \rightarrow \phi = \phi(g)$ vérifie donc (5.49) et

$$(5.50) || \phi(g_1) - \phi(g_2) ||_{L^1(\Omega)} \leq c || g_1 - g_2 ||_{L^1(\Gamma)}.$$

On peut alors interpoler entre ces estimations (Cf. Lions [6]) et l'on en déduit le

¹⁾ I.e. ψ , $\frac{\partial \psi}{\partial x_i}$, $\frac{\partial^2 \psi}{\partial x_i \partial x_j} \in L^{\infty}(\Omega)$, $\psi = 0$ sur Γ .

Théoreme 5.3. Pour $g \in L^p(\Gamma)$, $1 \leq p \leq \infty$, le problème (5.45) admet une solution $\phi(g)$ unique dans $L^p(\Omega)$.

On a en outre:

Remarque 5.5.

On peut en outre montrer que dans les conditions du Théorème précédent:

(5.52)
$$\delta^{1/p} \beta (\phi) \in L^p (\Omega).$$

Remarque 5.6.

Si en particulier $g \in L^2(\Gamma)$, alors la solution faible de (5.44) vérifie: $\phi \in L^2(\Omega)$, $\delta^{1/2} \beta(\phi) \in L^2(\Omega)$ (donc $\delta^{1/2} \Delta \phi \in L^2(\Omega)$).

Il ne semble pas que l'on puisse définir $\frac{\partial \phi}{\partial \nu}$ dans ces conditions. Mais

si $g \in L^p(\Gamma)$, p > 2, alors on peut définir $\frac{\partial \phi}{\partial \nu}$ dans un espace de distributions sur Γ , par adaptation des méthodes de Lions-Magenes [1].

Pour d'autres résultats et d'autres applications de l'interpolation non linéaire, cf. L. Tartar [2].

6. Problèmes de gestion optimale et inéquations variationnelles

Soit s l'instant initial, $s \in [0, T]$ et soit x le stock de produits à l'instant s. On se donne un processus de Wiener f(t) (f(0) = 0) qui représente la demande cumulée jusqu'à l'instant t; si l'on pose:

$$(6.1) Ef(t) = \mu(t)$$

on a:

(6.2)
$$E(f(t) - \mu(t)(f(s) - \mu(s)) = \int_0^{\min(t,s)} \sigma^2(\tau) d\tau.$$

¹) Les résultats des nº 6.1 et 6.2 sont dus à Bensoussan et l'auteur [2] [3] et à Bensoussan, Goursat et l'auteur [1]; nous renvoyons aux articles détaillés des ces auteurs pour les (longs) détails techniques.