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Soit yy (y) le nouvel état, correspondant à (4.16). On montre que
yy (v) y (v) dans L2 (Q) lorsque y converge vers A + (avec y (A) A pour
A > A0 > 0) et l'on résout le problème de contrôle correspondant à yy (<v),

la fonction v -> yy (v) étant cette fois differentiate.

Remarque 4.4.

La situation décrite à la Remarque 4.3. précédente est typique des

inéquations variationnelles intervenant en Physique et en Mécanique (Cf.
Duvaut-Lions [1]) et pour la résolution numérique desquelles on emploie
constamment des processus de régularisation analogues à ceux de la

Remarque précédente (Cf. Glowinski, Lions, Tremolières [1] et la
bibliographie de ce livre).

Remarque 4.5.

Dans tous les problèmes considérés jusqu'ici, mais en particulier dans

le cas des problèmes multiphases, on peut avoir à considérer des fonctions
coût de la forme:

(4.17) J (y) j \y-(y) — zd\2 dxdt
E(v)

où E (v) est un ensemble géométrique défini à partir de y (v) (par exemple
E (v) peut être l'ensemble où y (v) > 0).

De nombreux problèmes restent à résoudre dans cette direction. Un
exemple, relatif aux équations de Stefan, est résolu dans Vasiliev [1].

5. Phénomènes de perturbations singulières

5.1. Orientations

Des phénomènes de perturbations singulières apparaissent dans la
théorie du contrôle optimal pour deux raisons:

(i) l'état du système peut être décrit par une équation (ou un ensemble

d'équations) contenant un petit paramètre e, soit ys (y) cet état,
correspondant à un contrôle v; alors la théorie des perturbations {singulières si,

comme c'est le cas le plus important, e apparaît dans des dérivées d'ordre

supérieur) permet de « remplacer » ye {v) par un « état approché » plus

simple y (v) correspondant à la valeur s 0 et avec des « corrections »
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correspondant aux couches limites; si 9e(y) désigne une telle correction,
on est donc conduit à remplacer ys (y) par y (y) + 9e (v) — ce qui conduit
à un problème de contrôle optimal approché qui peut être plus simple;
une question est alors évidemment d'analyser en fonction de s l'erreur
ainsi commise; nous ne développons pas ici ce point de vue, renvoyant
à Lions [3], Chapitre 7;

(ii) la fonction coût contient, en général, un terme de la forme N || v ||2

où y v y est une norme sur l'espace des contrôles et où N est un
paramètre > 0 d'autant plus petit que v est « bon marché ». Cela conduit aux
problèmes de contrôle où N -» 0; ce sont, comme on va voir, des problèmes
de perturbations singulières.

5.2. Cas dun système linéaire

Commençons par un exemple très simple. Dans un ouvert Q borné de
R" de frontière régulière T, on considère un système dont l'état y y (x, v)

y (v) est donné par:

(5.1) ri y (v) f dans Q,

,<• ~ 8y (v)
(5.2) v sur T

dv

où A est un opérateur elliptique du 2e ordre, — la dérivée conormale
ôv

associée à A, et où / (resp. v) est pris dans L2 (Q) (resp. L2 (r)).
On prendra par exemple A donné par :

(5.3, Av=-i±^+aoV,
où les atj vérifient (2.3) et où a0 e L"'(Çl), a0 (x) > <x0 > o p.p.

Le problème (5.1) (5.2) admet une solution unique:

(5-4) y (v)eH\Q).
La fonction coût est donnée par:

(5.5) Je(v)j | y(v) - zd\2dr + Ë\
r 'r

où zd est donné dans L2(L) et où e > 0 « petit ».
Soit par ailleurs:
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(5.6) %ad ensemble fermé convexe non vide de L2 (f).

Le problème de contrôle optimal:

(5.7) inf JE (v) ,v e Wad,

admet une solution unique, soit uE.

Notre objet est maintenant l 'étude du comportement de uE lorsque s -» 0.

Si l'on pose:

y M ys

le contrôle optimal uE est caractérisé par:

(5-8) J (ys-Zd) (y (V) ->g dr + £ J ue) > 0, V v e aUai.

r r
On pose:

(5-9) (y (y) -y{o))r q> (y£) -y(o))r <pc.

Alors v est donné à partir de cp de la façon suivante: on résout

(5.10) A cj) 0 dans O, </> |r — cp

et l'on pose:

dj)
(5.11) s/cp /dv r

Alors :

(5.12) v jsé (p.

L'opérateur est un isomorphisme de HS(T) -> /fs_1(r), y se R
(Cf. Lions-Magenes [1], Chapitres 1 et 2).

L'opérateur inverse est donné comme suit: on résout

ôw
(5.13) A w 0 — — v sur F,

dv

et alors:

(5.14) w\r v.

On introduit:

(5.15) Jf ensemble convexe fermé (non vide) de Hx{r).



J (<jOe - (zd — j(o))) (cp- cpE)dr+ £ J s/tPe (pc) dr > 0,

r r
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Avec ces notations, le problème (5.8) équivaut à:

(5.16)
r

(pee Jf V (p g

Posons :

(5.17) g z*-y(0).

Alors (5.16) équivaut à:

(5.18) ej" sdcptsd{(p-(p^dr +| <pe((p-<pe)dr >
r r

j g((p-(pc)dr, V>e
r

C'est un problème de perturbations singulières pour des inéquations
variationnelles (Cf. D. Huet [1], J. L. Lions [4] [5]). Le résultat est alors
le suivant: on introduit

(5.19) X adhérence de dans L2 (r),

et soit cp0 la solution dans de:

(5.20) | (p0((p-(p0)dr>J g(cp-(p0)dr, V>ejf,
r r

i.e.

(5.21) cpo Proj. # g projection sur jf dans L2 (r) de g.

On a alors:

(5.22) <pe -v <p0 dans L2 (r).

Par conséquent:

Théorème 5.1. Lorsque s -> 0, o« a:

(5.23) jg j("£) j (o) + Proj. # (zd-v(o)) dans L2 (E).

On en déduit que :

(5.24) ue sé <pe -> w0 j/ <p0 dans JT"1 (T).

En général (p0 n 'estpas dans H1 (r) de sorte que 'est pas dans
L2 (F) de sorte que le résultat (5.24) ne peut pas en général être amélioré.
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Remarque 5.1.

Si (p,0 e H1 (r) (et donc à Jf) alors <pe-> cp0 dans H1 (r) et dans ce

cas u& -> u0 dans L2 (r).

Exemple 5.1.

Prenons le cas « sans contraintes »

(5.25) mad L2 (r).

Alors sé'1 °Uad H1 (r) et jf L2 (r). Donc (p 0 zd — y (o) et

par conséquent :

(5.26) j(we) zd dans L2 (r).

Pour obtenir u0, on résout :

(5.27) A (j)0 0 (j)0 zd sur T

et alors:

#o
(5.28)

dv

Exemple 5.2.

Soit SE une variété régulière de dimension (n — 2) contenue dans T.
Supposons que:

(5.29) Jf {(p | (p e H1 (r) cp 0 sur JE}.

Alors jT L2 (r). On a alors:

<pe-> g dans (F).

Si l'on fait l'hypothèse que ge H1(F), on peut utiliser Lions [4] [5]

pour définir des correcteurs 9S par:

(5.30) 6e + g g ctE i

cj ^of:^(<p-eE)cir + j ee((p-eB)dr>

J (egsi + e112g,2)(<P-0ù<ir
r

V cp avec cp A- g ejf,
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où

J Qeitydr c 11 (p | |^i(r)5 V (p £ $£,
r

J gElcpdr <c H cp ||L2(r>? \7>eJf.
r

On a alors:

(5.31) <Ps ~ (g+0e) - 0 dans H1 (L).

Le calcul de 0£ est un calcul de couche limite pour un opérateur
pseudodifférentiel (s/). Nous renvoyons pour cela à Demidov [1], Pokrovski [1].

Comme variante on peut prendre :

Donc °Uad est définie à partir des contraintes sur l'état, une situation
fréquente dans les applications.

Evidemment, on a encore ici un phénomène de couche limite au voisinage
de if lorsque s -> 0.

Remarque 5.2.

On trouvera dans Lions [4] [5] l'analyse d'autres situations du même

type (mais plus délicates).

(5.29 bis) {(p | <p g H1 (r) (p y (o) sur if}.
Cela signifie que %ad est l'ensemble des v tels que:

(5.32) y (v) 0 sur if.

5.3. Cas d'un système non linéaire

On considère maintenant le système dont l'état est donné par:

(5.33) — Ay + ß (y) 0 dans Q,

dy
— v sur rôv

où À -> ß (2) est une fonction continue strictement croissante de R -> R,
nulle à l'origine. Dans (5.33), on suppose que veL2(r); le problème
(5.33) admet une solution unique telle que:
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(5.34) y e H1 (Q)

et

(5.35) J yß(y)dx< oo.

r r
et °Uad est encore un ensemble fermé convexe non vide de L2 (r).

On vérifie sans peine qu'il existe uE tel que:

mais la fonction v J£ (v) n'ayant pas de raison d'être convexe, il n'y a

aucune raison pour que ue soit unique.

Remarque 5.3.

On pourra trouver dans Lions [2], Chapitre 3, n° 2, des exemples
d'équations d'état non linéaires conduisant à des fonctions coût convexes.

Remarque 5.4.

Il serait intéressant de pouvoir donner des « estimations topologiques »
du nombre éventuel de solutions du problème (5.37).

Notre objet est maintenant de faire tendre e vers 0.

De manière formelle, lorsque ^éad L2 (L), on considère le problème
de Dirichlet non homogène

(5.37) Je (ue) inf Je (v) v g %ad

(5.38) - A<$>o + ß((j)o) 0,

<£o — Zd

r
qui admet une solution unique dans H1 (Q) si zde H1/2 (r).

Faisons l'hypothèse (de régularité sur zd et sur ß) que:

(5.39) o ~ eL2(r).
3v r

On a alors:
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(5.40) uE étant une solution quelconque de (5.37), us -> u0 dans

L2 (F) faible.

En effet, on note que (en posant | (p \2 J cp2 dT):
r

s\ue\2 <J£(ue) <Je(u0)e I Wo I2

donc:

(5.41) |n,|<|«0|.
On peut donc extraire une suite, encore notée uE, telle que:

(5.42) uE -» w dans L2 (r) faible.

On vérifie sans peine que y (w£) -> y (w) dans H1 (T) faible et qu'alors:

(5.43) Je (us)-+ J(w)J | (w) - zd |2 dT.
r

Mais:

Js (ue) < J£ (p) V v g L2 (r) donne, avec (5.43) :

J(w)<J(y) \/veL2{T)

donc /(w) </(w0) 0 donc j (w) zd donc y (w) </>0, donc
r

w w0, d'où (5.40).
A la lumière des résultats du n° 5.2., on peut conjecturer que sans

l'hypothèse de régularité (5.39), uE converge vers u0 dans un espace «plus
grand » que L2 (r).

Ce problème est ouvert; pour un peu en préciser l'énoncé, on est
conduit à la question des problèmes « non linéaires non homogènes » qui
est abordée au n° suivant.

5.4. Remarques sur certains problèmes elliptiques
non linéaires non homogènes

Avec un changement de notations par rapport à (5.38), on étudie le
problème suivant: trouver cj) solution de

(5.44) - Acj) + ß ((/)) 0,

=8
r
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où g est, par exemple, donné dans 2 (T) (le problème est facile si

geHll2(ni
11 faut évidemment introduire (puisqu'il en est déjà ainsi dans les cas

linéaires analogues; Cf. Lions-Magenes [1], Chapitre 2) des solutions
faibles de (5.44): on dira que 0 est solution faible de (5.44) si:

(5.45) (4>, -A*) + (ß (4>), *)= -1
r dv

pour toute fonction 0 « régulière » dans Q et nulle sur r (on a posé

(0, 0) J 4> 0 dx).
Q

Cela posé, on a le résultat suivant, dû à H. Brezis [1].

Théorème 5.2. Soit ô (x) distance de x à F. Si g est donné dans L1 (T)
le problème (5.45) admet une solution unique telle que :

(5.46) cj) eL1 (Q),

(5.47) ô ß (0) g L1 0Q),

et où dans (5.45) on peut prendre \j/ e H2,co(Q) n Hll^°(Q) 1).

En outre l 'application g -» 0 0 (g) est Lipschitzienne, au sens suivant :

Si gt eL1 (T) et si 0 (gf) (ßb on a:

(5.48) ||^ -02 H + Il öß((ßi) ~ b ß (02) H

Ll(ß) Ll(ß)

< C 110! - g2IILi(r)

On va maintenant appliquer la théorie de l'interpolation non linéaire

(Cf. Lions [6], J. Peetre [1]).
On vérifie sans peine que :

(5.49) ||0 II <|| g II
Lœ(Q) L°°(r)

L'application g -> 0 0 (g) vérifie donc (5.49) et

(5.50) 11 <Kfi) - «K&t) 11 <c||gi-g2||
ii(fl) Li(n

On peut alors interpoler entre ces estimations (Cf. Lions [6]) et l'on
en déduit le

1)Ie- 41 0 sur r.
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Theoreme 5.3. Pour geLp(r), 1 </?<oo, le problème (5.45) admet

une solution 0 (g) unique dans Lp (Q).

On a en outre :

(5.51) ||0(g) Il < c H g II
LP(Q) LP (n

Remarque 5.5.

On peut en outre montrer que dans les conditions du Théorème

précédent :

(5.52) ôllp ß (0) eLp(Q).

Remarque 5.6.

Si en particulier g e L2 (F), alors la solution faible de (5.44) vérifie:

0eL2(£), ô1/2 ß((j))eL2(Q) (donc Ô1'2 A 0 eL2 (Q)).
Ô(j)

Il ne semble pas que l'on puisse définir — dans ces conditions. Mais
dv

30
si g eLp (T), p > 2, alors on peut définir — dans un espace de distribu-

ôv

tions sur T, par adaptation des méthodes de Lions-Magenes [1].
Pour d'autres résultats et d'autres applications de l'interpolation non

linéaire, cf. L. Tartar [2].

6. Problèmes de gestion optimale et inéquations variationnelles

6.1. Un problème de gestion optimale x)

Soit l'instant initial, 5 e [0, T] et soit x le stock de produits à l'instant s.

On se donne un processus de Wiener f(t) (/(0) 0) qui représente
la demande cumulée jusqu'à l'instant t; si l'on pose:

(6-1) Ef(t) — jx{t)

on a:

(6.2) E(f(t) - n (0 (/(s) - n(s))J0min er2 (t) dx.

Q Les résultats des n° 6.1 et 6.2 sont dus à Bensoussan et l'auteur [2] [3] et à Bensoussan,
Goursat et l'auteur [1]; nous renvoyons aux articles détaillés des ces auteurs pour les
(longs) détails techniques.
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