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Soit y? (v) le nouvel état, correspondant a (4.16). On montre que
¥’ (v) - y (v) dans L* (Q) lorsque y converge vers A (avec y (1) = A pour
A > 2o > 0) et 'on résout le probléme de contrdle correspondant a y” (v),
la fonction v — y? (v) étant cette fois différentiable.

Remarque 4.4.

La situation décrite a la Remarque 4.3. précédente est typique des
inéquations variationnelles intervenant en Physique et en Mécanique (Cf.
Duvaut-Lions [1]) et pour la résolution numérique desquelles on emploie
constamment des processus de régularisation analogues a ceux de la
Remarque précédente (Cf. Glowinski, Lions, Tremoliéres [1] et la biblio-
graphie de ce livre).

Remarque 4.5.

Dans tous les problémes considérés jusqu’ici, mais en particulier dans
le cas des problemes multiphases, on peut avoir a considérer des fonctions
colit de la forme:

(4.17) J(@) = | |y(v) — za,|2 dx dt

E(v)
ou E (v) est un ensemble géométrique défini a partir de y (v) (par exemple
E (v) peut étre I’ensemble ou y (v) > 0).

De nombreux problémes restent a résoudre dans cette direction. Un
exemple, relatif aux équations de Stefan, est résolu dans Vasiliev [1].

5. PHENOMENES DE PERTURBATIONS SINGULIERES

5.1. Orientations

Des phénomeénes de perturbations singuliéres apparaissent dans la
théorie du contrble optimal pour deux raisons:

(i) Iétat du systéme peut étre décrit par une équation (ou un ensemble
d’équations) contenant un petit paramétre e, soit y, (v) cet état, corres-
pondant a un contrdle v; alors la théorie des perturbations (singuliéres si,
comme c’est le cas le plus important, ¢ apparait dans des dérivées d’ordre
supérieur) permet de «remplacer » y, (v) par un «état approché » plus
simple y (v) correspondant a la valeur ¢ = 0 et avec des « corrections »
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correspondant aux couches limites; si 0,(v) désigne une telle correction,

- on est donc conduit & remplacer y, (v) par y (v) + 6, (v) — ce qui conduit

4 un probléme de contrdle optimal approché qui peut étre plus simple;

une question est alors évidemment d’analyser en fonction de & l'erreur

~ ainsi commise; nous ne développons pas ici ce point de vue, renvoyant
a Lions [3], Chapitre 7;

(ii) la fonction cofit contient, en général, un terme de la forme N || v ||?
ou H v || est une norme sur l’espace des contrdles et ou N est un para-
meétre > 0 d’autant plus petit que v est « bon marché ». Cela conduit aux
problémes de contrdle ot N — 0; ce sont, comme on va voir, des problémes
de perturbations singuliéres.

5.2. Cas d’un systéme linéaire

Commengons par un exemple trés simple. Dans un ouvert Q borné de
R” de frontiere réguliére I', on considére un systéme dont 1’état y = y (x, v)
= y (v) est donné par:

5.1 Ay @) = fdans Q,
(5.2) 9 ©) = ysur I’
ov

. . - d :
ou A est un opérateur elliptique du 2¢ ordre, ™ la dérivée conormale
\Y

associée a A, et ol f (resp. v) est pris dans L* (Q) (resp. L* (I).
On prendra par exemple A donné par:

"0 do
5.3 Ap = — — | g.. -
G- ¢ i,jzél 0x; <aj{ @x,-) v AP

ou les a;; -vérifient (2.3) et ol ay e L2(Q), a,(x) > o, > op.p.
Le probléme (5.1) (5.2) admet une solution unique:

(5.4) y (v) e HY(Q).
La fonction codt est donnée par:
(5.5) L@ =[ |y@ -z |*dl + ¢ v*dr,
r r

ou z, est donné dans L (I') et ol ¢ > 0 « petit ».
Soit: par ailleurs: -
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(5.6) U, = ensemble fermé convexe non vide de L? (I').

Le probléme de contrdle optimal:
5.7 inf J, (v) ,veU,,

admet une solution unique, soit u,.
Notre objet est maintenant 1’étude du comportement de u, lorsque ¢ — 0.
Si ’on pose:

Y (ue) = Y
le controle optimal u, est caractérisé par:

(5.8) '[r y.—z) (v W) —y,) dIl + ¢ ".r u, (v—u)dlr >0,Y ve,.

On pose:
(5.9) (y @) =y©)r =@,y W) —yO)r = @,

Alors v est donné a partir de ¢ de la fagon suivante: on résout

(5.10) Ap =0dans Q, ¢ | = — ¢
et I’on pose:
(5.11) Ao = g?r'
Alors:
(5.12) v = o Q.

L’opérateur &7 est un isomorphisme de H(I') - H*"'(I'), VseR
(Cf. Lions-Magenes [1], Chapitres 1 et 2).
L’opérateur inverse &/ ~! est donné comme suit: on résout

ow

(5.13) Aw=0,— =vsurl,
ov

et alors:

(5.14) wlp= o .

On introduit:

(5.15 A = o YU%,) = ensemble convexe fermé (non vide) de H*(I).
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Avec ces notations, le probléme (5.8) équivaut a:

(5.16) [ (9= (za—y(0))) (9 —0,) dl’ + ¢ Ir A, A (p—@)dl >0,
o, e VN oeX.

Posons:
(5.17) g =2,—y()
Alors (5.16) équivaut a:
(5.18) afr Ao, o (p—¢)dl + Jrsos (p—o@)dl >
| g(o=gndl. Y pe.
C’est un probléeme de perturbations singuliéres pour des inéquations

variationnelles (Cf. D. Huet [1], J. L. Lions [4] [5]). Le résultat est alors
le suivant: on introduit

(5.19) A4 = adhérence de " dans L* (),

et soit ¢, la solution dans J de:

(5.20) Jrcoo (<o—<oo)df>§rg(<p—-¢o)d1“, Voed,
1.e.

(521) @, = Proj. g = projection sur & dans L* (I') de g.
On a alors:
(5.22) ¢, > @, dans L? (D).

Par conséquent:

THEOREME 5.1. Lorsque ¢ - 0, on a:

(5.23) y, — y(0) + Proj. z (z;,—y(0)) dans L? (I").

r

= y (u,)
r

On en déduit que :
(5.24) u, = o ¢, - uy, = o ¢, dans H™ ! ().

En général ¢, n’est pas dans H' (I') de sorte que o/ Qo n'est pas dans
L? (I') de sorte que le résultat (5.24) ne peut pas en général étre amélioré.
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Remarque 5.1.
Si o€ H'(I'). (et donc & ') alors ¢, — ¢, dans H' (I') et dans ce
cas u, — u, dans L*(I).
Exemple 5.1.
Prenons le cas « sans contraintes »
(5.25) U, = L*(T).

Alors o ', = H' (I etgf L*>(I'). Donc ¢, = z; — y(0) et
par conséquent:

(5.26) y (W) | — z, dans L* ().
r

Pour obtenir u,, on résout:

(5.27) Ay =0,dy =z, sur I’
et alors:
0
(5.28) uy = 2o
ov
Exemple 5.2.

Soit % une variété réguliére de dimension (n—2) contenue dans F
Supposons que:

(5.29) A = 1(plcpc-:Hl(r),q;=0sur 2.
Alors " = L*(I'). On a alors: -
¢, — g dans L* (D).

Si I'on fait I’hypothése que ge H* ('), on peut utiliser L1ons [4] [5]
pour définir des correcteurs 0, par:

(530) | 0 +geH,

sj A0, 4 (o— eg)dru 0,(p—0,)dl >
j(8g81+81/2g£2)(€0 Ge)dr

Vo avec ¢ +geA,
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ou

j gslq)drt<cll(/)”H1(I‘): Voed,
r

f gs1§0dr! <cllolleaqy, VoeX.
r

On a alors:

(5.31) o, — (g+0,) —» 0 dans H' (I).

Le calcul de 0, est un calcul de couche limite pour un opérateur pseudo-
différentiel (o). Nous renvoyons pour cela & Demidov [1], Pokrovski [1].
Comme variante on peut prendre:

(5.29 bis) A ={p|loeH" (I), 0 = y(0) sur &}.

Cela signifie que %,, est ’ensemble des v tels que:

(5.32) ‘ y (@) = 0 sur Z.

Donc U, est définie a partir des contraintes sur [’état, une situation
fréquente dans les applications. |

Evidemment, on a encore ici un phénoméne de couche limite au voisinage
de Z lorsque ¢ — 0.

Remarque 5.2.

On trouvera dans Lions [4] [5] I’analyse d’autres situations du méme

{ type (mais plus délicates).

5.3. Cas d’un systéme non linéaire

On considére maintenant le systéme dont I’état est donné par:

(5.33) — 4y + B(y) = 0 dans Q,

0
—Z=vsur1“
A"

f ol A — B (1) est une fonction continue strictement croissante de R — R,

nulle a Torigine. Dans (5.33), on suppose que v e L?(I); le probléme
(5.33) admet une solution unique telle que:
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(5.34) ye H' (Q)
et
(5.35) jgy B (y)dx < oo.

La fonction cofit est encore donnée par:
(5.36) J.)= [ |y@ — 2z, |*dl + e[ v*dr,
r r
et %,q est encore un ensemble fermé convexe non vide de L? (I).
On vérifie sans peine qu’il existe u, €, tel que:
(5.37) J.(u) = inf J, (v) ,veU,y

mais la fonction v — J, (v) n’ayant pas de raison d’étre convexe, il n’y a
aucune raison pour que u, soit unique.

Remarque 5.3.

On pourra trouver dans Lions [2], Chapitre 3, n° 2, des exemples
d’équations d’état non linéaires conduisant a des fonctions cofit convexes.

Remarque 5.4.

11 serait intéressant de pouvoir donner des « estimations topologiques »
du nombre éventuel de solutions du probléme (5.37).

Notre objet est maintenant de faire tendre ¢ vers 0.
De maniére formelle, lorsque %,, = L* (I'), on considére le probléme
de Dirichlet non homogéne

(5.38) — 4o + f(do) = O,
bo

=Zd
r

qui admet une solution unique dans H'(Q) si z;e HY* ().
Faisons [’hypothése (de régularité sur z; et sur ) que:
_ 3,

5.39 e
( ) Uy oy

e L*(IN).
r

On a alors:
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(5.40) u, étant une solution quelconque de (5.37), u, — uy dans
L*(I') faible.

En effet, on note que (en posant | ¢ |* = | ¢*dI):
r

glu,|* < T, () < J,(uo) = &|ug >
donc:
(5.41) Iusl < [ U [
On peut donc extraire une suite, encore notée u,, telle que:
(5.42) u, = w dans L? (I') faible.
~ On vérifie sans peine que y (1) — y (w) dans H' (I') faible et qu’alors:
(5.43) J,(u) > J(w) = jr |y W) — z, |* dI.

Mais:

J, (u) <J,(v) VwvelL? () donne, avec (5.43):
Jw) <J@ YveL?)

donc J(w) <J(uy) =0 donc y(w)| = z; donc y(w) = ¢,, donc

r
W = u,, dou (5.40).

A la lumiére des résultats du n° 5.2., on peut conjecturer que sans
I’hypothése de régularité (5.39), u, converge vers u, dans un espace « plus
- grand » que L* ().
| Ce probléme est ouvert; pour un peu en préciser I’énoncé, on est
conduit & la question des probléemes « non linéaires non homogénes » qui
~est abordée au n° suivant.

5.4. Remarques sur certains problémes elliptiques
non linéaires non homogeénes

Avec un changement de notations par rapport a (5.38), on étudie le
probléme suivant: trouver ¢ solution de

(5.44) - —4¢ + B(¢) = 0,
¢| =g

r
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ou g est, par exemple, donné dans L*(I') (le probléme est facile si
ge H'*(I)). |

Il faut évidemment introduire (puisqu’il en est déja ainsi dans les cas
linéaires analogues; Cf. Lions-Magenes [1], Chapitre 2) des solutions
faibles de (5.44): on dira que ¢ est solution faible de (5.44) si:

oy
ov

(5.45) (6, —4Y) + (B(P), ¥) = — Irg =i

pour toute fonction Y «réguliere » dans Q et nulle sur I' (on a posé

(p, ) = de) Y dx).

Cela posé, on a le résultat suivant, dt 2 H. Brezis [1].

THEOREME 5.2. Soit & (x) = distance de x & I'. Si g est donné duns L' (I')
le probleme (5.45) admet une solution unique telle que : |

(5.46) bell(Q), |

(3.47) 5 B()eL (),

et ot dans (5.45) on peut prendre € H**(Q) n Hlb‘”(Q) 1),
En outre ’application g — ¢ = ¢ (g) est Lipschitzienne, au sens suivant :
Si g,el* () et si ¢ (g;) = ¢, on a:

(5.48) | [ 41 — o2l + 1 0f (@) — 0 B(P2) |l

L1(2) L1(2)

<cllgy — g2l
LI(I)

On va maintenant appliquer la théorie de [’interpolation non linéaire
(Cf. Lions [6], J. Peetre [1]).
On vérifie sans peine que:

(5.49) el <llgll

L% () L™ (I')

L’application g — ¢ = ¢ (g) vérifie donc (5.49) et

(5.50) ¢ (g) — ¢ (g2) |l <cllgr — g2l

L1(Q) Li(r)

On peut alors interpoler entre ces estimations (Cf. Lions [6]) et I'on
en déduit le

oY 02y
0x; ’ 0xi 0xj

Dle ¢,

eL® (Q)), ¢ =OsurI.
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- THEOREME 5.3. Pour geLP(I), 1 <p < oo, le probléeme (5.45) admet
une solution ¢ (g) unique dans LP ().
On a en outre :

(3.51) ¢ (9) ] <cllgll

Lp(92) Lp(I')

- Remarque 5.5.

On peut en outre montrer que dans les conditions du Théoreme
précédent:

(5.52) 51P B ($) € LP (Q).

Remarque 5.6.

Si en particulier ge L* (I'), alors la solution faible de (5.44) vérifie:
peL?*(Q), 612 B(p)eL*(Q) (donc 6% A ¢ eL?(Q)).

Il ne semble pas que ’on puisse définir ™ dans ces conditions. Mais
A

0
si geLP(I"), p > 2, alors on peut définir —;—)~ dans un espace de distribu-
v

tions sur I', par adaptation des méthodes de Lions-Magenes [1].
Pour d’autres résultats et d’autres applications de l'interpolation non
linéaire, cf. L. Tartar [2].

6. PROBLEMES DE GESTION OPTIMALE ET INEQUATIONS VARIATIONNELLES

6.1. Un probleme de gestion optimale *)

Soit s 'instant initial, s € [0, T'] et soit x le stock de produits & I’instant s.

On se donne un processus de Wiener f(¢) (f(0) = 0) qui représente
la demande cumulée jusqu’a linstant ¢; si 'on pose:

(6.1) Ef@) = u()

on a:

(6.2) E(f(O) —u®(f(s) = p(s)) = [5 ¢ 6 () dr.

1) Les résultats des n° 6.1 et 6.2 sont dus 2 Bensoussan et ’auteur [2]1[3] et a Bensoussan,

Goursat et ’auteur [1]; nous renvoyons aux articles détaillés des ces auteurs pour les
(Iongs) détails techniques.
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