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d’ou, en tenant compte de la 2¢ équation (3.37):

— [ h() Y~ (x,s)dx + | (AY) (N ™) dx dt

Qx]s,T[
! (W) dxdt =0
— gy X —
N QX]s,T[‘
d’ou:
(3.59) [oh ()Y~ (x, ) dx + [ougsrg (A7) dx di
+ : (W) dxdt =0
— xdt = 0.
N “axi1s,11
Comme 2 >0, tous les termes sont pos_itifs, donc ¥y~ = 0.

Remarque 3.6.

On rencontre d’autres systemes du type (3.51) pour des opérateurs
paraboliques (Cf. Lions [1] [2]). D’autres systémes, encore du méme type,
ont €té obtenus a propos de problémes stochastiques par Bismut [1].

Des études directes de ces systémes (et d’autres, n’entrant pas, appa-
remment, dans le cadre de la théorie du contrdle) ont été faites par Da Prato
et Temam, les résultats les plus complets étant obtenus, a partir de méthodes
itératives nouvelles, par L. Tartar [1].

Remarque 3.7.

Le noyau P dépend du paramétre N : P = Py. On montre (Cf. Lions [3])
que Py (x, &, t) décroit (p.p.) lorsque N décroit et que lorsque N — 0,
Py(x,& 1) > 0, au sens:

Vhel?(Q),Vte[0,T],[f  Py(x,&t)h(x)h(E)dxdé— 0.
2

0 x

4. EQUATIONS D’ETAT NON LINEAIRES

4.1. Cas différentiable

Nous avons jusqu’ici considéré des cas ou I’équation d’état du systéme
était linéaire. On rencontre dans les applications de nombreuses situations
(c’est méme, en fait, la situation habituelle!) ou I’équation d’état est non
linéaire.
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On peut distinguer deux cas, selon que 'application v — y (v) est, ou

non, différentiable.
Donnons un exemple de probléme intervenant en biochimie *); I'état

(qui représente une concentration) est donné par:

2
- (4.1) dy 0% y o
% Y i T —=f.xe]0,1[,te]0, Tl
f v ety 10,11, re]0. 71

l o = constante > 0,

| @42) y(6,0) = o (1), xe]0, 1]

@) -2 =0 ), 20,0 =0,1€10,TL
¥ 0x 0x

Les données f et y, et le contrdle v sont > 0.
| On vérifie sans peine (Cf. les détails dans Kernevez [1]) que ce probleme
' admet une solution unique, vérifiant:
dy 0%y Oy

(4.4 =, ——,—el?’(0),0 =2x 10, T2 =10, 1
é() Va2 © (Q), O X ] [ ] [,

- (4.5) y > 0.

On peut, par exemple, commencer par résoudre le probléme:

’
f:

dp 0% ¢

A A N S S
ot  0x* 1+ |o

o - f

;
B
i

avec les conditions (4.2) (4.3) inchangées, puis ’on vérifie que la solution ¢
f de (4.6) (4.2) (4.3) est >0, donc ¢ = y.

I La solution de (4.1) (4.2) (4.3) étant notée y (v), on considére la fonction
I coiit:

0}
i

@) J@ = |y@ —z[*dxdt + N[ Tv*dr,
0

| ol z, est donnée dans L? (Q).
§ I1 est facile de voir que le probléme:

; (49) inf J (W), ve,,

trés nombreux autres problémes de controle en biochimie; on donne ici I’'un des exemples

§ 1) On trouvera dans les travaux de Kernevez et Thomas (Cf. la bibliographie) de
g les plus simples. Cf. aussi Brauner et Penel [1].
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(4.9 U, = ensemble convexe fermé non vide de L? (0, T'), contenu
dans I’ensemble des fonctions >0 p.p. sur (0, T')

admet une solution (au moins).

Pour obtenir des conditions nécessaires d’optimalité, on utilise alors
le fait que la fonction v — y (v) est différentiable de {L* (0, T),v > 0}
dans L? (Q). Si I'on pose:

_ d
(4.10) j = ﬂy(u + ) | 120

on vérifie que:

(4.11) )7(36,0) =Y

i B3
oy =v0,2U,0 =0,
0x 0x

ou y = y(u).
On introduit alors I’état adjoint et ’on obtient les conditions d’optimalité
par des intégrations par parties (Cf. Kernevez [1], Lions [2]).

Remarque 4.1.

La fonction v — J (v) n’a pas de raison d’€tre convexe, et il n’y a donc
pas de raison d’avoir unicité de la solution. 1l serait intéressant d’étudier le
nombre éventuel des solutions (minima globaux ou locaux). Nous rencon-
trerons encore des questions de ce type au n° 5 (Cf. par exemple
Remarque 5.4.).

Remarqde 4.2.

On trouvera d’autres exemples, relatifs a des problémes de conduite
de chauffe d’un four, dans J. P. Yvon [1}.
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4.2. Cas non différentiable

Voici un exemple de probléme de contrdle intervenant également en
biochimie. L’état est donné par I’équation:
dy 0%y y
4.12 =4+ 0——=f4+v,x€]0,1[,1€]0,T],
(4.12) ot ox? 1 +y 4 ]
donc équation analogue a (4.1), avec cette fois le controle distribué v € @ad,
ou

(4.13) U, = ensemble fermé convexe non vide de L* (Q), contenu dans
les fonctions p.p. > 0 dans Q.

La condition initiale est identique a (4.2). Les conditions aux limites
sont les suivantes: soit & >0 donné; alors ¢ étant une constante > 0,

0 0
(4.14) ——ay<o,t) = —co-0 LZ2ZU,H=—cpy-n*
4 X x=0 O0X

=0 x=1
On vérifie encore que le probléme (4.12) (4.2) (4.14) admet une solution

unique, soit y = y (v). Si la fonction cofit est encore donnée par (4.7), le
probléme:

(4.15) Inf J (v) , v e ¥,

admet encore une solution (au moins), soit wu.

Mais la fonction 4 — 2™ n’étant pas différentiable a 1’origine, I’applica-
tion v — y (v) de L? (Q) —» L? (Q) n’est plus différentiable, et I"obtention
de conditions d’optimalité semble une question ouverte.

Remarque 4.3.

Du point de vue numérique (Cf. Yvon [1]) on introduit une fonction
A — y (1) approximation différentiable de A — 1™ et 'on remplace (4.14)
par:

0
(4.16) — EX(o,t) = —cy(y(o,t) —h),
X

oy i B
a—x( 1) = cy(r(,1) —h).
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Soit y? (v) le nouvel état, correspondant a (4.16). On montre que
¥’ (v) - y (v) dans L* (Q) lorsque y converge vers A (avec y (1) = A pour
A > 2o > 0) et 'on résout le probléme de contrdle correspondant a y” (v),
la fonction v — y? (v) étant cette fois différentiable.

Remarque 4.4.

La situation décrite a la Remarque 4.3. précédente est typique des
inéquations variationnelles intervenant en Physique et en Mécanique (Cf.
Duvaut-Lions [1]) et pour la résolution numérique desquelles on emploie
constamment des processus de régularisation analogues a ceux de la
Remarque précédente (Cf. Glowinski, Lions, Tremoliéres [1] et la biblio-
graphie de ce livre).

Remarque 4.5.

Dans tous les problémes considérés jusqu’ici, mais en particulier dans
le cas des problemes multiphases, on peut avoir a considérer des fonctions
colit de la forme:

(4.17) J(@) = | |y(v) — za,|2 dx dt

E(v)
ou E (v) est un ensemble géométrique défini a partir de y (v) (par exemple
E (v) peut étre I’ensemble ou y (v) > 0).

De nombreux problémes restent a résoudre dans cette direction. Un
exemple, relatif aux équations de Stefan, est résolu dans Vasiliev [1].

5. PHENOMENES DE PERTURBATIONS SINGULIERES

5.1. Orientations

Des phénomeénes de perturbations singuliéres apparaissent dans la
théorie du contrble optimal pour deux raisons:

(i) Iétat du systéme peut étre décrit par une équation (ou un ensemble
d’équations) contenant un petit paramétre e, soit y, (v) cet état, corres-
pondant a un contrdle v; alors la théorie des perturbations (singuliéres si,
comme c’est le cas le plus important, ¢ apparait dans des dérivées d’ordre
supérieur) permet de «remplacer » y, (v) par un «état approché » plus
simple y (v) correspondant a la valeur ¢ = 0 et avec des « corrections »
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