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d'où, en tenant compte de la 2e équation (3.37):

-J h(x)i//~(x9 s)dx + J (A\jj)(A\jj~)dxdt
n .QX]S,7[

— J (ij/ )2 dx dt 0
N flx]xj[

d'où:

(3.54) (x, s)dx + Jnx]s,T[(A|/' Y dx dt

4 J O/O2 dx dt 0.
N nxjs,T[

Comme h > 0, tous les termes sont positifs, donc \f/ ~
— 0.

Remarque 3.6.

On rencontre d'autres systèmes du type (3.51) pour des opérateurs
paraboliques (Cf. Lions [1] [2]). D'autres systèmes, encore du même type,
ont été obtenus à propos de problèmes stochastiques par Bismut [1].

Des études directes de ces systèmes (et d'autres, n'entrant pas,
apparemment, dans le cadre de la théorie du contrôle) ont été faites par Da Prato
et Temam, les résultats les plus complets étant obtenus, à partir de méthodes
itératives nouvelles, par L. Tartar [1].

Remarque 3.7.

Le noyau P dépend du paramètre N : P PN. On montre (Cf. Lions [3])

que PN (x, £, t) décroît (p.p.) lorsque N décroît et que lorsque N -» 0,

PN (x, £, t) 0, au sens:

\/ he L2 (Q) Vte[0,T] JJ PN (x, f, t) h (x) h (0 dx d^ -> 0.
ßxß

4. Equations d'état non linéaires

4.1. Cas différentiable

Nous avons jusqu'ici considéré des cas où Yéquation d'état du système
était linéaire. On rencontre dans les applications de nombreuses situations
(c'est même, en fait, la situation habituelle!) où l'équation d'état est non
linéaire.
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On peut distinguer deux cas, selon que l'application -+ est, ou

non, differentiate.
Donnons un exemple de problème intervenant en biochimie x) ; l'état

(qui représente une concentration) est donné par:

S (4.1)
dt dx21 + y

a constante > 0,

(4.2) y (x, o) VoW,xe]0,l[
dy dy

(4.3) - — (o, 0 v (t),—(1, 0, e] 0,
CX OX

Les données / et y0 et le contrôle v sont > 0.

On vérifie sans peine (Cf. les détails dans Kernevez [1]) que ce problème
admet une solution unique, vérifiant:

ôy ô2y dy
(4.4) yS'JLçL2 (ß), Q Qx ] 0, T[, Q ] 0, 1 [,

dx dx dt

(4.5) y > 0.

On peut, par exemple, commencer par résoudre le problème:

d(p d2cp (p
<4-6) + d / =fdt dx 1 + I (p I

avec les conditions (4.2) (4.3) inchangées, puis l'on vérifie que la solution cp

de (4.6) (4.2) (4.3) est > 0, donc cp y.
La solution de (4.1) (4.2) (4.3) étant notée y (y), on considère la fonction

coût :

(4.7) J (v) J | y (y) — zd |2 dx dt + N J T v2 dt,
Q

où zd est donnée dans L2 (Q).
Il est facile de voir que le problème :

(4.8) inf J (v) v g °Uad

x) On trouvera dans les travaux de Kernevez et Thomas (Cf. la bibliographie) de
très nombreux autres problèmes de contrôle en biochimie; on donne ici l'un des exemples
les plus simples. Cf. aussi Brauner et Penel [1].
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ou

(4.9) °llad ensemble convexe fermé non vide de L2 (0, T),
dans l'ensemble des fonctions > 0 p.p. sur (0, T)

contenu

admet une solution (au moins).
Pour obtenir des conditions nécessaires d'optimalité, on utilise alors

le fait que la fonction v - y (v) est dijférentiable de (L2 (0, T), v > 0}
dans L2 (Q). Si l'on pose:

(4.10)

on vérifie que:

dy d2y

y dly(M+^'A=0

(4.11)

+ <7-
yy

ôt dx2 '
1 + (1 +

y(x,o) 0,

dy dy- t-(°, 0 v(t), —(1,0 o,
dx dx

0,

où y y (m).

On introduit alors l'état adjoint et l'on obtient les conditions d'optimalité
par des intégrations par parties (Cf. Kernevez [1], Lions [2]).

Remarque 4.1.

La fonction v -» J {v) n'a pas de raison d'être convexe, et il n'y a donc

pas de raison d'avoir unicité de la solution. Il serait intéressant d'étudier le

nombre éventuel des solutions (minima globaux ou locaux). Nous rencontrerons

encore des questions de ce type au n° 5 (Cf. par exemple

Remarque 5.4.).

Remarque 4.2.

On trouvera d'autres exemples, relatifs à des problèmes de conduite
de chauffe d'un four, dans J. P. Yvon [1].
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4.2. Cas non dijférentiable

Voici un exemple de problème de contrôle intervenant également en

biochimie. L'état est donné par l'équation:

dy ô2y y
(4.12) +

ôt ôx 1 + y
f+v, xe]0,1 [, £ e ] 0, Y [,

donc équation analogue à (4.1), avec cette fois le contrôle distribué v etféad,

où

(4.13) °Uaà — ensemble fermé convexe non vide de L2 (g), contenu dans
les fonctions p.p. > 0 dans g.

La condition initiale est identique à (4.2). Les conditions aux limites
sont les suivantes : soit h > 0 donné ; alors c étant une constante > 0,

(4.14) -^(o,f) -OX

dy

x-0 CX
c(y-h)+

On vérifie encore que le problème (4.12) (4.2) (4.14) admet une solution
unique, soit y y (v). Si la fonction coût est encore donnée par (4.7), le

problème :

(4.15) Inf J (y) ,v e

admet encore une solution (au moins), soit u.
Mais la fonction X 2+ n'étant pas différentiable à l'origine, l'application

v -> y (v) de L2 (g) L2 (g) n'est plus différentiable, et l'obtention
de conditions d'optimalité semble une question ouverte.

Remarque 4.3.

Du point de vue numérique (Cf. Yvon [1]) on introduit une fonction
X -> y (2) approximation différentiable de X -» X+ et l'on remplace (4.14)
par:

(4.16) dy
~ - cy (y (°> 0 -h),

^(1,0= c
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Soit yy (y) le nouvel état, correspondant à (4.16). On montre que
yy (v) y (v) dans L2 (Q) lorsque y converge vers A + (avec y (A) A pour
A > A0 > 0) et l'on résout le problème de contrôle correspondant à yy (<v),

la fonction v -> yy (v) étant cette fois differentiate.

Remarque 4.4.

La situation décrite à la Remarque 4.3. précédente est typique des

inéquations variationnelles intervenant en Physique et en Mécanique (Cf.
Duvaut-Lions [1]) et pour la résolution numérique desquelles on emploie
constamment des processus de régularisation analogues à ceux de la

Remarque précédente (Cf. Glowinski, Lions, Tremolières [1] et la
bibliographie de ce livre).

Remarque 4.5.

Dans tous les problèmes considérés jusqu'ici, mais en particulier dans

le cas des problèmes multiphases, on peut avoir à considérer des fonctions
coût de la forme:

(4.17) J (y) j \y-(y) — zd\2 dxdt
E(v)

où E (v) est un ensemble géométrique défini à partir de y (v) (par exemple
E (v) peut être l'ensemble où y (v) > 0).

De nombreux problèmes restent à résoudre dans cette direction. Un
exemple, relatif aux équations de Stefan, est résolu dans Vasiliev [1].

5. Phénomènes de perturbations singulières

5.1. Orientations

Des phénomènes de perturbations singulières apparaissent dans la
théorie du contrôle optimal pour deux raisons:

(i) l'état du système peut être décrit par une équation (ou un ensemble

d'équations) contenant un petit paramètre e, soit ys (y) cet état,
correspondant à un contrôle v; alors la théorie des perturbations {singulières si,

comme c'est le cas le plus important, e apparaît dans des dérivées d'ordre

supérieur) permet de « remplacer » ye {v) par un « état approché » plus

simple y (v) correspondant à la valeur s 0 et avec des « corrections »
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