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(3.33) | X = —=N(H(p) — I (9) , (91 — #2) )g
= NJQ(H(QDJ - H(@z))(ﬁ% — @,) dx dt

e

O S P2

Mais on vérifie que (IT (¢,) — II (¢,)) (¢p;—¢,) >0 p.p. d’out
(3.34) X >0.

D’aprés (3.26), le 2¢ membre de (3.32) est << 0, ce qui, avec (3.34)
donne:

Ng* = 0.
Comme g* = OsurX,etq (x,7) = 0,onaqg™ = 0dou(3.27).

3.4. Cas sans contrainte — Equation intégro-différentielle de Riccati

Considérons maintenant, toujours dans le cadre du systéme (3.16), le
cas « sams contraintes », 1.e.

(3.35) U = L*(Q).
Alors (3.16) s’écrit:

(3.36) dy p

——+A -y = -1z,

y=0sur2_,p=0sur2,,

y(x,0) =yo(x),p(x,T) = 0 sur Q;

il s’agit maintenant d’un probléme linéaire avec des conditions aux limites
pour t = 0 et ¢ = T. Il est connu (Cf. Lions [1]) que tous les systémes de
ce genre peuvent se ramener & la résolution d’une équation non linéaire
d’évolution et d’une équation hyperbolique linéaire.

On va expliciter cela, sans donner les détails des démonstrations.

On considére le systéme pour s < ¢t < T ou s est fixé (quelconque)
-dans 10, T'[:
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| (337) | 99 T
— 4+ Ao+ —y =0,
| Py @ N'ﬁ
Y
— L 4 A*Y — ¢ =0,
Py Y-

o =0sur'_X]s,T[,¥ =0surl'y X]s,T[

o(x,8) =h(x),yx,T)=0surQ

qui admet une solution unique; en fait il s’agit 13 du systéme d’optimalité
pour le probléme suivant: I’état est donné par y (v) solution de:

0y _ _
(3.38) —a—;+Ay=v,y(s)=/z,t>s

et la fonction coflit par:

(3.39) [T 7@ |2dt+ N[ |v|*dr = #5 (@)

(ou |v|?> =] w(x)*dx), et on minimise #" (v) sans contraintes.
Q

Donc le systéme (3.37) admet une solution unique, donc définit de
maniére unique V¥ (s) € L* (Q).
L’application & — ¥ (s) est linéaire continu de L? (Q) — L? (Q), donc:

(3.40) w(s)=P)h,P(s)e L (H;H), H=L*(Q).
On vérifie alors que I’on a 'identité (Cf. Lions, loc. cit.)
(3.41) p()y=P@)y (@) + r().

On peut calculer P et r par un calcul d’identification (il faut vérifier
que les calculs effectués ci-aprés de fagon formelle sont loisibles). On

, d
obtient, (en posant de maniére générale jj = o'},

(3.42) — Py — Py —r' 4+ A*Py + A¥r — y = — z,

b]

et en remplagant dans (3.42) " par sa valeur tirée de la premiére équation
(3.36), on a finalement:

’ p 7 o
(3.43) —P_V+P(Ay+N—f>—r + A*Py + A*¥r —y = — z,.




— 142 —
On peut encore remplacer dans (3.43) p par sa valeur (3.41), d’ou:

1 1
—P’y+PAy+A*Py+—NPPy—y—r’+A*r+-ﬁPr—-Pf= -z,
et cela est une identité en y, d’ou:

opP 1
3.44 —— +PA+ A*P+ —PoP =1
(3.49) ot N

et

or

(3.45) -

1
+A*r+—]—\-,Pr=Pf——zd.

Comme p (T) = 0, on doit avoir:

(3.46) P(T)=0,r(T) =0.
On vérifie enfin & partir de (3.37) que:
(3.47) P(t)* = P(t) dans ¥ (H; H)
et que
(3.48) P(t) >0 dans % (H; H).

Plus précisément, on vérifie que:

(3.49) (P (s) b, h) = inf £" (v).

On notle encore que:

(3.50) P(t)he D (4%, r(t) e D (4%).

D’aprés le théoréme des noyaux de L. Schwartz [1], on peut représenter
(de fagon unique), I'opérateur P (¢) par un noyau P(x,&,t) et on peut
résumer les informations ci-dessus dans ’ensemble des conditions suivantes:

0P d . 5
~ 5~ a;(x) P(x, &, 1) — i; o (a; (&) P (x, &, 1))

(3.51)

+11V5 P(x, &, )P (¢ ¢ d¢ = §(x—Odans 2x 2 x 10, T,
o

P(x,&,1) = P(S, x, 1),



— 143 —

P(x,&,t) =0sixel, ,EeQ,te]0, T[,

P(x,&T) = 0 sur Q x Q,

Vhel*(Q),| P(x, &, h(&)déeL*(Q) et
0 ;

[ P(x, &0 h(x)h(E)dxdE >0.

2%

Ce probléme admet une solution unique. La fonction r = r(x, t) est
ensuite déterminée par:

or x

- X @) + j—lv— | e, e0r(@ds
(3.5 | = [ PG, &0S(E0dE - 24,0
r(x,f) =0sixel, ,te]0, T[,

r(x,T) = 0.

On va maintenant démontrer le

THEOREME 3.2. La solution P (x, &, t) de (3.51) vérifie :

(3.53) P(x,&,t) >0p.p. sur @ x Q.

Démonstration

Considérons le systéme (3.37) avec A donnée >0 p.p. dans Q.

On aura (3.53) si 'on montre que ¥ >0 p.p. dans Q x }s, T [. Pour
cela, on multiplie la 1T¢ équation (3.37) par ¥ ~, il vient:

0 1
j (—? + Am)w- dxdt — <[ (@) dxdt = 0;
Q% 1s, T ot N ox1s,11
w : 0 o
intégrant par parties et posant A = — Py + A*, il vient:

T R@YT9dx ] (W )dvdi— < @) dxdt =0

Qx]s,T[ 2x71s,T[
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d’ou, en tenant compte de la 2¢ équation (3.37):

— [ h() Y~ (x,s)dx + | (AY) (N ™) dx dt

Qx]s,T[
! (W) dxdt =0
— gy X —
N QX]s,T[‘
d’ou:
(3.59) [oh ()Y~ (x, ) dx + [ougsrg (A7) dx di
+ : (W) dxdt =0
— xdt = 0.
N “axi1s,11
Comme 2 >0, tous les termes sont pos_itifs, donc ¥y~ = 0.

Remarque 3.6.

On rencontre d’autres systemes du type (3.51) pour des opérateurs
paraboliques (Cf. Lions [1] [2]). D’autres systémes, encore du méme type,
ont €té obtenus a propos de problémes stochastiques par Bismut [1].

Des études directes de ces systémes (et d’autres, n’entrant pas, appa-
remment, dans le cadre de la théorie du contrdle) ont été faites par Da Prato
et Temam, les résultats les plus complets étant obtenus, a partir de méthodes
itératives nouvelles, par L. Tartar [1].

Remarque 3.7.

Le noyau P dépend du paramétre N : P = Py. On montre (Cf. Lions [3])
que Py (x, &, t) décroit (p.p.) lorsque N décroit et que lorsque N — 0,
Py(x,& 1) > 0, au sens:

Vhel?(Q),Vte[0,T],[f  Py(x,&t)h(x)h(E)dxdé— 0.
2

0 x

4. EQUATIONS D’ETAT NON LINEAIRES

4.1. Cas différentiable

Nous avons jusqu’ici considéré des cas ou I’équation d’état du systéme
était linéaire. On rencontre dans les applications de nombreuses situations
(c’est méme, en fait, la situation habituelle!) ou I’équation d’état est non
linéaire.
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