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(3.24) ty j _
dt

dp-- + A'p-y-:„

y — 0 sur p 0 sur Z+,

y (x, o) yQ (*) 9 P (x9 T) 0 sur Q.

P~
On voit l'importance ^puisque u —j de la « surface de commutation

» séparant la région où p > 0 de celle où p < 0, le contrôle u étant
nul dans la lre région.

Remarque 3.5.

Pour une étude systématique des divers systèmes d'optimalité pour des

équations d'état de natures variées et pour des contrôles distribués ou
frontière, nous renvoyons à Lions [1] [2]. On fait en particulier usage,
dans le cas des contrôles frontière, de la théorie des problèmes aux limites
non homogènes telle qu'exposée dans Lions-Magenes [1].

3.3. Propriétés de comparaison

On suppose maintenant que °llad est donné par :

(3.25) Wai {*> I VeL2(Q) a (x, t) < v (x, < (x, p.p.,

a et ß étant deux fonctions mesurables quelconques}.

On suppose dans (3.16) que zd et N sont fixés1). On désigne par
{jpPi} 0" h 2) la solution de (3.24) correspondant à / fhy0 yoi.
On a alors le:

Théorème 3.1. On suppose que (3.25) a lieu et que

(3.26) </2 y0i <y02 P-P-

*) On trouvera d'autres cas dans Lions [3].
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On a alors:

(3.27) Pi </?2 (et done ux > u2) p.p. dans Q.

Démonstration

Posons: z — y2, q Pi — Pi- On déduit de (3.16) que:

(3.28) dz

dt
+ Az n — I - n

N
Pi
N

— /1 y 2 >

dq- — + A*q-z 0,

z 0 swr q =0 sur Z+,

z (x, o) y01 (x) — y02 (x) q(x, T) 0 dans Q.

On pose ((p, \//)Q J (pi)/ dx dt, (<p9 ij/) § (p\j/ dx. On multiplie la
Q fi

lre équation (3.28) par q+ et l'on intègre sur Q. Il vient:

(3.29) z, - - + A*y ^ - {y01-y02, q+(o)) + X q+)Q

ou

(3.30) X 17 - Pi
N n(-p^),(Pl-P2)+

Utilisant la 2e équation (3.28) et posant A h A*, on peut
dt

écrire (3.29) sous la forme:

(3.31) (Aq, f\q+)Q + X (/i —/2, #+)ô + (>;oi~"J;o2? <7+(°))>

d'où, comme A w« opérateur différentiel du 1er ordre

(3.32) | A q | q + X (/i f2^ q+)o + (};oi~3;o2> #+(°))-

ci' P1
Si Ion pose cph on a:

AT
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(3.33) X - TV 77(<Pj) - 77(<p2) - ç>2) )Q

TVj (77 ((Pi) - n((p2))(<p1 -
Q

Vl<<?>2-

Mais on vérifie que (Ft (cp^ — II (<p 2)) ((p i — (p 2) >0 P-P- d'où

(3.34) X > 0.

D'après (3.26), le 2e membre de (3.32) est < 0, ce qui, avec (3.34)
donne :

Aq+ 0.

Comme q+ 0 sur I+ et q+ (.x, T) 0, on a q+ 0 d'où (3.27).

3.4. Ctfs sa/w contrainte — Equation intégro-différentielle de Riccati

Considérons maintenant, toujours dans le cadre du système (3.16), le

cas « sans contraintes », i.e.

(3.35)

Alors (3.16) s'écrit:

(3.36)

L2 (Q).

dy
ëi+Ay+û=f-

dJL

dt
+ A*p - y - zd,

y 0 sur IL /? 0 sur Z+9

y (x, o) jo (*) >P(x>T) 0 sur Q;

il s'agit maintenant d'un problème linéaire avec des conditions aux limites

pour t 0 et t T7. Il est connu (Cf. Lions [1]) que tous les systèmes de

ce genre peuvent se ramener à la résolution d'une équation non linéaire

d'évolution et d'une équation hyperbolique linéaire.
On va expliciter cela, sans donner les détails des démonstrations.
On considère le système pour s < t < T où s est fixé (quelconque)

dans ] 0, T [:
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