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(3.24) dy 4 P P

———(?g—}-A*p-—y—z
ot @

y=0surX_,p=0surl2,,

y(x,0) = yo(x),p(x,T) = 0sur Q.

On voit 'importance (puisque u = ‘Bﬁ) de la «surface de commuta-
tion » séparant la région ol p > 0 de celle ou p < 0, le contrble u étant

nul dans la 17¢ région.

Remarque 3.5.

Pour une étude systématique des divers systémes d’optimalité pour des
équations d’état de natures variées et pour des contrdles distribués ou
frontiére, nous renvoyons a Lions [1] [2]. On fait en particulier usage,
dans le cas des contrdles frontieére, de la théorie des problémes aux limites
non homogenes telle qu’exposée dans Lions-Magenes [1].

3.3. Propriétés de comparaison

On suppose maintenant que %,,; est donné par:

(325 | u = {v|vel?(Q),a(x1) <v(x,t) <B(x1)pp.,

a et B étant deux fonctions mesurables quelconques}.

On suppose dans (3.16) que z, et N sont fixés!). On désigne par
{yi» pi} (@ =1,2) la solution de (3.24) correspondant & f = f, yo = yy;.
On a alors le:

THEOREME 3.1. On suppose que (3.25) a lieu et que

(3.26) J1 </25 Y01 <Yo2 P-P.

1) On trouvera d’autres cas dans Lions [3].
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On a alors :

(3.27) p1 <p, (et donc u; > u,) p.p. dans Q.

Démonstration

Posons: z =y, — ¥,, ¢ = p; — P,- On déduit de (3.16) que:

(3.28) %+A2_<u<—%)—n<—%—>)=f1 —f2

—a—q+A*q—z=0
ot ’

z=0sur 2_,q =0 sur 2,

Z(X,O) = JYo1 (X) - yOZ(x) s Q(xa T) = 0 dans Q.

On pose (¢, Y)y = | oY dxdt,(p,¥) = | ¢y dx. On multiplie la
Q Q
1re équation (3.28) par ¢* et I'on intégre sur Q. Il vient:
0 A i +
(3.29) z, ““a—t'*‘A q —(o1=Y02,4 () + X = (f1—/2,¢ )Q
Q

ou

e (=) n(-2). o)

o , d
Utilisant la 2¢ équation (3.28) et posant A = — T + A*, on peut

écrire (3.29) sous la forme:

| (3.31)  (Ag, /\q+)Q + X = (f1—f2 q+)Q + (Po1—Yo2> 47(0)),

d’ou, comme N est un opérateur différentiel du 1t ordre

(3.32) l/\q+ ﬁz + X =(fi—29 ) + Wo1—=Y02, 7 (0)).

Si 'on pose — i @;, on a:
N
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(3.33) | X = —=N(H(p) — I (9) , (91 — #2) )g
= NJQ(H(QDJ - H(@z))(ﬁ% — @,) dx dt

e

O S P2

Mais on vérifie que (IT (¢,) — II (¢,)) (¢p;—¢,) >0 p.p. d’out
(3.34) X >0.

D’aprés (3.26), le 2¢ membre de (3.32) est << 0, ce qui, avec (3.34)
donne:

Ng* = 0.
Comme g* = OsurX,etq (x,7) = 0,onaqg™ = 0dou(3.27).

3.4. Cas sans contrainte — Equation intégro-différentielle de Riccati

Considérons maintenant, toujours dans le cadre du systéme (3.16), le
cas « sams contraintes », 1.e.

(3.35) U = L*(Q).
Alors (3.16) s’écrit:

(3.36) dy p

——+A -y = -1z,

y=0sur2_,p=0sur2,,

y(x,0) =yo(x),p(x,T) = 0 sur Q;

il s’agit maintenant d’un probléme linéaire avec des conditions aux limites
pour t = 0 et ¢ = T. Il est connu (Cf. Lions [1]) que tous les systémes de
ce genre peuvent se ramener & la résolution d’une équation non linéaire
d’évolution et d’une équation hyperbolique linéaire.

On va expliciter cela, sans donner les détails des démonstrations.

On considére le systéme pour s < ¢t < T ou s est fixé (quelconque)
-dans 10, T'[:
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