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et ol ve%,; avec:

(3.6) U, = ensemble convexe fermé non vide de L? (Q).

- Remarque 3.1.

Il s’agit donc dans le probléme précédent d’un contréle distribué.
(Cf. & ce sujet la Remarque 3.3. ci-apres).

La fonction cotit est donnée par:
(3.7) J@) = Jo|y@ — z,|?dxdt + N [ov* dx dt,

ol z, est donnée dans L? (Q) et ol N est donné > 0.
Le probléme

(3.8) inf J (v)
VE U,y

admet une solution unique (vérification immédiate) pour laquelle nous allons
écrire le « systéme d’optimalité ».

3.2. Systéme d’optimalité

Soit u la solution de (3.8). On pose y (¥) = y et 'on définit 1'état
adjoint p par'):

op

(3.9) -5 A*p =y — z,
- (3.10) p=0sur2, =I,_.x]0,T],
(3.11) p(x,T) = 0sur Q.

Le contrdle u est caractérisé par:
(12) [o0—2) (W) —p) dx dt + N [ou(v—u) dx dt >0,V v ey,
Mais on déduit facilement de (3.9), (3.10), (3.11) que:

fo—2z) O()—y) dx dt = fop (—u)dx dt

n
1) 4* &fin ¥ s o B 2 fp
) A* est défini par A* ¢ = ; =Z1 e (a; o).
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de sorte que (3.12) équivaut a:

(3.13) [o(p+ Nuw) (v—u)dx dt >0, Vvel,.
Introduisons:
(3.14) II = opérateur de projection dans L? (Q) sur %,,,.

Alors (3.13) équivaut a:

(3.15) " =n<~3>,

Par conséquent, le contrdle optimal est donné par la résolution du systéme
en {y, p}:

(3.16) oy P
“—‘+A _H - =/
o N) =/
aop
—5;+A*p—y= — Zg

y=0sur2_,p=0sur,,

y(-xa O) = yO(x) 9p(x: T) = OSUI' Q:
puis par (3.15).

Remarque 3.2.

Puisque le probléme (3.16) équivaut au probléme initial, le systeéme non
linéaire (3.16) admet une solution unique.

Remarque 3.3.

Supposons que le contrdle ne soit plus distribué mais de la forme:

m

(3.17) v(x,t) = ) v;(t) w;(t)

i=1

ou les fonctions w; sont données dans L? (Q) (et en général dans les applica-
tions a support compact « assez petit »), les fonctions v; étant les controles,
assujettis aux contraintes:

(3.18) v, e%i,ad) = convexe fermé non vide de L* (0, T), i = 1, ..., m.
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Supposons la fonction colit donnée alors par:
(3.19) J@) = [oly@ —z,|Pdxdt + Y N;fo" v*dt,
i=1
N; > 0.

Soit u = {uy, ..., u,} le contrdle optimal. Le systtme de I'optimalité
est maintenant donné de la fagon suivante: soit

(3.20)  II, = opérateur de projection dans L* (0, T') sur %; ,4;

alors:
(3.21) ay - i
| — 4+ Ay — I\ —=—=)w; = f,
? ot y i=Zl Ni W f
op
——+ A*p -y = — z,,
a1 p—) d
Di (t) = jgp('xa t) W; (x) dxa
y=0sur2_,p=0sur?2,,
y(x,0) = yo(x),p(x,T) = Osur Q,
et
Pi
= a3

Nous ignorons dans quelle mesure on peut étendre a (3.21) les résultats
de comparaison relatifs a (3.16) établis au n° 3.3. ci-apreés.

Remarque 3.4.
Si 'on prend par exemple:

(3.23) Upe = {v|v>0p.p. dans Q},

alors IT (p) = ¢ * (=sup (¢, 0)), de sorte que (3.16) devient dans ce cas:




(3.24) dy 4 P P

———(?g—}-A*p-—y—z
ot @

y=0surX_,p=0surl2,,

y(x,0) = yo(x),p(x,T) = 0sur Q.

On voit 'importance (puisque u = ‘Bﬁ) de la «surface de commuta-
tion » séparant la région ol p > 0 de celle ou p < 0, le contrble u étant

nul dans la 17¢ région.

Remarque 3.5.

Pour une étude systématique des divers systémes d’optimalité pour des
équations d’état de natures variées et pour des contrdles distribués ou
frontiére, nous renvoyons a Lions [1] [2]. On fait en particulier usage,
dans le cas des contrdles frontieére, de la théorie des problémes aux limites
non homogenes telle qu’exposée dans Lions-Magenes [1].

3.3. Propriétés de comparaison

On suppose maintenant que %,,; est donné par:

(325 | u = {v|vel?(Q),a(x1) <v(x,t) <B(x1)pp.,

a et B étant deux fonctions mesurables quelconques}.

On suppose dans (3.16) que z, et N sont fixés!). On désigne par
{yi» pi} (@ =1,2) la solution de (3.24) correspondant & f = f, yo = yy;.
On a alors le:

THEOREME 3.1. On suppose que (3.25) a lieu et que

(3.26) J1 </25 Y01 <Yo2 P-P.

1) On trouvera d’autres cas dans Lions [3].
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