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3. Cas linéaire quadratique — Remarques sur le système d'optimalité

3.1. Un système hyperbolique

On reprend ici certains points de Lions [3]: dans un ouvert borné
Q de Rn de frontière T régulière, on considère l'opérateur A défini

par:

" d(p
(3.1) A(p Y at (x) —

i= 1 OXi

où les fonctions at e C1 (Q); [on pourrait aussi bien considérer des

fonctions dépendant de x et /; nous nous bornons au cas où les at ne

dépendent pas de t uniquement pour un peu simplifier l'exposé]. On
introduit:

n

r_ {x \ x e r, Y ai (x) vî <
i — 1

r+ {x | x e r, Y ai(x)^i>°}
i= 1

où v {vt} désigne la normale à r dirigée vers l'extérieur de Q.

On suppose que Yétat y y (v) y (x, t;v) du système est défini par
la solution du problème mixte hyperbolique :

ôy
(3.2) — + Ay =f+ v dans Q Qx ]0, T[,

dt

(3.3) j; 0 sur x ] 0, T[,

(3.4) j (x, o) y0(x) xeQ

où / et y0 sont donnés avec:

(3.5) feL2{Q),y0eL2 (Q)
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et où v e°Uai avec:

(3.6) <*«, ensemble convexe fermé non vide de L2 (0.

Remarque 3.1.

Il s'agit donc dans le problème précédent d'un contrôle distribué.

(Cf. à ce sujet la Remarque 3.3. ci-après).

La fonction coût est donnée par :

(3.7) J(v) Jß | y (v) — zd \2 dxdt + N JQ v2 dx dt,

où zd est donnée dans L2 (Q) et où N est donné > 0.

Le problème

(3.8) inf J (v)

ve^ad

admet une solution unique (vérification immédiate) pour laquelle nous allons
écrire le « système d'optimalité ».

3.2. Système d'optimalité

Soit u la solution de (3.8). On pose y (u) — y et l'on définit Yétat

adjoint p par x):

(3.9) - ^ + A*p y - zd,

(3.10) p0 sur I+r+ x ] 0

(3.11) p (x, T) — 0 sur Q.

Le contrôle u est caractérisé par:

(3-12) Jö y-zd)(y(v)-y) dxdt + NJQw (»-«) > 0, V e <%ad.

Mais on déduit facilement de (3.9), (3.10), (3.11) que:

jq (f- 2<j) O'(^) -y) dx dt

n a
x) A* est défini par A* 9 — S — (at 9).
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de sorte que (3.12) équivaut à:

(3.13) Jq (p+Nu) (v — u) dx dt > 0,\/ve %ad.

Introduisons :

(3.14) 17 opérateur de projection dans L2 (Q) sur °llad.

Alors (3.13) équivaut à:

(3.15)

Par conséquent, le contrôle optimal est donné par la résolution du système

en {y, p}:
(3'16) % + Ay - n(-= f,

dt ' \ NJ

dp
_ — + A*p -y - zd,

dt

7 0 sur r_ /? 0 sur I+9

y (x, o) y0 (x) ,p(x,T) 0 sur Q,

puis par (3.15).

Remarque 3.2.

Puisque le problème (3.16) équivaut au problème initial, le système non
linéaire (3.16) admet une solution unique.

Remarque 3.3.

Supposons que le contrôle ne soit plus distribué mais de la forme:

m

(3.17) v(x, 0 E vi(0 MO
i= 1

où les fonctions wt sont données dans L2 (Q) (et en général dans les applications

à support compact « assez petit »), les fonctions étant les contrôles,
assujettis aux contraintes :

(3.18) vt e°Uii(ld — convexe fermé non vide de L1 (0, T), i 1, m.
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Supposons la fonction coût donnée alors par:

(3.19) J (0 Jq I y(v)- z<) I2 dx + E lor v2
i= 1

> o.

Soit u {w1? wm} le contrôle optimal. Le système de l'optimalisé
est maintenant donné de la façon suivante : soit

(3.20) Iii opérateur de projection dans L2 (0, T) sur %i>adl

alors :

(3.21)

et

(3.22)

dp
--£ + A*p-y -dt

Pi (0 1 P (x,t)w, dx,
Q

y — 0 sur /? 0 sur Z+9

y (x, o) y0 (x) p (x, T) 0 sur Q,

Nous ignorons dans quelle mesure on peut étendre à (3.21) les résultats
de comparaison relatifs à (3.16) établis au n° 3.3. ci-après.

Remarque 3.4.

Si l'on prend par exemple :

(3.23) °llad {v | v > 0 p.p. dans Q},

alors IJ (cp) (p+ sup (<p, 0) de sorte que (3.16) devient dans ce cas:
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(3.24) ty j _
dt

dp-- + A'p-y-:„

y — 0 sur p 0 sur Z+,

y (x, o) yQ (*) 9 P (x9 T) 0 sur Q.

P~
On voit l'importance ^puisque u —j de la « surface de commutation

» séparant la région où p > 0 de celle où p < 0, le contrôle u étant
nul dans la lre région.

Remarque 3.5.

Pour une étude systématique des divers systèmes d'optimalité pour des

équations d'état de natures variées et pour des contrôles distribués ou
frontière, nous renvoyons à Lions [1] [2]. On fait en particulier usage,
dans le cas des contrôles frontière, de la théorie des problèmes aux limites
non homogènes telle qu'exposée dans Lions-Magenes [1].

3.3. Propriétés de comparaison

On suppose maintenant que °llad est donné par :

(3.25) Wai {*> I VeL2(Q) a (x, t) < v (x, < (x, p.p.,

a et ß étant deux fonctions mesurables quelconques}.

On suppose dans (3.16) que zd et N sont fixés1). On désigne par
{jpPi} 0" h 2) la solution de (3.24) correspondant à / fhy0 yoi.
On a alors le:

Théorème 3.1. On suppose que (3.25) a lieu et que

(3.26) </2 y0i <y02 P-P-

*) On trouvera d'autres cas dans Lions [3].
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On a alors:

(3.27) Pi </?2 (et done ux > u2) p.p. dans Q.

Démonstration

Posons: z — y2, q Pi — Pi- On déduit de (3.16) que:

(3.28) dz

dt
+ Az n — I - n

N
Pi
N

— /1 y 2 >

dq- — + A*q-z 0,

z 0 swr q =0 sur Z+,

z (x, o) y01 (x) — y02 (x) q(x, T) 0 dans Q.

On pose ((p, \//)Q J (pi)/ dx dt, (<p9 ij/) § (p\j/ dx. On multiplie la
Q fi

lre équation (3.28) par q+ et l'on intègre sur Q. Il vient:

(3.29) z, - - + A*y ^ - {y01-y02, q+(o)) + X q+)Q

ou

(3.30) X 17 - Pi
N n(-p^),(Pl-P2)+

Utilisant la 2e équation (3.28) et posant A h A*, on peut
dt

écrire (3.29) sous la forme:

(3.31) (Aq, f\q+)Q + X (/i —/2, #+)ô + (>;oi~"J;o2? <7+(°))>

d'où, comme A w« opérateur différentiel du 1er ordre

(3.32) | A q | q + X (/i f2^ q+)o + (};oi~3;o2> #+(°))-

ci' P1
Si Ion pose cph on a:

AT
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(3.33) X - TV 77(<Pj) - 77(<p2) - ç>2) )Q

TVj (77 ((Pi) - n((p2))(<p1 -
Q

Vl<<?>2-

Mais on vérifie que (Ft (cp^ — II (<p 2)) ((p i — (p 2) >0 P-P- d'où

(3.34) X > 0.

D'après (3.26), le 2e membre de (3.32) est < 0, ce qui, avec (3.34)
donne :

Aq+ 0.

Comme q+ 0 sur I+ et q+ (.x, T) 0, on a q+ 0 d'où (3.27).

3.4. Ctfs sa/w contrainte — Equation intégro-différentielle de Riccati

Considérons maintenant, toujours dans le cadre du système (3.16), le

cas « sans contraintes », i.e.

(3.35)

Alors (3.16) s'écrit:

(3.36)

L2 (Q).

dy
ëi+Ay+û=f-

dJL

dt
+ A*p - y - zd,

y 0 sur IL /? 0 sur Z+9

y (x, o) jo (*) >P(x>T) 0 sur Q;

il s'agit maintenant d'un problème linéaire avec des conditions aux limites

pour t 0 et t T7. Il est connu (Cf. Lions [1]) que tous les systèmes de

ce genre peuvent se ramener à la résolution d'une équation non linéaire

d'évolution et d'une équation hyperbolique linéaire.
On va expliciter cela, sans donner les détails des démonstrations.
On considère le système pour s < t < T où s est fixé (quelconque)

dans ] 0, T [:
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(3.37) d(p 1

— + A <p + -A> 0,
dt N

di

dt
+ A*\j/ — (p 0,

cp Osur r.X]s,T[, \jj Osur T+X]s,T[

(p (x, s) h (x) \\j (x, T) 0 sur Q

qui admet une solution unique; en fait il s'agit là du système d'optimaJité

pour le problème suivant : l'état est donné par y (v) solution de :

(3.38)
dy

\- Av v y (s) h
9 t > s

dt

et la fonction coût par:

(3.39) | y(v) |2 dt + N J/ | v|2dt /'s

(où | v|2 J v(x)2 dx), et on minimise fhs (v) sans contraintes.
*

n
Donc le système (3.37) admet une solution unique, donc définit de

manière unique ijf (s) e L2 (Q).

L'application h ->• \j/ (,s) est linéaire continu de L2 (Q) -> L2 (iQ), donc:

(3.40) il/(s) P(s)h ,P (s) e <£ (H; H) H L2 (.Q).

On vérifie alors que l'on a l'identité (Cf. Lions, loc. cit.)

(3.41) p(t) P(t)y(t) + r(t).

On peut calculer P et r par un calcul d'identification (il faut vérifier
que les calculs effectués ci-après de façon formelle sont loisibles). On

dg
obtient, (en posant de manière générale — g'),

dt

(3.42) P'y — Py' — r' + A* Py + A* r — y — zd

et en remplaçant dans (3.42) y' par sa valeur tirée de la première équation
(3.36), on a finalement:

(3.43) -P>y+p(Ay+ r' + A* Py + A* r — y — zd.



On peut encore remplacer dans (3.43) p par sa valeur (3.41), d'où:

— P'y + P A y + A* Py H- —PPj> — y — r' + A* r + -^Pr — Pf — zd

et cela est une identité en y, d'où:

(3.44)

et

ÔP 1

h P A + A* P H—PoP /dt N

dr 1

(3.45) h ^4* r H— Pr Pf — zd.
et n

Comme p(T)0, on doit avoir:

(3.46) P (T) 0 r0.

On vérifie enfin à partir de (3.37) que:

(3.47) P(t)* P(t) dans jS? (H; H)

et que

(3.48) P(t)>0 dans H).

Plus précisément, on vérifie que:

(3.49) (P(s)h,h) mîfhs(v).
V

On note encore que:

(3.50) P (t) he D (A*) r (t) e D (A*).

D'après le théorème des noyaux de L. Schwartz [1], on peut représenter
(de façon unique), l'opérateur P (t) par un noyau P(x,Ç,t) et on peut
résumer les informations ci-dessus dans l'ensemble des conditions suivantes :

(3.51)

dP " d
~ -^7 — Yj— (f; (x) p (x, 0) - E

ôt i=i dXi i=i d£i

+ -J P(x,Ç,t)P(Ç,Ç,t)dÇ dans ö X fi X ] 0, T[,
N a

P(x, t)P(Ç,x,t),



P(x,Ç,t) 0 si x 6 r+ <üeß te]0, T[,

P(x, Ç, T)0 sur ûx û,

VheL2(Q) j P(x,l;,t)h(OdZeL2(Q)et
Q

JJ P(x,t,t)h(x)h(QdxdÇ>0.
flxfl

Ce problème admet une solution unique. La fonction r r(x,t) est

ensuite déterminée par:

-%-£ ^-(ai(x)r(x,t))+if P(x,5,0r(öd{
ôt i=i dx( N Q

(3.52) J P(x,Ç, t) dÇ- zd (x, t),
Q

r(x,t) 0 si xe T+ t e ]0, T[,

r (x, T) 0.

On va maintenant démontrer le

Théorème 3.2. La solution P (x, f) de (3.51) vérifie :

(3.53) P (x, t) > 0 p.p. sur Q x Q.

Démonstration

Considérons le système (3.37) avec h donnée > 0 p.p. dans Q.

On aura (3.53) si l'on montre que xj/ > 0 p.p. dans Q x ] s, T [. Pour
cela, on multiplie la lre équation (3.37) par x//", il vient:

fdcp \ 1
„

J h A(p \\j/ dxdt J 0lf y dxdt — 0;
fix ]s,T[ \ N' nx]s,r[

d
intégrant par parties et posant A — — + A*, il vient:

et

- J h (x) i/C(x, s) dx + J (p (Ax//~) dx dt — — J O/O2 dxdt 0
fi ßx]sj[ N Q x ]s,T[
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d'où, en tenant compte de la 2e équation (3.37):

-J h(x)i//~(x9 s)dx + J (A\jj)(A\jj~)dxdt
n .QX]S,7[

— J (ij/ )2 dx dt 0
N flx]xj[

d'où:

(3.54) (x, s)dx + Jnx]s,T[(A|/' Y dx dt

4 J O/O2 dx dt 0.
N nxjs,T[

Comme h > 0, tous les termes sont positifs, donc \f/ ~
— 0.

Remarque 3.6.

On rencontre d'autres systèmes du type (3.51) pour des opérateurs
paraboliques (Cf. Lions [1] [2]). D'autres systèmes, encore du même type,
ont été obtenus à propos de problèmes stochastiques par Bismut [1].

Des études directes de ces systèmes (et d'autres, n'entrant pas,
apparemment, dans le cadre de la théorie du contrôle) ont été faites par Da Prato
et Temam, les résultats les plus complets étant obtenus, à partir de méthodes
itératives nouvelles, par L. Tartar [1].

Remarque 3.7.

Le noyau P dépend du paramètre N : P PN. On montre (Cf. Lions [3])

que PN (x, £, t) décroît (p.p.) lorsque N décroît et que lorsque N -» 0,

PN (x, £, t) 0, au sens:

\/ he L2 (Q) Vte[0,T] JJ PN (x, f, t) h (x) h (0 dx d^ -> 0.
ßxß

4. Equations d'état non linéaires

4.1. Cas différentiable

Nous avons jusqu'ici considéré des cas où Yéquation d'état du système
était linéaire. On rencontre dans les applications de nombreuses situations
(c'est même, en fait, la situation habituelle!) où l'équation d'état est non
linéaire.
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