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3. CAS LINFAIRE QUADRATIQUE — REMARQUES SUR LE SYSTEME D’OPTIMALITE |

3.1. Un systéme hyperbolique

On reprend ici certains points de Lions [3]: dans un ouvert borné

2 de R" de frontiere I' réguliére, on considére l'opérateur A défini
par:

" 0o
3.1 Aq) - . (x) —
( ) i.-_-zl al ( ) 6xi

ou les fonctions a; € C* (Q); [on pourrait aussi bien considérer des
fonctions dépendant de x et ¢; nous nous bornons au cas ou les a; ne

dépendent pas de ¢ uniquement pour un peu simplifier ’exposé]. On
introduit:

. ={x|xell, Y a(x)v;, <0}
i=1

I, = {xlxeF, Y a;(x)v; >0}
i=1

ou v = {v;} désigne la normale a I' dirigée vers I'extérieur de Q.
On suppose que I'état y = y (v) = y (x, t; v) du systetme est défini par
la solution du probléme mixte hyperbolique:

?

(3.2) (%+Ay=f+v dans O = Qx 10, T,
(3.3) y=0sur 2_ =I_x]0,T[,
(3.4) y(x,0) = yo(x), xe€Q

ou f et y, sont donnés avec:

3.5) feL*(Q),y,eL* (@)
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et ol ve%,; avec:

(3.6) U, = ensemble convexe fermé non vide de L? (Q).

- Remarque 3.1.

Il s’agit donc dans le probléme précédent d’un contréle distribué.
(Cf. & ce sujet la Remarque 3.3. ci-apres).

La fonction cotit est donnée par:
(3.7) J@) = Jo|y@ — z,|?dxdt + N [ov* dx dt,

ol z, est donnée dans L? (Q) et ol N est donné > 0.
Le probléme

(3.8) inf J (v)
VE U,y

admet une solution unique (vérification immédiate) pour laquelle nous allons
écrire le « systéme d’optimalité ».

3.2. Systéme d’optimalité

Soit u la solution de (3.8). On pose y (¥) = y et 'on définit 1'état
adjoint p par'):

op

(3.9) -5 A*p =y — z,
- (3.10) p=0sur2, =I,_.x]0,T],
(3.11) p(x,T) = 0sur Q.

Le contrdle u est caractérisé par:
(12) [o0—2) (W) —p) dx dt + N [ou(v—u) dx dt >0,V v ey,
Mais on déduit facilement de (3.9), (3.10), (3.11) que:

fo—2z) O()—y) dx dt = fop (—u)dx dt

n
1) 4* &fin ¥ s o B 2 fp
) A* est défini par A* ¢ = ; =Z1 e (a; o).




— 136 —

de sorte que (3.12) équivaut a:

(3.13) [o(p+ Nuw) (v—u)dx dt >0, Vvel,.
Introduisons:
(3.14) II = opérateur de projection dans L? (Q) sur %,,,.

Alors (3.13) équivaut a:

(3.15) " =n<~3>,

Par conséquent, le contrdle optimal est donné par la résolution du systéme
en {y, p}:

(3.16) oy P
“—‘+A _H - =/
o N) =/
aop
—5;+A*p—y= — Zg

y=0sur2_,p=0sur,,

y(-xa O) = yO(x) 9p(x: T) = OSUI' Q:
puis par (3.15).

Remarque 3.2.

Puisque le probléme (3.16) équivaut au probléme initial, le systeéme non
linéaire (3.16) admet une solution unique.

Remarque 3.3.

Supposons que le contrdle ne soit plus distribué mais de la forme:

m

(3.17) v(x,t) = ) v;(t) w;(t)

i=1

ou les fonctions w; sont données dans L? (Q) (et en général dans les applica-
tions a support compact « assez petit »), les fonctions v; étant les controles,
assujettis aux contraintes:

(3.18) v, e%i,ad) = convexe fermé non vide de L* (0, T), i = 1, ..., m.
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Supposons la fonction colit donnée alors par:
(3.19) J@) = [oly@ —z,|Pdxdt + Y N;fo" v*dt,
i=1
N; > 0.

Soit u = {uy, ..., u,} le contrdle optimal. Le systtme de I'optimalité
est maintenant donné de la fagon suivante: soit

(3.20)  II, = opérateur de projection dans L* (0, T') sur %; ,4;

alors:
(3.21) ay - i
| — 4+ Ay — I\ —=—=)w; = f,
? ot y i=Zl Ni W f
op
——+ A*p -y = — z,,
a1 p—) d
Di (t) = jgp('xa t) W; (x) dxa
y=0sur2_,p=0sur?2,,
y(x,0) = yo(x),p(x,T) = Osur Q,
et
Pi
= a3

Nous ignorons dans quelle mesure on peut étendre a (3.21) les résultats
de comparaison relatifs a (3.16) établis au n° 3.3. ci-apreés.

Remarque 3.4.
Si 'on prend par exemple:

(3.23) Upe = {v|v>0p.p. dans Q},

alors IT (p) = ¢ * (=sup (¢, 0)), de sorte que (3.16) devient dans ce cas:




(3.24) dy 4 P P

———(?g—}-A*p-—y—z
ot @

y=0surX_,p=0surl2,,

y(x,0) = yo(x),p(x,T) = 0sur Q.

On voit 'importance (puisque u = ‘Bﬁ) de la «surface de commuta-
tion » séparant la région ol p > 0 de celle ou p < 0, le contrble u étant

nul dans la 17¢ région.

Remarque 3.5.

Pour une étude systématique des divers systémes d’optimalité pour des
équations d’état de natures variées et pour des contrdles distribués ou
frontiére, nous renvoyons a Lions [1] [2]. On fait en particulier usage,
dans le cas des contrdles frontieére, de la théorie des problémes aux limites
non homogenes telle qu’exposée dans Lions-Magenes [1].

3.3. Propriétés de comparaison

On suppose maintenant que %,,; est donné par:

(325 | u = {v|vel?(Q),a(x1) <v(x,t) <B(x1)pp.,

a et B étant deux fonctions mesurables quelconques}.

On suppose dans (3.16) que z, et N sont fixés!). On désigne par
{yi» pi} (@ =1,2) la solution de (3.24) correspondant & f = f, yo = yy;.
On a alors le:

THEOREME 3.1. On suppose que (3.25) a lieu et que

(3.26) J1 </25 Y01 <Yo2 P-P.

1) On trouvera d’autres cas dans Lions [3].
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On a alors :

(3.27) p1 <p, (et donc u; > u,) p.p. dans Q.

Démonstration

Posons: z =y, — ¥,, ¢ = p; — P,- On déduit de (3.16) que:

(3.28) %+A2_<u<—%)—n<—%—>)=f1 —f2

—a—q+A*q—z=0
ot ’

z=0sur 2_,q =0 sur 2,

Z(X,O) = JYo1 (X) - yOZ(x) s Q(xa T) = 0 dans Q.

On pose (¢, Y)y = | oY dxdt,(p,¥) = | ¢y dx. On multiplie la
Q Q
1re équation (3.28) par ¢* et I'on intégre sur Q. Il vient:
0 A i +
(3.29) z, ““a—t'*‘A q —(o1=Y02,4 () + X = (f1—/2,¢ )Q
Q

ou

e (=) n(-2). o)

o , d
Utilisant la 2¢ équation (3.28) et posant A = — T + A*, on peut

écrire (3.29) sous la forme:

| (3.31)  (Ag, /\q+)Q + X = (f1—f2 q+)Q + (Po1—Yo2> 47(0)),

d’ou, comme N est un opérateur différentiel du 1t ordre

(3.32) l/\q+ ﬁz + X =(fi—29 ) + Wo1—=Y02, 7 (0)).

Si 'on pose — i @;, on a:
N
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(3.33) | X = —=N(H(p) — I (9) , (91 — #2) )g
= NJQ(H(QDJ - H(@z))(ﬁ% — @,) dx dt

e

O S P2

Mais on vérifie que (IT (¢,) — II (¢,)) (¢p;—¢,) >0 p.p. d’out
(3.34) X >0.

D’aprés (3.26), le 2¢ membre de (3.32) est << 0, ce qui, avec (3.34)
donne:

Ng* = 0.
Comme g* = OsurX,etq (x,7) = 0,onaqg™ = 0dou(3.27).

3.4. Cas sans contrainte — Equation intégro-différentielle de Riccati

Considérons maintenant, toujours dans le cadre du systéme (3.16), le
cas « sams contraintes », 1.e.

(3.35) U = L*(Q).
Alors (3.16) s’écrit:

(3.36) dy p

——+A -y = -1z,

y=0sur2_,p=0sur2,,

y(x,0) =yo(x),p(x,T) = 0 sur Q;

il s’agit maintenant d’un probléme linéaire avec des conditions aux limites
pour t = 0 et ¢ = T. Il est connu (Cf. Lions [1]) que tous les systémes de
ce genre peuvent se ramener & la résolution d’une équation non linéaire
d’évolution et d’une équation hyperbolique linéaire.

On va expliciter cela, sans donner les détails des démonstrations.

On considére le systéme pour s < ¢t < T ou s est fixé (quelconque)
-dans 10, T'[:
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| (337) | 99 T
— 4+ Ao+ —y =0,
| Py @ N'ﬁ
Y
— L 4 A*Y — ¢ =0,
Py Y-

o =0sur'_X]s,T[,¥ =0surl'y X]s,T[

o(x,8) =h(x),yx,T)=0surQ

qui admet une solution unique; en fait il s’agit 13 du systéme d’optimalité
pour le probléme suivant: I’état est donné par y (v) solution de:

0y _ _
(3.38) —a—;+Ay=v,y(s)=/z,t>s

et la fonction coflit par:

(3.39) [T 7@ |2dt+ N[ |v|*dr = #5 (@)

(ou |v|?> =] w(x)*dx), et on minimise #" (v) sans contraintes.
Q

Donc le systéme (3.37) admet une solution unique, donc définit de
maniére unique V¥ (s) € L* (Q).
L’application & — ¥ (s) est linéaire continu de L? (Q) — L? (Q), donc:

(3.40) w(s)=P)h,P(s)e L (H;H), H=L*(Q).
On vérifie alors que I’on a 'identité (Cf. Lions, loc. cit.)
(3.41) p()y=P@)y (@) + r().

On peut calculer P et r par un calcul d’identification (il faut vérifier
que les calculs effectués ci-aprés de fagon formelle sont loisibles). On

, d
obtient, (en posant de maniére générale jj = o'},

(3.42) — Py — Py —r' 4+ A*Py + A¥r — y = — z,

b]

et en remplagant dans (3.42) " par sa valeur tirée de la premiére équation
(3.36), on a finalement:

’ p 7 o
(3.43) —P_V+P(Ay+N—f>—r + A*Py + A*¥r —y = — z,.
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On peut encore remplacer dans (3.43) p par sa valeur (3.41), d’ou:

1 1
—P’y+PAy+A*Py+—NPPy—y—r’+A*r+-ﬁPr—-Pf= -z,
et cela est une identité en y, d’ou:

opP 1
3.44 —— +PA+ A*P+ —PoP =1
(3.49) ot N

et

or

(3.45) -

1
+A*r+—]—\-,Pr=Pf——zd.

Comme p (T) = 0, on doit avoir:

(3.46) P(T)=0,r(T) =0.
On vérifie enfin & partir de (3.37) que:
(3.47) P(t)* = P(t) dans ¥ (H; H)
et que
(3.48) P(t) >0 dans % (H; H).

Plus précisément, on vérifie que:

(3.49) (P (s) b, h) = inf £" (v).

On notle encore que:

(3.50) P(t)he D (4%, r(t) e D (4%).

D’aprés le théoréme des noyaux de L. Schwartz [1], on peut représenter
(de fagon unique), I'opérateur P (¢) par un noyau P(x,&,t) et on peut
résumer les informations ci-dessus dans ’ensemble des conditions suivantes:

0P d . 5
~ 5~ a;(x) P(x, &, 1) — i; o (a; (&) P (x, &, 1))

(3.51)

+11V5 P(x, &, )P (¢ ¢ d¢ = §(x—Odans 2x 2 x 10, T,
o

P(x,&,1) = P(S, x, 1),
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P(x,&,t) =0sixel, ,EeQ,te]0, T[,

P(x,&T) = 0 sur Q x Q,

Vhel*(Q),| P(x, &, h(&)déeL*(Q) et
0 ;

[ P(x, &0 h(x)h(E)dxdE >0.

2%

Ce probléme admet une solution unique. La fonction r = r(x, t) est
ensuite déterminée par:

or x

- X @) + j—lv— | e, e0r(@ds
(3.5 | = [ PG, &0S(E0dE - 24,0
r(x,f) =0sixel, ,te]0, T[,

r(x,T) = 0.

On va maintenant démontrer le

THEOREME 3.2. La solution P (x, &, t) de (3.51) vérifie :

(3.53) P(x,&,t) >0p.p. sur @ x Q.

Démonstration

Considérons le systéme (3.37) avec A donnée >0 p.p. dans Q.

On aura (3.53) si 'on montre que ¥ >0 p.p. dans Q x }s, T [. Pour
cela, on multiplie la 1T¢ équation (3.37) par ¥ ~, il vient:

0 1
j (—? + Am)w- dxdt — <[ (@) dxdt = 0;
Q% 1s, T ot N ox1s,11
w : 0 o
intégrant par parties et posant A = — Py + A*, il vient:

T R@YT9dx ] (W )dvdi— < @) dxdt =0

Qx]s,T[ 2x71s,T[
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d’ou, en tenant compte de la 2¢ équation (3.37):

— [ h() Y~ (x,s)dx + | (AY) (N ™) dx dt

Qx]s,T[
! (W) dxdt =0
— gy X —
N QX]s,T[‘
d’ou:
(3.59) [oh ()Y~ (x, ) dx + [ougsrg (A7) dx di
+ : (W) dxdt =0
— xdt = 0.
N “axi1s,11
Comme 2 >0, tous les termes sont pos_itifs, donc ¥y~ = 0.

Remarque 3.6.

On rencontre d’autres systemes du type (3.51) pour des opérateurs
paraboliques (Cf. Lions [1] [2]). D’autres systémes, encore du méme type,
ont €té obtenus a propos de problémes stochastiques par Bismut [1].

Des études directes de ces systémes (et d’autres, n’entrant pas, appa-
remment, dans le cadre de la théorie du contrdle) ont été faites par Da Prato
et Temam, les résultats les plus complets étant obtenus, a partir de méthodes
itératives nouvelles, par L. Tartar [1].

Remarque 3.7.

Le noyau P dépend du paramétre N : P = Py. On montre (Cf. Lions [3])
que Py (x, &, t) décroit (p.p.) lorsque N décroit et que lorsque N — 0,
Py(x,& 1) > 0, au sens:

Vhel?(Q),Vte[0,T],[f  Py(x,&t)h(x)h(E)dxdé— 0.
2

0 x

4. EQUATIONS D’ETAT NON LINEAIRES

4.1. Cas différentiable

Nous avons jusqu’ici considéré des cas ou I’équation d’état du systéme
était linéaire. On rencontre dans les applications de nombreuses situations
(c’est méme, en fait, la situation habituelle!) ou I’équation d’état est non
linéaire.
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