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2. Problèmes d'existence

2.1. Un problème de contrôle dans les coefficients

Soit Q un ouvert borné de R", de frontière r régulière. L'ensemble des

contrôles est défini par x) :

(2.1) %ad {v | v eLœ(Q), 0 < m (x) < M < oo p.p. dans Q}

(fllad ensemble des contrôles admissibles).
Pour v g %ad9 l'état y (v) du système est défini par la solution du problème

elliptique :

(2.2)
i,f^i dxt\"lJ v / " v';

ôxj
ay (x) v (x) — =/ dans Q,

y 0 sur r,
où / est donné par exemple dans L2 (Q) et où les au sont donnés avec :

(2.3) fly 6 L°°(Q), t au (*) il tj>«t ila > °-
i, J - 1 i=l

Le problème (2.2) admet une solution unique:

(2.4) y (v)e Hi(Q)2).
La fonction coût est par exemple :

(2.5) / (») jfl | j (v) - |
2 dx )1/2,

où zd (état désiré) est donné dans L2(Q).Le problème est alors de mini-
miser J (v) lorsque v parcourt °Uad.

Pour des exemples physiques où ce problème intervient, Cf. K. A. Lure
[1]; on ignore s'il existe ueWad tel que J (w) inf. J (y), ve^ad. On va
voir, suivant Murât [1] que la réponse est négative pour un problème
très voisin du précédent.

x) Toutes les fonctions utilisées sont à valeurs réelles.

2) H1 (Q) désigne l'espace de Sobolev (Cf. Sobolev [1]) des fonctions 9 e L2 (Q)
telles que ^6l2(n), i= 1,..., n et H\ (Q) le sous espace des 9 e//1 (Q) tels que

9=0 sur T.

L'Enseignement mathém., t. XIX, fasc. 1-2. 9



— 130 —

2.2. Un contre exemple

On considère le cas unidimensionnel

(2.6) Q ]0,1[
<%ad étant encore défini par (2.1), avec:

y~2-i /2 + i
m j=— M -—-=^-.V2 V2

On suppose que l'état est maintenant donné par y (v) — y solution de :

(2.7) - ~(v (x) + vy0, y (0) =1, y (1) 2
ax\ dxj

et la fonction coût par (2.5) avec zd 1 + x2, i.e.

(2.8) J (y)(y \y (y)-(1+x2) |2 "2.

On va vérifier rapidement que :

(2.9) Inf J (y) 0, ve%ad

et que:

(2.10) il n'existe pas U e ^ai tel que J (w) 0.

Pour montrer (2.9), on remarque que l'on peut construire une suite

vn de %ad telle que:

(2.11) vn vo 1 dans £°° 0^) faible étoile,

11 1 x2
— w0 —I dans L°° (D) faible étoile.

vn Wo 2 6

/I x2\ 1/2 m 2m + 1

(Prendre vn (x) 1 — — si — < x <
2 6 J n 2n

(1 x2\ 1/2 2m + 1 m + 1

m 0, 1,...., n— 1).

Posons j (üw) yn. On vérifie aussitôt que yn est borné dans I71 (Ü)
et donc que l'on peut extraire une sous-suite, encore notée yn, telle que:
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(2.12) y„ -yy0 dans H1 faible.

Mais l'injection de H1 (ß) -> L2 (Qétant compacte, il en résulte que:

(2.13) y„ -y y0 dans L2 (12) fort.

Par ailleurs, on déduit de (2.7), avec v que:

i~\Vn ~r) v-y"e borné de Ll (Q)
dx\ dx J

et par conséquent, on peut supposer, toujours par extraction éventuelle

d'une sous-suite, que:

(2.14) v„ ^--y Xo dans L2
dx

et:

d
(2-15) — Xo + voyo0.

dx

Mais on déduit de (2.14) et (2.11) que:

1 dyn\ 1

— vn — -> — xo dans L (Q) faible
^ V dxJ wo

i / dyn\ dyn dyo
et comme — \vn — —- — dans H 1 (Q) faible (espace dual de

vn\ dxJ dx dx
Hq (jQ) on a donc:

1 dy o
— Xo -yw0 dx

et (2.15) donne donc:

<ii6) - ^[w°d£]+v°>° - °

et (2.12) donne:

(2-17) y0(0)1 Jo (1) 2.

On remplace v0 et w0 par leurs valeurs (2.11) et on vérifie alors que
(2.16) (2.17) impliquent y0 (x) 1 + x2 de sorte que J(v„) ^ 0.
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Vérifions maintenant (2.10); si un tel u existait, on aurait nécessairement

y(u) 1 + x2, d'où en portant dans (2.7) (où l'on prend v u):
d
—(2xu) + u(l+x 0, d'où:

dx

(2.18) u Cx~1/2 exp. C constante;

or, il n'existe aucune fonction de la forme (2.18) qui puisse être dans

Remarque 2.1.

Si l'on prend J(v) (J0X | y (v) — zd (x) \2 dx)1/2, on peut se demander

pour quelle classe de zd le problème n 'admet pas de solution. Pour des résultats
dans ce sens, Cf. F. Murat-L. Tartar [1], M. F. Bidaut [1].

Remarque 2.2.

On trouvera d'autres contre exemples (pour les dimensions supérieures
et des systèmes paraboliques) dans Murât [1] [2].

Remarque 2.3.

Pour l'étude de problèmes relaxés attachés à des problèmes du type
précédent, Cf. L. Cesari [1].

2.3. Un résultat général d'existence

Nous mentionnons maintenant un résultat de J. Baranger [1], que nous
utiliserons aux n° suivants, et en particulier au n° 2.4. ci-après pour la
résolution d'un problème « voisin » de celui du n° 2.1.

On considère, dans un espace de Banach X sur R uniformément réflexif
dont la norme est notée II II, une fonction:

(2.19) cp —» M (cp) semi continu inférieurement (s.c.i.) de

X -» R M {(p) > c > — oo,

et un ensemble S <= X avec:

(2.20) S est fermé dans X.

(en particulier S n'est pas nécessairement convexe).
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On considère alors, pour £ e X,leproblème

(2.21) inf [J {(p)+ y £ — c/> ||].
(pes

On a (Baratïger, loc. ci(:) le

Théorème 2.1. On peut choisir Ç dans un ensemble c X, dense dans

X, *) de sorte qu'alors le problème (2.21) admette une solution (i.e. il existe

alors cp0 e S) tel que

j(<Po) + Il £ - (PoIIinf [J (<?>) + lu - 9 111-

epes

Si J 0, c'est un théorème dû à Edelstein [1].

2.4. Application au problème de contrôle dans les coefficients

Pour £ eL2 (,Q), on introduit (l'état y (v) étant donné par (2.2) ):

(2.22) J£ (v)Ja | y (v)-zd |2 dx )1'2 +e 11 v -£ | |t2(ß)

£ > 0.

On est alors dans les conditions d'application du Théorème 2.1, si l'on
prend :

XL2(i2) S°Uai

J(v) -JSsi\y(v) ~ zd

Donc: On peut choisir £ dans un ensemble dense de L2 (Q) de manière

qu 'alors il existe u g 411ad tel que

JE (u) inf Je (v) v g Wad.

Remarque 2.4

Les problèmes du type « contrôle dans les coefficients » se rattachent
également aux résultats de Spagnolo [l] [2] et Marino-Spagnolo [1].

i) Mue F. Bidaut [1] a montré qu'il existe x ensemble G$ dense avec la propriété.
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