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2. PROBLEMES D’EXISTENCE

2.1. Un probléme de contréle dans les coefficients

Soit Q un ouvert borné de R”, de frontiére I' réguli¢re. L’ensemble des
- controles est défini par *):

‘ QD) Uy = {v|vel®®), 0 <m <v(x) <M < o p.p.dans Q}

" (U,; = ensemble des contrdles admissibles).
| Pour v € %, I’état y (v) du systéme est défini par la solution du probléme
~ elliptique: ‘

(2.2) _ i %(a\ij(x)y(x)%> = f dans Q,

i,j=1

y =0 sur I',

ol f est donné par exemple dans L? (Q) et ou les a;; sont donnés avec:

| (2.3) a;; € L™ (Q), ‘i a;; (x) ;& > a i &, a > 0.

i,j=1

| Le probléme (2.2) admet une solution unique:
er) y @) e HY (@),

La fonction coiit est par exemple:

- 2.5) J@ = (Jo|y @ — 24| 2 dx) ',

ol z, (état désiré) est donné dans L? (Q). Le probléme est alors de mini-
. miser J (v) lorsque v parcourt U .

Pour des exemples physiques ol ce probléme intervient, Cf. K. A. Lure
' [11; on ignore s’il existe u e,y tel que J(u) = inf. J (), ve%,,. On va
voir, suivant Murat [1] que la réponse est mégative pour un probléme
| trés voisin du précédent.

') Toutes les fonctions utilisées sont & valeurs réelles.
| ®) H' (Q2) désigne P'espace de Sobolev (Cf. Sobolev [1]) des fonctions ¢ e L2 (Q)
telles que %‘%GLZ Q),i=1,..,n et Hé (€2) le sous espace des ¢ e H! (Q) tels que

@ =0 sur I\

L’Enseignement mathém., t. XIX, fasc. 1-2. 9
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2.2. Un contre exemple

On considére le cas unidimensionnel
(2.6) Q=1]01[

U4 €tant encore défini par (2.1), avec:

J2-1 J2+1

m= -——-—:, M=,
J 2 J 2
On suppose que I’état est maintenant donné par y (v) = y solution de:

d dy
dx dx

et la fonction cofit par (2.5) avec z, = 1 + x2, i.e.
(2.8) J@) = (fo' |y @) — (1+x?) | * dx) /2.

On va vérifier rapidement que:

(2.9) InfJ(v) =0, vel,
et que:
(2.10) il n’existe pas u € %,, tel que J (u) = 0.

Pour montrer (2.9), on remarque que ’on peut construire une suite
v, de %, telle que:

(2.11) v, = Vo = 1 dans L” (Q) faible étoile,

1 1 1 x? . SO

— = — ,wo = — + —, dans L (Q) faible étoile.

v, W 2 6
Prend T L e N k.

= — —_— —e—— S E— b "
(Prendre v, (x 5T % 1 - x < 5

, 1 x2\ 12 .2m+1< <m+1
= - — si X ,
N 2 6 2n S on

m=0,1,..,»n-1).

Posons y (v,) = y,. On vérifie aussitdt que y, est borné dans H' (Q)
et donc que 'on peut extraire une sous-suite, encore notée y,, telle que:
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(2.12) y, = ¥o dans H*' (Q) faible.
Mais P’injection de H! (Q) — L? (Q) étant compacte, il en résulte que:
(2.13) ¥, = ¥o dans L% (Q) fort.

Par ailleurs, on déduit de (2.7), avec v = v,, que:

d d
—| v, D) v,¥, € borné de L? (Q)
dx dx

et par conséquent, on peut supposer, toujours par extraction éventuelle
d’une sous-suite, que:

dy,

(2.14) Uy = Xo dans L? (Q) fort,
et:

d
(2.15) - EXO + ‘ono - 0.

Mais on déduit de (2.14) et (2.11) que:

1 dy, 1 5 _
—| v, =) = — xo dans L* (Q) faible
U, dx Wo

et comme i v ol = ol - Do dans H™!(Q) faible (e dual d
o\ o T space dual de

H§(2)), on a donc:

1 _dy,
Wo *o = dx
et (2.15) donne donc:
d dy
(2.16) T [Wo _cﬁ:, + v9y0 =0
et (2.12) donne:
(2.17) Yo@ =1,y,(1) =2

On remplace v, et w, par leurs valeurs (2.11) et on vérifie alors que
(2.16) (2.17) impliquent y, (x) = 1 + x* de sorte que J(v,) — 0.
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Vérifions maintenant (2.10); si un tel u existait, on aurait nécessaire-
ment y () = 1 + x>, d’ou en portant dans (2.7) (o1 'on prend v = u):

~ — (2xu) + u(1+x% = 0, d’ou:
dx

x2
(2.18) u = Cx™ 1% exp. (2—), C = constante;

or, il n’existe aucune fonction de la forme (2.18) qui puisse étre dans
U oq-

‘Rem;arque 2.1.

Sil'on prend J(v) = (fo' |y () — z4(x) |* dx) '/?, on peut se demander
pour quelle classe de z, le probléeme n’admet pas de solution. Pour des résultats
dans ce sens, Cf. F. Murat-L. Tartar [1], M. F. Bidaut [1].

Remarque 2.2.

On trouvera d’autres contre exemples (pour les dimensions supérieures
et des systemes paraboliques) dans Murat [1] [2].

Remarque 2.3.

Pour I’étude de problémes relaxés attachés a des problémes du type
précédent, Cf. L. Cesari [1].

2.3. Un résultat général d’existence

Nous mentionnons maintenant un résultat de J. Baranger [1], que nous
utiliserons aux n° suivants, et en particulier au n® 2.4. ci-aprés pour la
résolution d’un probléme « voisin » de celui du n° 2.1.

On considére, dans un espace de Banach X sur R uniformément réflexif,
dont la norme est notée H , une fonction:

(2.19) ¢ — M (@) semi continu inférieurement (s.c.i.) de

X—>R,M((P)>C> — 0,
et un ensemble S <« X avec:
(2.20) S est fermé dans X.

(en particulier S n’est pas nécessairement convexe).
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On considére alors, pour ¢ € X, le probleéme

(2.21) inf [/ (p) + || € — ¢ ||

QeES

On a (Barauger, loc. cit.) le

THEOREME 2.1. On peut choisir £ dans un ensemble Z < X, dense dans
X, Y) de sorte qu’alors le probléeme (2.21) admette une solution (i.e. il existe
alors @, € S) tel que

J(@o) + || € — ool =inf[J(p) + || & — o]l

Pes

Si J =0, c’est un théoréme dii a Edelstein [1].

2.4. Application au probleme de contréle dans les coefficients
Pour ¢ € L? (Q), on introduit (I’état y (v) étant donné par (2.2)):

2.22)  J, @ = (Joly @) — z;12dx)""* + €] — & |l2gay
e > 0.

On est alors dans les conditions d’application du Théoréme 2.1, si I’on
prend:

XZLZ(Q)aS:'%ad)
1
J(v) = ;(jgly(v)—zdlzdx)”z.

Donc: On peut choisir & dans un ensemble dense de L* (Q) de maniére
qu’alors il existe ueU,, tel que

Jo(u) = infJ,(v),vel,.
Remarque 2.4

Les problemes du type « contrdle dans les ccefficients » se rattachent
également aux résultats de Spagnolo [1] [2] et Marino-Spagnolo [1].

1) Mile F. Bidaut [1] a montré qu’il existe % ensemble Gy dense avec la propriété.
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