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SUR LE CONTROLE OPTIMAL DE SYSTEMES DISTRIBUES

par J. L. LiONs

1. INTRODUCTION )

1.1. Le contrdle des systémes distribués (c’est-a-dire des systémes dont
I’état est donné par la résolution d’une équation aux dérivées partielles)
intervient dans un grand nombre d’applications. Sans vouloir, en aucune
maniére, tenter une liste exhaustive d’applications, signalons:

(1) Le contrdle de diverses réactions enzymatiques en biochimie (Cf.
J. P. Kernevez [1], J. P. Kernevez et Thomas [1]) ou I’état est, en général,
donné par un ensemble d’équations paraboliques non lin€aires;

(2) beaucoup de problémes dans la théorie de la diffusion de la chaleur
(Cf. Butkovski [1], P. K. C. Wang [1], Yvon [1]);

(3) un grand nombre de problémes en chimie, pour lesquels nous
renvoyons aux comptes rendus du congrés de 'TFAC, Banff, Canada, 1971;

(4) des problémes liés a la théorie des marées; Cf. G. F. Duff [1];
(5) des problemes de pollution (Cf. Hullet [1]).

Dans ces problémes, le controle s’effectue généralement par des contréles
frontiéres ou des contréles « ponctuels » a Iintérieur du domaine.

Mais dans toute une série de problémes de conception optimale (optimum
design) intervenant en particulier en Mécanique, le contrdle est le domaine
lui-méme (contrdle « géométrique »).

Enfin, tous les problémes évoqués précédemment se posent dans un
cadre déterministe ou stochastique (Cf. Bensoussan [1] [2], J. P. Kernevez [2],
Balakrishnan et J. L. Lions [1]).

1) L’exposé qui suit correspond & quatre conférences faites, a I’invitation du pro-
fesseur PONTRYAGIN et de I’Académie des sciences d’URSS, dans le cadre des conférences
de I’Union Mathématique internationale, au séminaire des professeurs NIKOLSKI et
PONTRYAGIN & D’Institut Stekloff, Moscou, Novembre 1972. Un exposé sur les aspects
numériques des problémes étudiés a été fait, dans le méme cadre, au séminaire du pro-
fesseur TYCHONOFF; les détails ne sont pas donnés ici.
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1.2. Une fois connu I’état y (v) du systéme (v désigne le contrdle qui peut
étre assujetti & un certain nombre de contraintes), on veut minimiser une
« fonction cofit » 1):

*) J@) = 2(@E®)+ ¥ ()

ou @ correspond a I’objectif a atteindre et y correspond au cotit du controle
lui-méme.

1.3. Les problémes a résoudre sont alors:

(1) ’étude de I’existence de une ou plusieurs solutions du probléme;

(i) Pobtention de conditions nécessaires, ou nécessaires et suffisantes
pour 'optimalité, et, en particulier, I’extension du principe du maximum
de Pontryagin (Cf. Pontryagin, Boltyanskii, Gamkrelidze et Mishenko [1]);
cf. pour cela Yu. Egorov [1] [2];

(iii) I’étude du contrdle optimal, en particulier a partir du systéme de
I'optimalité, qui est maintenant un ensemble d’équations aux dérivées
partielles avec, dans le cas d’évolution, les conditions initiales, finales et
des conditions aux limites sur la frontiére du domaine (Cf. Lions [1] [2]);

(iv) I’étude des problémes stochastiques correspondants (Cf. en parti-
culier Bensoussan [1]), ce qui conduit, entre autres questions, a la nécessité
de I’extension aux équations aux dérivées parielles de la théorie de Ito
(Cf. Bensoussan [2], Bensoussan-Temam [1], Pardoux [1]);

(v) le probléme de la synthése (feedback) qui, dans le cas linéaire
quadratique conduit & une équation aux dérivées partielles non linéaire
avec une non linéarité quadratique correspondant & la composition de
noyaux (Cf. Lions [1], [2] et un exemple au n° 3 ci-apres);

il faut naturellement y ajouter le probléme fondamental des algorithmes
numériques, qui ne sont pas abordés ici.

1.4. Nous étudions dans la suite certains aspects ?) des problémes évoqués

ci-dessus.
Le n° 2 étudie certains problémes d’existence qui conduisent a des

problémes ouverts qui semblent intéressants, dans la théorie des équations

1) Dont le choix peut lui-méme étre un probléme.

2) Nous renvoyons a Lions [1] [2], Bensoussan [1], pour une étude systématique de
certains points non étudiés ici (ou treés brievement évoqués); on trouvera aussi dans ces
travaux une large bibliographie complémentaire.
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- aux dérivées partielles; on donne un contre exemple dfi & Murat [1] et des
 résultats de Baranger [1]; pour d’autres aspects des problémes d’existence,
* on pourra se reporter a D. Berkowitz [1], M. F. Bidaut [1], L. Cesari [1],
" 1. Ekeland [1], I. Ekeland et R. Temam [1], Gamkrelidze [1] et a la biblio-
. graphie de ces travaux.

Le n° 3 rappelle d’abord certains résultats pour une équation d’état
hyperbolique linéaire et une fonction cofit quadratique et pour lesquels on
peut établir certaines propriétés de comparaison qui peuvent €tre utiles (des
résultats complémentaires dans ce sens sont donnés dans Lions [3]).

Le n° 4 donne trés brievement quelques exemples de problémes ou
I’équation d’état est non linéaire (ce sont, dans les applications les exemples
les plus fréquents). Lorsque la solution (c’est-a-dire I’état) dépend diffé-
rentiablement du contrdle, on peut facilement donner des conditions
nécessaires (il semble que I’étude systématique de la suffisance éventuelle
de ces conditions reste a faire). Le cas — qui est assez fréquent — ou la
dépendance est non différentiable semble largement ouvert; nous en donnons
un exemple; c’est le cas en particulier de tous les systémes gouvernés par
des inéquations variationnelles (Cf. Duvaut-Lions [1] pour des exemples en
Physique et en Mécanique).

Le no 5 étudie des problémes asymptotiques qui sont directement li€s

a la théorie des perturbations singuliéres. Il y a essentiellement deux situa-
tions: (i) 'équation d’état peut contenir un « petit » paramétre et on utilise
la théorie des couches limites au niveau de I’équation d’état; nous renvoyons
a Lions [5], Chapitre 7; (i) un petit paramétre peut apparaitre dans la
- fonction y (Cf. Formule (*)), ce qui correspond a un contrdle « bon
marché » — une situation qui est assez fréquente —. On étudie cet aspect
au n® 5, ce qui conduit & (pensons-nous) d’intéressantes questions de
perturbations singuliéres pour des opérateurs pseudo-différentiels et a de
nouveaux problemes relatifs & des équations non linéaires non homogénes
- (on utilise un résultat non encore publi¢ de H. Brezis [2] et la théorie de
I'interpolation non linéaire, Lions [6], J. Peetre [1]).
‘ Le n° 6 présente briévement certains résultats de Bensoussan, Goursat
- et Pauteur (Cf. A. Bensoussan et J. L. Lions [1} [2] et A. Bensoussan,
M. Goursat et J. L. Lions [1] pour une étude plus compléte) relatifs
- certains problémes de contréle stochastique (gestion optimale, temps
- d’arréts) et qui conduisent & I’étude de nouveaux types d’inéquations ou
d’inéquations quasi variationnelles d’évolution.

Le plan détaillé est le suivant:
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PROBLEMES D’EXISTENCE

2.1. Un probléme de contrdle dans les coefficients

2.2. Un contre exemple

2.3. Un résultat général d’existence

2.4. Application au probléme de contrdle dans les coefficients

CAS LINEAIRE QUADRATIQUE — REMARQUES SUR LE SYSTEME D’OPTIMALITE
Q

3.1. Un systéme hyperbolique

3.2. Systéme d’optimalité

3.3. Propriétés de comparaison

3.4. Cas sans contrainte — Equation intégro-différentielle de Riccati

EQUATIONS D’ETAT NON LINEAIRES

4.1. Cas différentiable
4.2. Cas non différentiable

PHENOMENES DE PERTURBATIONS SINGULIERES

5.1. Orientation

5.2. Cas d’un systéme linéaire

5.3. Cas d’un systéme non linéaire

5.4. Remarques sur certains problémes elliptiques non linéaires non
homogenes

PROBLEMES DE GESTION OPTIMALE ET INEQUATIONS VARIATIONNELLES

6.1. Un probléme de gestion optimale
6.2. Réduction a une inéquation quasi variationnelle d’évolution
6.3. Problémes de temps d’arrét optimal

BIBLIOGRAPHIE



— 129 —

2. PROBLEMES D’EXISTENCE

2.1. Un probléme de contréle dans les coefficients

Soit Q un ouvert borné de R”, de frontiére I' réguli¢re. L’ensemble des
- controles est défini par *):

‘ QD) Uy = {v|vel®®), 0 <m <v(x) <M < o p.p.dans Q}

" (U,; = ensemble des contrdles admissibles).
| Pour v € %, I’état y (v) du systéme est défini par la solution du probléme
~ elliptique: ‘

(2.2) _ i %(a\ij(x)y(x)%> = f dans Q,

i,j=1

y =0 sur I',

ol f est donné par exemple dans L? (Q) et ou les a;; sont donnés avec:

| (2.3) a;; € L™ (Q), ‘i a;; (x) ;& > a i &, a > 0.

i,j=1

| Le probléme (2.2) admet une solution unique:
er) y @) e HY (@),

La fonction coiit est par exemple:

- 2.5) J@ = (Jo|y @ — 24| 2 dx) ',

ol z, (état désiré) est donné dans L? (Q). Le probléme est alors de mini-
. miser J (v) lorsque v parcourt U .

Pour des exemples physiques ol ce probléme intervient, Cf. K. A. Lure
' [11; on ignore s’il existe u e,y tel que J(u) = inf. J (), ve%,,. On va
voir, suivant Murat [1] que la réponse est mégative pour un probléme
| trés voisin du précédent.

') Toutes les fonctions utilisées sont & valeurs réelles.
| ®) H' (Q2) désigne P'espace de Sobolev (Cf. Sobolev [1]) des fonctions ¢ e L2 (Q)
telles que %‘%GLZ Q),i=1,..,n et Hé (€2) le sous espace des ¢ e H! (Q) tels que

@ =0 sur I\

L’Enseignement mathém., t. XIX, fasc. 1-2. 9
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2.2. Un contre exemple

On considére le cas unidimensionnel
(2.6) Q=1]01[

U4 €tant encore défini par (2.1), avec:

J2-1 J2+1

m= -——-—:, M=,
J 2 J 2
On suppose que I’état est maintenant donné par y (v) = y solution de:

d dy
dx dx

et la fonction cofit par (2.5) avec z, = 1 + x2, i.e.
(2.8) J@) = (fo' |y @) — (1+x?) | * dx) /2.

On va vérifier rapidement que:

(2.9) InfJ(v) =0, vel,
et que:
(2.10) il n’existe pas u € %,, tel que J (u) = 0.

Pour montrer (2.9), on remarque que ’on peut construire une suite
v, de %, telle que:

(2.11) v, = Vo = 1 dans L” (Q) faible étoile,

1 1 1 x? . SO

— = — ,wo = — + —, dans L (Q) faible étoile.

v, W 2 6
Prend T L e N k.

= — —_— —e—— S E— b "
(Prendre v, (x 5T % 1 - x < 5

, 1 x2\ 12 .2m+1< <m+1
= - — si X ,
N 2 6 2n S on

m=0,1,..,»n-1).

Posons y (v,) = y,. On vérifie aussitdt que y, est borné dans H' (Q)
et donc que 'on peut extraire une sous-suite, encore notée y,, telle que:



— 131 —
(2.12) y, = ¥o dans H*' (Q) faible.
Mais P’injection de H! (Q) — L? (Q) étant compacte, il en résulte que:
(2.13) ¥, = ¥o dans L% (Q) fort.

Par ailleurs, on déduit de (2.7), avec v = v,, que:

d d
—| v, D) v,¥, € borné de L? (Q)
dx dx

et par conséquent, on peut supposer, toujours par extraction éventuelle
d’une sous-suite, que:

dy,

(2.14) Uy = Xo dans L? (Q) fort,
et:

d
(2.15) - EXO + ‘ono - 0.

Mais on déduit de (2.14) et (2.11) que:

1 dy, 1 5 _
—| v, =) = — xo dans L* (Q) faible
U, dx Wo

et comme i v ol = ol - Do dans H™!(Q) faible (e dual d
o\ o T space dual de

H§(2)), on a donc:

1 _dy,
Wo *o = dx
et (2.15) donne donc:
d dy
(2.16) T [Wo _cﬁ:, + v9y0 =0
et (2.12) donne:
(2.17) Yo@ =1,y,(1) =2

On remplace v, et w, par leurs valeurs (2.11) et on vérifie alors que
(2.16) (2.17) impliquent y, (x) = 1 + x* de sorte que J(v,) — 0.
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Vérifions maintenant (2.10); si un tel u existait, on aurait nécessaire-
ment y () = 1 + x>, d’ou en portant dans (2.7) (o1 'on prend v = u):

~ — (2xu) + u(1+x% = 0, d’ou:
dx

x2
(2.18) u = Cx™ 1% exp. (2—), C = constante;

or, il n’existe aucune fonction de la forme (2.18) qui puisse étre dans
U oq-

‘Rem;arque 2.1.

Sil'on prend J(v) = (fo' |y () — z4(x) |* dx) '/?, on peut se demander
pour quelle classe de z, le probléeme n’admet pas de solution. Pour des résultats
dans ce sens, Cf. F. Murat-L. Tartar [1], M. F. Bidaut [1].

Remarque 2.2.

On trouvera d’autres contre exemples (pour les dimensions supérieures
et des systemes paraboliques) dans Murat [1] [2].

Remarque 2.3.

Pour I’étude de problémes relaxés attachés a des problémes du type
précédent, Cf. L. Cesari [1].

2.3. Un résultat général d’existence

Nous mentionnons maintenant un résultat de J. Baranger [1], que nous
utiliserons aux n° suivants, et en particulier au n® 2.4. ci-aprés pour la
résolution d’un probléme « voisin » de celui du n° 2.1.

On considére, dans un espace de Banach X sur R uniformément réflexif,
dont la norme est notée H , une fonction:

(2.19) ¢ — M (@) semi continu inférieurement (s.c.i.) de

X—>R,M((P)>C> — 0,
et un ensemble S <« X avec:
(2.20) S est fermé dans X.

(en particulier S n’est pas nécessairement convexe).
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On considére alors, pour ¢ € X, le probleéme

(2.21) inf [/ (p) + || € — ¢ ||

QeES

On a (Barauger, loc. cit.) le

THEOREME 2.1. On peut choisir £ dans un ensemble Z < X, dense dans
X, Y) de sorte qu’alors le probléeme (2.21) admette une solution (i.e. il existe
alors @, € S) tel que

J(@o) + || € — ool =inf[J(p) + || & — o]l

Pes

Si J =0, c’est un théoréme dii a Edelstein [1].

2.4. Application au probleme de contréle dans les coefficients
Pour ¢ € L? (Q), on introduit (I’état y (v) étant donné par (2.2)):

2.22)  J, @ = (Joly @) — z;12dx)""* + €] — & |l2gay
e > 0.

On est alors dans les conditions d’application du Théoréme 2.1, si I’on
prend:

XZLZ(Q)aS:'%ad)
1
J(v) = ;(jgly(v)—zdlzdx)”z.

Donc: On peut choisir & dans un ensemble dense de L* (Q) de maniére
qu’alors il existe ueU,, tel que

Jo(u) = infJ,(v),vel,.
Remarque 2.4

Les problemes du type « contrdle dans les ccefficients » se rattachent
également aux résultats de Spagnolo [1] [2] et Marino-Spagnolo [1].

1) Mile F. Bidaut [1] a montré qu’il existe % ensemble Gy dense avec la propriété.
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3. CAS LINFAIRE QUADRATIQUE — REMARQUES SUR LE SYSTEME D’OPTIMALITE |

3.1. Un systéme hyperbolique

On reprend ici certains points de Lions [3]: dans un ouvert borné

2 de R" de frontiere I' réguliére, on considére l'opérateur A défini
par:

" 0o
3.1 Aq) - . (x) —
( ) i.-_-zl al ( ) 6xi

ou les fonctions a; € C* (Q); [on pourrait aussi bien considérer des
fonctions dépendant de x et ¢; nous nous bornons au cas ou les a; ne

dépendent pas de ¢ uniquement pour un peu simplifier ’exposé]. On
introduit:

. ={x|xell, Y a(x)v;, <0}
i=1

I, = {xlxeF, Y a;(x)v; >0}
i=1

ou v = {v;} désigne la normale a I' dirigée vers I'extérieur de Q.
On suppose que I'état y = y (v) = y (x, t; v) du systetme est défini par
la solution du probléme mixte hyperbolique:

?

(3.2) (%+Ay=f+v dans O = Qx 10, T,
(3.3) y=0sur 2_ =I_x]0,T[,
(3.4) y(x,0) = yo(x), xe€Q

ou f et y, sont donnés avec:

3.5) feL*(Q),y,eL* (@)
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et ol ve%,; avec:

(3.6) U, = ensemble convexe fermé non vide de L? (Q).

- Remarque 3.1.

Il s’agit donc dans le probléme précédent d’un contréle distribué.
(Cf. & ce sujet la Remarque 3.3. ci-apres).

La fonction cotit est donnée par:
(3.7) J@) = Jo|y@ — z,|?dxdt + N [ov* dx dt,

ol z, est donnée dans L? (Q) et ol N est donné > 0.
Le probléme

(3.8) inf J (v)
VE U,y

admet une solution unique (vérification immédiate) pour laquelle nous allons
écrire le « systéme d’optimalité ».

3.2. Systéme d’optimalité

Soit u la solution de (3.8). On pose y (¥) = y et 'on définit 1'état
adjoint p par'):

op

(3.9) -5 A*p =y — z,
- (3.10) p=0sur2, =I,_.x]0,T],
(3.11) p(x,T) = 0sur Q.

Le contrdle u est caractérisé par:
(12) [o0—2) (W) —p) dx dt + N [ou(v—u) dx dt >0,V v ey,
Mais on déduit facilement de (3.9), (3.10), (3.11) que:

fo—2z) O()—y) dx dt = fop (—u)dx dt

n
1) 4* &fin ¥ s o B 2 fp
) A* est défini par A* ¢ = ; =Z1 e (a; o).
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de sorte que (3.12) équivaut a:

(3.13) [o(p+ Nuw) (v—u)dx dt >0, Vvel,.
Introduisons:
(3.14) II = opérateur de projection dans L? (Q) sur %,,,.

Alors (3.13) équivaut a:

(3.15) " =n<~3>,

Par conséquent, le contrdle optimal est donné par la résolution du systéme
en {y, p}:

(3.16) oy P
“—‘+A _H - =/
o N) =/
aop
—5;+A*p—y= — Zg

y=0sur2_,p=0sur,,

y(-xa O) = yO(x) 9p(x: T) = OSUI' Q:
puis par (3.15).

Remarque 3.2.

Puisque le probléme (3.16) équivaut au probléme initial, le systeéme non
linéaire (3.16) admet une solution unique.

Remarque 3.3.

Supposons que le contrdle ne soit plus distribué mais de la forme:

m

(3.17) v(x,t) = ) v;(t) w;(t)

i=1

ou les fonctions w; sont données dans L? (Q) (et en général dans les applica-
tions a support compact « assez petit »), les fonctions v; étant les controles,
assujettis aux contraintes:

(3.18) v, e%i,ad) = convexe fermé non vide de L* (0, T), i = 1, ..., m.
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Supposons la fonction colit donnée alors par:
(3.19) J@) = [oly@ —z,|Pdxdt + Y N;fo" v*dt,
i=1
N; > 0.

Soit u = {uy, ..., u,} le contrdle optimal. Le systtme de I'optimalité
est maintenant donné de la fagon suivante: soit

(3.20)  II, = opérateur de projection dans L* (0, T') sur %; ,4;

alors:
(3.21) ay - i
| — 4+ Ay — I\ —=—=)w; = f,
? ot y i=Zl Ni W f
op
——+ A*p -y = — z,,
a1 p—) d
Di (t) = jgp('xa t) W; (x) dxa
y=0sur2_,p=0sur?2,,
y(x,0) = yo(x),p(x,T) = Osur Q,
et
Pi
= a3

Nous ignorons dans quelle mesure on peut étendre a (3.21) les résultats
de comparaison relatifs a (3.16) établis au n° 3.3. ci-apreés.

Remarque 3.4.
Si 'on prend par exemple:

(3.23) Upe = {v|v>0p.p. dans Q},

alors IT (p) = ¢ * (=sup (¢, 0)), de sorte que (3.16) devient dans ce cas:




(3.24) dy 4 P P

———(?g—}-A*p-—y—z
ot @

y=0surX_,p=0surl2,,

y(x,0) = yo(x),p(x,T) = 0sur Q.

On voit 'importance (puisque u = ‘Bﬁ) de la «surface de commuta-
tion » séparant la région ol p > 0 de celle ou p < 0, le contrble u étant

nul dans la 17¢ région.

Remarque 3.5.

Pour une étude systématique des divers systémes d’optimalité pour des
équations d’état de natures variées et pour des contrdles distribués ou
frontiére, nous renvoyons a Lions [1] [2]. On fait en particulier usage,
dans le cas des contrdles frontieére, de la théorie des problémes aux limites
non homogenes telle qu’exposée dans Lions-Magenes [1].

3.3. Propriétés de comparaison

On suppose maintenant que %,,; est donné par:

(325 | u = {v|vel?(Q),a(x1) <v(x,t) <B(x1)pp.,

a et B étant deux fonctions mesurables quelconques}.

On suppose dans (3.16) que z, et N sont fixés!). On désigne par
{yi» pi} (@ =1,2) la solution de (3.24) correspondant & f = f, yo = yy;.
On a alors le:

THEOREME 3.1. On suppose que (3.25) a lieu et que

(3.26) J1 </25 Y01 <Yo2 P-P.

1) On trouvera d’autres cas dans Lions [3].
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On a alors :

(3.27) p1 <p, (et donc u; > u,) p.p. dans Q.

Démonstration

Posons: z =y, — ¥,, ¢ = p; — P,- On déduit de (3.16) que:

(3.28) %+A2_<u<—%)—n<—%—>)=f1 —f2

—a—q+A*q—z=0
ot ’

z=0sur 2_,q =0 sur 2,

Z(X,O) = JYo1 (X) - yOZ(x) s Q(xa T) = 0 dans Q.

On pose (¢, Y)y = | oY dxdt,(p,¥) = | ¢y dx. On multiplie la
Q Q
1re équation (3.28) par ¢* et I'on intégre sur Q. Il vient:
0 A i +
(3.29) z, ““a—t'*‘A q —(o1=Y02,4 () + X = (f1—/2,¢ )Q
Q

ou

e (=) n(-2). o)

o , d
Utilisant la 2¢ équation (3.28) et posant A = — T + A*, on peut

écrire (3.29) sous la forme:

| (3.31)  (Ag, /\q+)Q + X = (f1—f2 q+)Q + (Po1—Yo2> 47(0)),

d’ou, comme N est un opérateur différentiel du 1t ordre

(3.32) l/\q+ ﬁz + X =(fi—29 ) + Wo1—=Y02, 7 (0)).

Si 'on pose — i @;, on a:
N
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(3.33) | X = —=N(H(p) — I (9) , (91 — #2) )g
= NJQ(H(QDJ - H(@z))(ﬁ% — @,) dx dt

e

O S P2

Mais on vérifie que (IT (¢,) — II (¢,)) (¢p;—¢,) >0 p.p. d’out
(3.34) X >0.

D’aprés (3.26), le 2¢ membre de (3.32) est << 0, ce qui, avec (3.34)
donne:

Ng* = 0.
Comme g* = OsurX,etq (x,7) = 0,onaqg™ = 0dou(3.27).

3.4. Cas sans contrainte — Equation intégro-différentielle de Riccati

Considérons maintenant, toujours dans le cadre du systéme (3.16), le
cas « sams contraintes », 1.e.

(3.35) U = L*(Q).
Alors (3.16) s’écrit:

(3.36) dy p

——+A -y = -1z,

y=0sur2_,p=0sur2,,

y(x,0) =yo(x),p(x,T) = 0 sur Q;

il s’agit maintenant d’un probléme linéaire avec des conditions aux limites
pour t = 0 et ¢ = T. Il est connu (Cf. Lions [1]) que tous les systémes de
ce genre peuvent se ramener & la résolution d’une équation non linéaire
d’évolution et d’une équation hyperbolique linéaire.

On va expliciter cela, sans donner les détails des démonstrations.

On considére le systéme pour s < ¢t < T ou s est fixé (quelconque)
-dans 10, T'[:
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| (337) | 99 T
— 4+ Ao+ —y =0,
| Py @ N'ﬁ
Y
— L 4 A*Y — ¢ =0,
Py Y-

o =0sur'_X]s,T[,¥ =0surl'y X]s,T[

o(x,8) =h(x),yx,T)=0surQ

qui admet une solution unique; en fait il s’agit 13 du systéme d’optimalité
pour le probléme suivant: I’état est donné par y (v) solution de:

0y _ _
(3.38) —a—;+Ay=v,y(s)=/z,t>s

et la fonction coflit par:

(3.39) [T 7@ |2dt+ N[ |v|*dr = #5 (@)

(ou |v|?> =] w(x)*dx), et on minimise #" (v) sans contraintes.
Q

Donc le systéme (3.37) admet une solution unique, donc définit de
maniére unique V¥ (s) € L* (Q).
L’application & — ¥ (s) est linéaire continu de L? (Q) — L? (Q), donc:

(3.40) w(s)=P)h,P(s)e L (H;H), H=L*(Q).
On vérifie alors que I’on a 'identité (Cf. Lions, loc. cit.)
(3.41) p()y=P@)y (@) + r().

On peut calculer P et r par un calcul d’identification (il faut vérifier
que les calculs effectués ci-aprés de fagon formelle sont loisibles). On

, d
obtient, (en posant de maniére générale jj = o'},

(3.42) — Py — Py —r' 4+ A*Py + A¥r — y = — z,

b]

et en remplagant dans (3.42) " par sa valeur tirée de la premiére équation
(3.36), on a finalement:

’ p 7 o
(3.43) —P_V+P(Ay+N—f>—r + A*Py + A*¥r —y = — z,.
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On peut encore remplacer dans (3.43) p par sa valeur (3.41), d’ou:

1 1
—P’y+PAy+A*Py+—NPPy—y—r’+A*r+-ﬁPr—-Pf= -z,
et cela est une identité en y, d’ou:

opP 1
3.44 —— +PA+ A*P+ —PoP =1
(3.49) ot N

et

or

(3.45) -

1
+A*r+—]—\-,Pr=Pf——zd.

Comme p (T) = 0, on doit avoir:

(3.46) P(T)=0,r(T) =0.
On vérifie enfin & partir de (3.37) que:
(3.47) P(t)* = P(t) dans ¥ (H; H)
et que
(3.48) P(t) >0 dans % (H; H).

Plus précisément, on vérifie que:

(3.49) (P (s) b, h) = inf £" (v).

On notle encore que:

(3.50) P(t)he D (4%, r(t) e D (4%).

D’aprés le théoréme des noyaux de L. Schwartz [1], on peut représenter
(de fagon unique), I'opérateur P (¢) par un noyau P(x,&,t) et on peut
résumer les informations ci-dessus dans ’ensemble des conditions suivantes:

0P d . 5
~ 5~ a;(x) P(x, &, 1) — i; o (a; (&) P (x, &, 1))

(3.51)

+11V5 P(x, &, )P (¢ ¢ d¢ = §(x—Odans 2x 2 x 10, T,
o

P(x,&,1) = P(S, x, 1),
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P(x,&,t) =0sixel, ,EeQ,te]0, T[,

P(x,&T) = 0 sur Q x Q,

Vhel*(Q),| P(x, &, h(&)déeL*(Q) et
0 ;

[ P(x, &0 h(x)h(E)dxdE >0.

2%

Ce probléme admet une solution unique. La fonction r = r(x, t) est
ensuite déterminée par:

or x

- X @) + j—lv— | e, e0r(@ds
(3.5 | = [ PG, &0S(E0dE - 24,0
r(x,f) =0sixel, ,te]0, T[,

r(x,T) = 0.

On va maintenant démontrer le

THEOREME 3.2. La solution P (x, &, t) de (3.51) vérifie :

(3.53) P(x,&,t) >0p.p. sur @ x Q.

Démonstration

Considérons le systéme (3.37) avec A donnée >0 p.p. dans Q.

On aura (3.53) si 'on montre que ¥ >0 p.p. dans Q x }s, T [. Pour
cela, on multiplie la 1T¢ équation (3.37) par ¥ ~, il vient:

0 1
j (—? + Am)w- dxdt — <[ (@) dxdt = 0;
Q% 1s, T ot N ox1s,11
w : 0 o
intégrant par parties et posant A = — Py + A*, il vient:

T R@YT9dx ] (W )dvdi— < @) dxdt =0

Qx]s,T[ 2x71s,T[
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d’ou, en tenant compte de la 2¢ équation (3.37):

— [ h() Y~ (x,s)dx + | (AY) (N ™) dx dt

Qx]s,T[
! (W) dxdt =0
— gy X —
N QX]s,T[‘
d’ou:
(3.59) [oh ()Y~ (x, ) dx + [ougsrg (A7) dx di
+ : (W) dxdt =0
— xdt = 0.
N “axi1s,11
Comme 2 >0, tous les termes sont pos_itifs, donc ¥y~ = 0.

Remarque 3.6.

On rencontre d’autres systemes du type (3.51) pour des opérateurs
paraboliques (Cf. Lions [1] [2]). D’autres systémes, encore du méme type,
ont €té obtenus a propos de problémes stochastiques par Bismut [1].

Des études directes de ces systémes (et d’autres, n’entrant pas, appa-
remment, dans le cadre de la théorie du contrdle) ont été faites par Da Prato
et Temam, les résultats les plus complets étant obtenus, a partir de méthodes
itératives nouvelles, par L. Tartar [1].

Remarque 3.7.

Le noyau P dépend du paramétre N : P = Py. On montre (Cf. Lions [3])
que Py (x, &, t) décroit (p.p.) lorsque N décroit et que lorsque N — 0,
Py(x,& 1) > 0, au sens:

Vhel?(Q),Vte[0,T],[f  Py(x,&t)h(x)h(E)dxdé— 0.
2

0 x

4. EQUATIONS D’ETAT NON LINEAIRES

4.1. Cas différentiable

Nous avons jusqu’ici considéré des cas ou I’équation d’état du systéme
était linéaire. On rencontre dans les applications de nombreuses situations
(c’est méme, en fait, la situation habituelle!) ou I’équation d’état est non
linéaire.
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On peut distinguer deux cas, selon que 'application v — y (v) est, ou

non, différentiable.
Donnons un exemple de probléme intervenant en biochimie *); I'état

(qui représente une concentration) est donné par:

2
- (4.1) dy 0% y o
% Y i T —=f.xe]0,1[,te]0, Tl
f v ety 10,11, re]0. 71

l o = constante > 0,

| @42) y(6,0) = o (1), xe]0, 1]

@) -2 =0 ), 20,0 =0,1€10,TL
¥ 0x 0x

Les données f et y, et le contrdle v sont > 0.
| On vérifie sans peine (Cf. les détails dans Kernevez [1]) que ce probleme
' admet une solution unique, vérifiant:
dy 0%y Oy

(4.4 =, ——,—el?’(0),0 =2x 10, T2 =10, 1
é() Va2 © (Q), O X ] [ ] [,

- (4.5) y > 0.

On peut, par exemple, commencer par résoudre le probléme:

’
f:

dp 0% ¢

A A N S S
ot  0x* 1+ |o

o - f

;
B
i

avec les conditions (4.2) (4.3) inchangées, puis ’on vérifie que la solution ¢
f de (4.6) (4.2) (4.3) est >0, donc ¢ = y.

I La solution de (4.1) (4.2) (4.3) étant notée y (v), on considére la fonction
I coiit:

0}
i

@) J@ = |y@ —z[*dxdt + N[ Tv*dr,
0

| ol z, est donnée dans L? (Q).
§ I1 est facile de voir que le probléme:

; (49) inf J (W), ve,,

trés nombreux autres problémes de controle en biochimie; on donne ici I’'un des exemples

§ 1) On trouvera dans les travaux de Kernevez et Thomas (Cf. la bibliographie) de
g les plus simples. Cf. aussi Brauner et Penel [1].
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ou

(4.9 U, = ensemble convexe fermé non vide de L? (0, T'), contenu
dans I’ensemble des fonctions >0 p.p. sur (0, T')

admet une solution (au moins).

Pour obtenir des conditions nécessaires d’optimalité, on utilise alors
le fait que la fonction v — y (v) est différentiable de {L* (0, T),v > 0}
dans L? (Q). Si I'on pose:

_ d
(4.10) j = ﬂy(u + ) | 120

on vérifie que:

(4.11) )7(36,0) =Y

i B3
oy =v0,2U,0 =0,
0x 0x

ou y = y(u).
On introduit alors I’état adjoint et ’on obtient les conditions d’optimalité
par des intégrations par parties (Cf. Kernevez [1], Lions [2]).

Remarque 4.1.

La fonction v — J (v) n’a pas de raison d’€tre convexe, et il n’y a donc
pas de raison d’avoir unicité de la solution. 1l serait intéressant d’étudier le
nombre éventuel des solutions (minima globaux ou locaux). Nous rencon-
trerons encore des questions de ce type au n° 5 (Cf. par exemple
Remarque 5.4.).

Remarqde 4.2.

On trouvera d’autres exemples, relatifs a des problémes de conduite
de chauffe d’un four, dans J. P. Yvon [1}.
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4.2. Cas non différentiable

Voici un exemple de probléme de contrdle intervenant également en
biochimie. L’état est donné par I’équation:
dy 0%y y
4.12 =4+ 0——=f4+v,x€]0,1[,1€]0,T],
(4.12) ot ox? 1 +y 4 ]
donc équation analogue a (4.1), avec cette fois le controle distribué v € @ad,
ou

(4.13) U, = ensemble fermé convexe non vide de L* (Q), contenu dans
les fonctions p.p. > 0 dans Q.

La condition initiale est identique a (4.2). Les conditions aux limites
sont les suivantes: soit & >0 donné; alors ¢ étant une constante > 0,

0 0
(4.14) ——ay<o,t) = —co-0 LZ2ZU,H=—cpy-n*
4 X x=0 O0X

=0 x=1
On vérifie encore que le probléme (4.12) (4.2) (4.14) admet une solution

unique, soit y = y (v). Si la fonction cofit est encore donnée par (4.7), le
probléme:

(4.15) Inf J (v) , v e ¥,

admet encore une solution (au moins), soit wu.

Mais la fonction 4 — 2™ n’étant pas différentiable a 1’origine, I’applica-
tion v — y (v) de L? (Q) —» L? (Q) n’est plus différentiable, et I"obtention
de conditions d’optimalité semble une question ouverte.

Remarque 4.3.

Du point de vue numérique (Cf. Yvon [1]) on introduit une fonction
A — y (1) approximation différentiable de A — 1™ et 'on remplace (4.14)
par:

0
(4.16) — EX(o,t) = —cy(y(o,t) —h),
X

oy i B
a—x( 1) = cy(r(,1) —h).
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Soit y? (v) le nouvel état, correspondant a (4.16). On montre que
¥’ (v) - y (v) dans L* (Q) lorsque y converge vers A (avec y (1) = A pour
A > 2o > 0) et 'on résout le probléme de contrdle correspondant a y” (v),
la fonction v — y? (v) étant cette fois différentiable.

Remarque 4.4.

La situation décrite a la Remarque 4.3. précédente est typique des
inéquations variationnelles intervenant en Physique et en Mécanique (Cf.
Duvaut-Lions [1]) et pour la résolution numérique desquelles on emploie
constamment des processus de régularisation analogues a ceux de la
Remarque précédente (Cf. Glowinski, Lions, Tremoliéres [1] et la biblio-
graphie de ce livre).

Remarque 4.5.

Dans tous les problémes considérés jusqu’ici, mais en particulier dans
le cas des problemes multiphases, on peut avoir a considérer des fonctions
colit de la forme:

(4.17) J(@) = | |y(v) — za,|2 dx dt

E(v)
ou E (v) est un ensemble géométrique défini a partir de y (v) (par exemple
E (v) peut étre I’ensemble ou y (v) > 0).

De nombreux problémes restent a résoudre dans cette direction. Un
exemple, relatif aux équations de Stefan, est résolu dans Vasiliev [1].

5. PHENOMENES DE PERTURBATIONS SINGULIERES

5.1. Orientations

Des phénomeénes de perturbations singuliéres apparaissent dans la
théorie du contrble optimal pour deux raisons:

(i) Iétat du systéme peut étre décrit par une équation (ou un ensemble
d’équations) contenant un petit paramétre e, soit y, (v) cet état, corres-
pondant a un contrdle v; alors la théorie des perturbations (singuliéres si,
comme c’est le cas le plus important, ¢ apparait dans des dérivées d’ordre
supérieur) permet de «remplacer » y, (v) par un «état approché » plus
simple y (v) correspondant a la valeur ¢ = 0 et avec des « corrections »
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correspondant aux couches limites; si 0,(v) désigne une telle correction,

- on est donc conduit & remplacer y, (v) par y (v) + 6, (v) — ce qui conduit

4 un probléme de contrdle optimal approché qui peut étre plus simple;

une question est alors évidemment d’analyser en fonction de & l'erreur

~ ainsi commise; nous ne développons pas ici ce point de vue, renvoyant
a Lions [3], Chapitre 7;

(ii) la fonction cofit contient, en général, un terme de la forme N || v ||?
ou H v || est une norme sur l’espace des contrdles et ou N est un para-
meétre > 0 d’autant plus petit que v est « bon marché ». Cela conduit aux
problémes de contrdle ot N — 0; ce sont, comme on va voir, des problémes
de perturbations singuliéres.

5.2. Cas d’un systéme linéaire

Commengons par un exemple trés simple. Dans un ouvert Q borné de
R” de frontiere réguliére I', on considére un systéme dont 1’état y = y (x, v)
= y (v) est donné par:

5.1 Ay @) = fdans Q,
(5.2) 9 ©) = ysur I’
ov

. . - d :
ou A est un opérateur elliptique du 2¢ ordre, ™ la dérivée conormale
\Y

associée a A, et ol f (resp. v) est pris dans L* (Q) (resp. L* (I).
On prendra par exemple A donné par:

"0 do
5.3 Ap = — — | g.. -
G- ¢ i,jzél 0x; <aj{ @x,-) v AP

ou les a;; -vérifient (2.3) et ol ay e L2(Q), a,(x) > o, > op.p.
Le probléme (5.1) (5.2) admet une solution unique:

(5.4) y (v) e HY(Q).
La fonction codt est donnée par:
(5.5) L@ =[ |y@ -z |*dl + ¢ v*dr,
r r

ou z, est donné dans L (I') et ol ¢ > 0 « petit ».
Soit: par ailleurs: -
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(5.6) U, = ensemble fermé convexe non vide de L? (I').

Le probléme de contrdle optimal:
5.7 inf J, (v) ,veU,,

admet une solution unique, soit u,.
Notre objet est maintenant 1’étude du comportement de u, lorsque ¢ — 0.
Si ’on pose:

Y (ue) = Y
le controle optimal u, est caractérisé par:

(5.8) '[r y.—z) (v W) —y,) dIl + ¢ ".r u, (v—u)dlr >0,Y ve,.

On pose:
(5.9) (y @) =y©)r =@,y W) —yO)r = @,

Alors v est donné a partir de ¢ de la fagon suivante: on résout

(5.10) Ap =0dans Q, ¢ | = — ¢
et I’on pose:
(5.11) Ao = g?r'
Alors:
(5.12) v = o Q.

L’opérateur &7 est un isomorphisme de H(I') - H*"'(I'), VseR
(Cf. Lions-Magenes [1], Chapitres 1 et 2).
L’opérateur inverse &/ ~! est donné comme suit: on résout

ow

(5.13) Aw=0,— =vsurl,
ov

et alors:

(5.14) wlp= o .

On introduit:

(5.15 A = o YU%,) = ensemble convexe fermé (non vide) de H*(I).
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Avec ces notations, le probléme (5.8) équivaut a:

(5.16) [ (9= (za—y(0))) (9 —0,) dl’ + ¢ Ir A, A (p—@)dl >0,
o, e VN oeX.

Posons:
(5.17) g =2,—y()
Alors (5.16) équivaut a:
(5.18) afr Ao, o (p—¢)dl + Jrsos (p—o@)dl >
| g(o=gndl. Y pe.
C’est un probléeme de perturbations singuliéres pour des inéquations

variationnelles (Cf. D. Huet [1], J. L. Lions [4] [5]). Le résultat est alors
le suivant: on introduit

(5.19) A4 = adhérence de " dans L* (),

et soit ¢, la solution dans J de:

(5.20) Jrcoo (<o—<oo)df>§rg(<p—-¢o)d1“, Voed,
1.e.

(521) @, = Proj. g = projection sur & dans L* (I') de g.
On a alors:
(5.22) ¢, > @, dans L? (D).

Par conséquent:

THEOREME 5.1. Lorsque ¢ - 0, on a:

(5.23) y, — y(0) + Proj. z (z;,—y(0)) dans L? (I").

r

= y (u,)
r

On en déduit que :
(5.24) u, = o ¢, - uy, = o ¢, dans H™ ! ().

En général ¢, n’est pas dans H' (I') de sorte que o/ Qo n'est pas dans
L? (I') de sorte que le résultat (5.24) ne peut pas en général étre amélioré.
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Remarque 5.1.
Si o€ H'(I'). (et donc & ') alors ¢, — ¢, dans H' (I') et dans ce
cas u, — u, dans L*(I).
Exemple 5.1.
Prenons le cas « sans contraintes »
(5.25) U, = L*(T).

Alors o ', = H' (I etgf L*>(I'). Donc ¢, = z; — y(0) et
par conséquent:

(5.26) y (W) | — z, dans L* ().
r

Pour obtenir u,, on résout:

(5.27) Ay =0,dy =z, sur I’
et alors:
0
(5.28) uy = 2o
ov
Exemple 5.2.

Soit % une variété réguliére de dimension (n—2) contenue dans F
Supposons que:

(5.29) A = 1(plcpc-:Hl(r),q;=0sur 2.
Alors " = L*(I'). On a alors: -
¢, — g dans L* (D).

Si I'on fait I’hypothése que ge H* ('), on peut utiliser L1ons [4] [5]
pour définir des correcteurs 0, par:

(530) | 0 +geH,

sj A0, 4 (o— eg)dru 0,(p—0,)dl >
j(8g81+81/2g£2)(€0 Ge)dr

Vo avec ¢ +geA,
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ou

j gslq)drt<cll(/)”H1(I‘): Voed,
r

f gs1§0dr! <cllolleaqy, VoeX.
r

On a alors:

(5.31) o, — (g+0,) —» 0 dans H' (I).

Le calcul de 0, est un calcul de couche limite pour un opérateur pseudo-
différentiel (o). Nous renvoyons pour cela & Demidov [1], Pokrovski [1].
Comme variante on peut prendre:

(5.29 bis) A ={p|loeH" (I), 0 = y(0) sur &}.

Cela signifie que %,, est ’ensemble des v tels que:

(5.32) ‘ y (@) = 0 sur Z.

Donc U, est définie a partir des contraintes sur [’état, une situation
fréquente dans les applications. |

Evidemment, on a encore ici un phénoméne de couche limite au voisinage
de Z lorsque ¢ — 0.

Remarque 5.2.

On trouvera dans Lions [4] [5] I’analyse d’autres situations du méme

{ type (mais plus délicates).

5.3. Cas d’un systéme non linéaire

On considére maintenant le systéme dont I’état est donné par:

(5.33) — 4y + B(y) = 0 dans Q,

0
—Z=vsur1“
A"

f ol A — B (1) est une fonction continue strictement croissante de R — R,

nulle a Torigine. Dans (5.33), on suppose que v e L?(I); le probléme
(5.33) admet une solution unique telle que:
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(5.34) ye H' (Q)
et
(5.35) jgy B (y)dx < oo.

La fonction cofit est encore donnée par:
(5.36) J.)= [ |y@ — 2z, |*dl + e[ v*dr,
r r
et %,q est encore un ensemble fermé convexe non vide de L? (I).
On vérifie sans peine qu’il existe u, €, tel que:
(5.37) J.(u) = inf J, (v) ,veU,y

mais la fonction v — J, (v) n’ayant pas de raison d’étre convexe, il n’y a
aucune raison pour que u, soit unique.

Remarque 5.3.

On pourra trouver dans Lions [2], Chapitre 3, n° 2, des exemples
d’équations d’état non linéaires conduisant a des fonctions cofit convexes.

Remarque 5.4.

11 serait intéressant de pouvoir donner des « estimations topologiques »
du nombre éventuel de solutions du probléme (5.37).

Notre objet est maintenant de faire tendre ¢ vers 0.
De maniére formelle, lorsque %,, = L* (I'), on considére le probléme
de Dirichlet non homogéne

(5.38) — 4o + f(do) = O,
bo

=Zd
r

qui admet une solution unique dans H'(Q) si z;e HY* ().
Faisons [’hypothése (de régularité sur z; et sur ) que:
_ 3,

5.39 e
( ) Uy oy

e L*(IN).
r

On a alors:
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(5.40) u, étant une solution quelconque de (5.37), u, — uy dans
L*(I') faible.

En effet, on note que (en posant | ¢ |* = | ¢*dI):
r

glu,|* < T, () < J,(uo) = &|ug >
donc:
(5.41) Iusl < [ U [
On peut donc extraire une suite, encore notée u,, telle que:
(5.42) u, = w dans L? (I') faible.
~ On vérifie sans peine que y (1) — y (w) dans H' (I') faible et qu’alors:
(5.43) J,(u) > J(w) = jr |y W) — z, |* dI.

Mais:

J, (u) <J,(v) VwvelL? () donne, avec (5.43):
Jw) <J@ YveL?)

donc J(w) <J(uy) =0 donc y(w)| = z; donc y(w) = ¢,, donc

r
W = u,, dou (5.40).

A la lumiére des résultats du n° 5.2., on peut conjecturer que sans
I’hypothése de régularité (5.39), u, converge vers u, dans un espace « plus
- grand » que L* ().
| Ce probléme est ouvert; pour un peu en préciser I’énoncé, on est
conduit & la question des probléemes « non linéaires non homogénes » qui
~est abordée au n° suivant.

5.4. Remarques sur certains problémes elliptiques
non linéaires non homogeénes

Avec un changement de notations par rapport a (5.38), on étudie le
probléme suivant: trouver ¢ solution de

(5.44) - —4¢ + B(¢) = 0,
¢| =g

r
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ou g est, par exemple, donné dans L*(I') (le probléme est facile si
ge H'*(I)). |

Il faut évidemment introduire (puisqu’il en est déja ainsi dans les cas
linéaires analogues; Cf. Lions-Magenes [1], Chapitre 2) des solutions
faibles de (5.44): on dira que ¢ est solution faible de (5.44) si:

oy
ov

(5.45) (6, —4Y) + (B(P), ¥) = — Irg =i

pour toute fonction Y «réguliere » dans Q et nulle sur I' (on a posé

(p, ) = de) Y dx).

Cela posé, on a le résultat suivant, dt 2 H. Brezis [1].

THEOREME 5.2. Soit & (x) = distance de x & I'. Si g est donné duns L' (I')
le probleme (5.45) admet une solution unique telle que : |

(5.46) bell(Q), |

(3.47) 5 B()eL (),

et ot dans (5.45) on peut prendre € H**(Q) n Hlb‘”(Q) 1),
En outre ’application g — ¢ = ¢ (g) est Lipschitzienne, au sens suivant :
Si g,el* () et si ¢ (g;) = ¢, on a:

(5.48) | [ 41 — o2l + 1 0f (@) — 0 B(P2) |l

L1(2) L1(2)

<cllgy — g2l
LI(I)

On va maintenant appliquer la théorie de [’interpolation non linéaire
(Cf. Lions [6], J. Peetre [1]).
On vérifie sans peine que:

(5.49) el <llgll

L% () L™ (I')

L’application g — ¢ = ¢ (g) vérifie donc (5.49) et

(5.50) ¢ (g) — ¢ (g2) |l <cllgr — g2l

L1(Q) Li(r)

On peut alors interpoler entre ces estimations (Cf. Lions [6]) et I'on
en déduit le

oY 02y
0x; ’ 0xi 0xj

Dle ¢,

eL® (Q)), ¢ =OsurI.
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- THEOREME 5.3. Pour geLP(I), 1 <p < oo, le probléeme (5.45) admet
une solution ¢ (g) unique dans LP ().
On a en outre :

(3.51) ¢ (9) ] <cllgll

Lp(92) Lp(I')

- Remarque 5.5.

On peut en outre montrer que dans les conditions du Théoreme
précédent:

(5.52) 51P B ($) € LP (Q).

Remarque 5.6.

Si en particulier ge L* (I'), alors la solution faible de (5.44) vérifie:
peL?*(Q), 612 B(p)eL*(Q) (donc 6% A ¢ eL?(Q)).

Il ne semble pas que ’on puisse définir ™ dans ces conditions. Mais
A

0
si geLP(I"), p > 2, alors on peut définir —;—)~ dans un espace de distribu-
v

tions sur I', par adaptation des méthodes de Lions-Magenes [1].
Pour d’autres résultats et d’autres applications de l'interpolation non
linéaire, cf. L. Tartar [2].

6. PROBLEMES DE GESTION OPTIMALE ET INEQUATIONS VARIATIONNELLES

6.1. Un probleme de gestion optimale *)

Soit s 'instant initial, s € [0, T'] et soit x le stock de produits & I’instant s.

On se donne un processus de Wiener f(¢) (f(0) = 0) qui représente
la demande cumulée jusqu’a linstant ¢; si 'on pose:

(6.1) Ef@) = u()

on a:

(6.2) E(f(O) —u®(f(s) = p(s)) = [5 ¢ 6 () dr.

1) Les résultats des n° 6.1 et 6.2 sont dus 2 Bensoussan et ’auteur [2]1[3] et a Bensoussan,

Goursat et ’auteur [1]; nous renvoyons aux articles détaillés des ces auteurs pour les
(Iongs) détails techniques.

L’Enseignement mathém., t. XIX, fasc. 1-2. 11
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On se donne des temps d’arréts en nombre fini mais quelconques, avec:
(6.3) 0<T; <1, <. <; <ty T pss.

et des v.a. wy ... Wi aeenn wy avec w; adaptée a f(¢), te [0, 7,].
La suite (finie) t;, w; est la variable de controle (stochastique).
L’état y (t) du systéme est donné par'

(6.4) y(t)-x—(f(t)—f(S))+Zw T << Tigg

Soit ¢ — N (¢) une fonction de R — R, de classe C!, > 0, telle que
N () désigne le colit d’une commande de produits a I'instant t.
La fonction coiit du probléme est alors:

(6.5) Ji((taw) = E [zzv(ra + 171y (1) dt]
ou
(6.6) 1(2) >0, A— I(}) continue , I (0) = 0,

[ étant décroissante si A <0, croissante si A > 0.

Pour fixer les idées:

6.7) [0) = c, A= + ¢, A%, ¢, >0, ¢; >0.
On pose:
(6.8) w(x,s) = inf J5 ((7;, wy);

(i wi)

notre objet essentiel est d’obtenir une caractérisation fonctionnelle de w
(fonction définie sur R ,x]0, T [).

Nous renvoyons a Bensoussan et Lions [2] pour la vérification du résul-
tat suivant:

(6.9 w(x,t)<<N(@#)+ inf wx+&,2),VxeR,te]0,T],

=20
(6.10) —%—‘;——1 2(1‘) +,u(t)——\l(x) xeR,te]0,T],
(6.11) w(x,t) = N(¢) + inf w(x+¢, t) pour x <X, (1),
£20
2
(6.12) ~—aa—:}—%az(t)g 3 m(t)—— = [(x) pour x > X, (¢),
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(6.13) w(x,T) = 0.

Nous allons maintenant montrer comment les égalités et inégalités
%(6.9) ... (6.13), caractérisent la fonction w (pourvu d’ajoutér des condiﬁons
1de croissance a l'infini en x sur w). L’unicité résulte des raisonnements
i probabilistes conduisant aux inégalités précédentes. On donne seulement
‘dans la suite des indications sur Pexistence d’une solution.

'6.2. Réduction a une inéquation quasi variationnelle d’évolution

On introduit:

w

Les conditions (6.9) ... (6.13) deviennent:

(6:15) u(x t) <1+ inf u(x+f t)

=1
ou | _(x)

(6.16) —a—t—}—A(t)u <f(x,t), f(x,t) = N
6.17) w(x,t) = 1+ inf u(x+6,1), x < 5, (1),

Ex1
| ' ou
(6.18) — 5;—*— A@)u = f pour x > X, (1),
(6.19) u(x,T) =0,
ou A(t) est défini par:
| 1 Zq) op N’ (t)
6.20 A — - > X _
(6.20) (e = 50 (t) 5 1 () v NGO

On va maintenant transformer (6.15) ... (6.19) en une inéquation quasi
‘variationnelle.

: Remarque 6.1.

La transformation simple (6.14) a pour seul but de transformer (6.9)
en (6.15). La condition (6.9) conduit 2 introduire I'ensemble des fonctions
@ sur R, a croissance convenable & I’infini, et telles que: |
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(6.21) @ (x) < N(t) + inf ¢ (x+9),
‘ £20

ensemble qui dépend de t; sous la forme (6.15), cela revient & prendre
N (¢t) = 1 dans (6.21) et I’ensemble correspondant ne dépend plus de t;
cette simplification est techniquement utile.

On va utiliser des espaces fonctionnels hilbertiens contenant des poids
choisis de manieére que /(x) appartienne a ces espaces.

Pour 4> 01), on pose:

(6.22) m, (x) = exp(—4|x))
et I'on introduit:
(6.23) H;, = {¢|m; peL* (R)},
do
(6.24) V, = {§0 I ¢ e H,, 'd—'EH).};
x
espage H, est un Hilbert pour la norme |m,o|=|¢]|, (ou

|m, o |* = [T2m5(x) ¢ (x)*dx) et V, est un Hilbert pour la norme:
1/2
)

6.26 1 du dv x [du
(6.26) bz(t;u,v)=—oz(t)jkmi——bf~—dx—laz(t)jR'mi— — )vdx
2 le dx

do
dx

(625) lolls = (10f +

Pour u, veV,, on pose:

dx dx
du N' ()
+ p(t) janfl(—J);)vdx TN fr m3uvdx.

On vérifie que u, v — b, (¢; u, v) est une forme bilinéaire continue sur
V, et on a fait ce qu’il fallait pour avoir:

(6.27) b, (t;u,v) = [gm; (Auyvdx

(si par exemple v est & support compact et u assez réguliere).
On introduit:

(6.28) M(@)(x) = 1 + inf ¢ (x+9),

E>0

K= {p|loeV,, o <M (x)}

1) On pourra prendre A arbitrairement petit.
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ce qui définit un ensemble convexe fermé non vide de V.
On considére alors I’ «inéquation quasi variationnelle d’évolution »
~ suivante : trouver une fonction ¢t — u(¢) de [0, T] > V,, telle que:

| (6.29) u(t)eK p.p.,

- (6.30) — (%(t),v—u(t)) + b, (t;u(t),v—u(t))
> (f(2),v—u(?));, Vv <M (u)
- (6.31) u(T) = 0.

Remarque 6.2.

Il s’agit d’une « quasi inéquation» — I’inéquation variationnelle
correspondant au convexe K étant obtenue lorsque dans (6.30) on prend
v dans K, i.e. v < M (v) (au lieu de v < M (u)).

On va maintenant donner quelques indications bréves sur la solution
de la quasi inéquation précédente. On renvoie a Bensoussan-Goursat-
Lions [1] pour la comparaison entre la solution de I'inéquation et de la
quasi inéquation.

Commengons par le cas stationnaire.

On a alors une forme b, (4, v) coercive sur ¥, et on considére la quasi
inéquation:

(632) b/l (U,'U—ll) = (fav - u)). ’ Vv <M(l{),
u M@ ,uveV,.

On montre existence d’une solution u >0 lorsque f est donnée >0,
par le procédé itératif suivant; on part de »° solution de:

(6.33) b, W, v) = (f,v),,VveV,

puis ’on définit u' par la solution de I'indguation variationnelle:

(6.34) b, (', v—u") >(fiv—u"),, Vv avec v <M u°),
ut <M W)

et 'on définit de proche en proche u" a partir de " ~* par la solution de
I'inéquation variationnelle: |
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(6.35) | b, (W v—u"y = (f,o—-u"),, Vo< Mu" ™",
W' <MWY,
On démontre que:

(6.36) vl T SRS T VY ey

vV
-

et que " demeure dans un borné de V,. Donc:
u" — u dans V, faible, u satisfait a (6.32) et u est > 0.

Dans le cas d’évolution on introduit (Cf. Bensoussan-Lions [3]) les
solutions faibles de la quasi inéquation, de la méme fagon que la solution
faible des inéquations. On considére la classe de fonctions:

ov
(6.37) ”//={v|v,a—teL2(O,T;Vl),v(T)=0}.

Supposons que u soit solution de (6.29) (6.30) (6.31) et calculons la
quantité:

(6.38) X = j'OT[__ (g,v_u> + b, (t;u, v—u) — (f,v—u),l] dt,
A

ve? v < M(u).

On a:

(6.39) Y = jOT{— (%,v—u) + b, (t;u,v—u) — (f,v—u){l dt+ Y,
i

2

Y v (0) — u (0)

>O.
2

0 1
j0T<-— -a—t(v—u),v — u)ﬁdt = 5

D’aprés (6.30) le premier terme du deuxieme membre de (6.39) est > 0,

et par conséquent X > 0.
On définit alors une solution faible du probleme (6.29) (6.30) (6.31)
comme étant une fonction u telle que:

(6.40) ueLl* (0, T; V), u <M,
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(6.41) L’Tl:_ <f_”,v_u> + b, (G v—u) — (f, v—u){l dt >0
A .

ct

Yoey , tel que v < M (u).

On montre encore (cf. Bensoussan, Lions [3]) lexistence d une solution
u >0 de (6.40) (6.41) lorsque f est donnée = Q.

Le principe d’une démonstration est d’utiliser un processus d’itération
analogue a (6.35) mais ou I’on doit alors régulariser M de fagon convenable
(pour que I'inéquation varationnelle correspondante admette une solution
forte). Une autre démonstration repose sur la méthode des différences
finies.

 Remarque 6.3.

Naturellement on rencontre les problémes analogues en dimension
quelconque d’espace — la dimension de I’espace correspondant au nombre
de biens a gérer. On rencontre aussi de nombreuses autres fonctionnelles
M correspondant a diverses situations économiques. Nous renvoyons a
Bensoussan, Lions [2]; on trouvera dans M. Goursat [1] I’étude de I’appro-
ximation numérique de la solution de ces inéquations quasi variation-
nelles.

Remarque 6.4.

Les inéquations variationnelles, stationnaires ou d’évolution, inter-
viennent dans de nombreux problémes de Physique et de Mécanique
(cf. Duvaut, Lions [1] et la bibliographie de ce livre, C. Baiocchi et
E. Magenes [1], H. Brezis et G. Duvaut [1], H. Brezis et G. Stampacchia [1]).

6.3. Problemies de temps d’arrét optimal
On a montré dans Bensoussan-Lions [1] comment des problémes de

temps d’arrét optimal se raménent a 1’étude d’inéquations variationnelles
du type suivant:

ov
(6.42) ~<5,7)—u> + b, (tu,v—u) > (f,v—u),, Vvek,
p
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ou

(6.43) Ky = {v|v<0pp.,veV,},
avec:

(6.44) u(t)ek,

et une condition de croissance pour |u(t) [ ; lorsque t - + o (] u(t) ] 2
doit croitre moins vite qu’une exponentielle convenable).
On a montré que ce probléme admet une solution unique.

Remarque 6.5.

Pour un probléme analogue en théorie des jeux, nous renvoyons a
A. Friedman [1]. Pour des résuitats supplémentaires de régularité, cf.
A. Friedman [2].
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