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SUR LE CONTRÔLE OPTIMAL DE SYSTÈMES DISTRIBUÉS

par J. L. Lions

1. Introduction f
1.1. Le contrôle des systèmes distribués (c'est-à-dire des systèmes dont

l'état est donné par la résolution d'une équation aux dérivées partielles)

intervient dans un grand nombre d'applications. Sans vouloir, en aucune

manière, tenter une liste exhaustive d'applications, signalons:

(1) Le contrôle de diverses réactions enzymatiques en biochimie (Cf.

J. P. Kernevez [1], J. P. Kernevez et Thomas [1]) où l'état est, en général,

donné par un ensemble d'équations paraboliques non linéaires ;

(2) beaucoup de problèmes dans la théorie de la diffusion de la chaleur

(Cf. Butkovski [1], P. K. C. Wang [1], Yvon [1]);

(3) un grand nombre de problèmes en chimie, pour lesquels nous

renvoyons aux comptes rendus du congrès de l'IFAC, Banff, Canada, 1971 ;

(4) des problèmes lié^ à la théorie des marées; Cf. G. F. Duff [1];

(5) des problèmes de pollution (Cf. Hüllet [1]).

Dans ces problèmes, le contrôle s'effectue généralement par des contrôles

frontières ou des contrôles « ponctuels » à l'intérieur du domaine.

Mais dans toute une série de problèmes de conception optimale (optimum
design) intervenant en particulier en Mécanique, le contrôle est le domaine

lui-même (contrôle « géométrique »).

Enfin, tous les problèmes évoqués précédemment se posent dans un
cadre déterministe ou stochastique (Cf. Bensoussan [1] [2], J. P. Kernevez [2],
Balakrishnan et J. L. Lions [1]).

x) L'exposé qui suit correspond à quatre conférences faites, à l'invitation du
professeur Pontryagin et de l'Académie des sciences d'URSS, dans le cadre des conférences
de l'Union Mathématique internationale, au séminaire des professeurs Nikolski et
Pontryagin à l'Institut Stekloff, Moscou, Novembre 1972. Un exposé sur les aspects
numériques des problèmes étudiés a été fait, dans le même cadre, au séminaire du
professeur Tychonoff; les détails ne sont pas donnés ici.
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1.2. Une fois connu l'état y[v) du système (v désigne le contrôle qui peut
être assujetti à un certain nombre de contraintes), on veut minimiser une
« fonction coût » x) :

(*) J(v) <P( g(v) + \\> (v)

où $ correspond à l'objectif à atteindre et \j/ correspond au coût du contrôle
lui-même.

1.3. Les problèmes à résoudre sont alors:

(i) l'étude de l'existence de une ou plusieurs solutions du problème ;

(ii) l'obtention de conditions nécessaires, ou nécessaires et suffisantes

pour l'optimalité, et, en particulier, l'extension du principe du maximum
de Pontryagin (Cf. Pontryagin, Boltyanskii, Gamkrelidze et Mishenko [1]);
cf. pour cela Yu. Egorov [1] [2];

(iii) l'étude du contrôle optimal, en particulier à partir du système de

l'optimalité, qui est maintenant un ensemble d'équations aux dérivées

partielles avec, dans le cas d'évolution, les conditions initiales, finales et
des conditions aux limites sur la frontière du domaine (Cf. Lions [1] [2]);

(iv) l'étude des problèmes stochastiques correspondants (Cf. en
particulier Bensoussan [1]), ce qui conduit, entre autres questions, à la nécessité

de l'extension aux équations aux dérivées parielles de la théorie de Ito
(Cf. Bensoussan [2], Bensoussan-Temam [1], Pardoux [1]);

(v) le problème de la synthèse (feedback) qui, dans le cas linéaire

quadratique conduit à une équation aux dérivées partielles non linéaire

avec une non linéarité quadratique correspondant à la composition de

noyaux (Cf. Lions [1], [2] et un exemple au n° 3 ci-après);

il faut naturellement y ajouter le problème fondamental des algorithmes
numériques, qui ne sont pas abordés ici.

1.4. Nous étudions dans la suite certains aspects2) des problèmes évoqués
ci-dessus.

Le n° 2 étudie certains problèmes d'existence qui conduisent à des

problèmes ouverts qui semblent intéressants, dans la théorie des équations

1) Dont le choix peut lui-même être un problème.
2) Nous renvoyons à Lions [1] [2], Bensoussan [1], pour une étude systématique de

certains points non étudiés ici (ou très brièvement évoqués) ; on trouvera aussi dans ces
travaux une large bibliographie complémentaire.
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aux dérivées partielles; on donne un contre exemple dû à Murât [1] et des

résultats de Baranger [1]; pour d'autres aspects des problèmes d'existence,

on pourra se reporter à D. Berkowitz [1], M. F. Bidaut [1], L. Cesari [1],

1. Ekeland [1], I. Ekeland et R. Temam [1], Gamkrelidze [1] et à la
bibliographie de ces travaux.

Le n° 3 rappelle d'abord certains résultats pour une équation d'état

hyperbolique linéaire et une fonction coût quadratique et pour lesquels on

peut établir certaines propriétés de comparaison qui peuvent être utiles (des

résultats complémentaires dans ce sens sont donnés dans Lions [3]).

Le n° 4 donne très brièvement quelques exemples de problèmes où

l'équation d'état est non linéaire (ce sont, dans les applications les exemples

les plus fréquents). Lorsque la solution (c'est-à-dire l'état) dépend diffé-
rentiablement du contrôle, on peut facilement donner des conditions
nécessaires (il semble que l'étude systématique de la suffisance éventuelle

de ces conditions reste à faire). Le cas — qui est assez fréquent — où la

dépendance est non différentiable semble largement ouvert; nous en donnons

un exemple; c'est le cas en particulier de tous les systèmes gouvernés par
des inéquations variationnelles (Cf. Duvaut-Lions [1] pour des exemples en

Physique et en Mécanique).
Le n° 5 étudie des problèmes asymptotiques qui sont directement liés

à la théorie des perturbations singulières. Il y a essentiellement deux situations

: (i) l'équation d'état peut contenir un « petit » paramètre et on utilise
la théorie des couches limites au niveau de l'équation d'état; nous renvoyons
à Lions [5], Chapitre 7; (ii) un petit paramètre peut apparaître dans la
fonction \j/ (Cf. Formule (*) ce qui correspond à un contrôle « bon
marché » — une situation qui est assez fréquente —. On étudie cet aspect
au n° 5, ce qui conduit à (pensons-nous) d'intéressantes questions de

perturbations singulières pour des opérateurs pseudo-différentiels et à de

nouveaux problèmes relatifs à des équations non linéaires non homogènes
(on utilise un résultat non encore publié de H. Brezis [2] et la théorie de

l'interpolation non linéaire, Lions [6], J. Peetre [1]).
Le n° 6 présente brièvement certains résultats de Bensoussan, Goursat

et l'auteur (Cf. A. Bensoussan et J. L. Lions [1] [2] et A. Bensoussan,
M. Goursat et J. L. Lions [1] pour une étude plus complète) relatifs à

certains problèmes de contrôle stochastique (gestion optimale, temps
d'arrêts) et qui conduisent à l'étude de nouveaux types d'inéquations ou
d'inéquations quasi variationnelles d'évolution.

Le plan détaillé est le suivant :
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2. Problèmes d'existence

2.1. Un problème de contrôle dans les coefficients
2.2. Un contre exemple
2.3. Un résultat général d'existence
2.4. Application au problème de contrôle dans les coefficients

3. Cas linéaire quadratique — Remarques sur le système d'optimalité
3.1. Un système hyperbolique
3.2. Système d'optimalité
3.3. Propriétés de comparaison
3.4. Cas sans contrainte — Equation intégro-différentielle de Riccati

4. Equations d'état non linéaires

4.1. Cas différentiable
4.2. Cas non différentiable

5. Phénomènes de perturbations singulières

5.1. Orientation
5.2. Cas d'un système linéaire
5.3. Cas d'un système non linéaire
5.4. Remarques sur certains problèmes elliptiques non linéaires non

homogènes

6. Problèmes de gestion optimale et inéquations variationnelles
6.1. Un problème de gestion optimale
6.2. Réduction à une inéquation quasi variationnelle d'évolution
6.3. Problèmes de temps d'arrêt optimal
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2. Problèmes d'existence

2.1. Un problème de contrôle dans les coefficients

Soit Q un ouvert borné de R", de frontière r régulière. L'ensemble des

contrôles est défini par x) :

(2.1) %ad {v | v eLœ(Q), 0 < m (x) < M < oo p.p. dans Q}

(fllad ensemble des contrôles admissibles).
Pour v g %ad9 l'état y (v) du système est défini par la solution du problème

elliptique :

(2.2)
i,f^i dxt\"lJ v / " v';

ôxj
ay (x) v (x) — =/ dans Q,

y 0 sur r,
où / est donné par exemple dans L2 (Q) et où les au sont donnés avec :

(2.3) fly 6 L°°(Q), t au (*) il tj>«t ila > °-
i, J - 1 i=l

Le problème (2.2) admet une solution unique:

(2.4) y (v)e Hi(Q)2).
La fonction coût est par exemple :

(2.5) / (») jfl | j (v) - |
2 dx )1/2,

où zd (état désiré) est donné dans L2(Q).Le problème est alors de mini-
miser J (v) lorsque v parcourt °Uad.

Pour des exemples physiques où ce problème intervient, Cf. K. A. Lure
[1]; on ignore s'il existe ueWad tel que J (w) inf. J (y), ve^ad. On va
voir, suivant Murât [1] que la réponse est négative pour un problème
très voisin du précédent.

x) Toutes les fonctions utilisées sont à valeurs réelles.

2) H1 (Q) désigne l'espace de Sobolev (Cf. Sobolev [1]) des fonctions 9 e L2 (Q)
telles que ^6l2(n), i= 1,..., n et H\ (Q) le sous espace des 9 e//1 (Q) tels que

9=0 sur T.

L'Enseignement mathém., t. XIX, fasc. 1-2. 9
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2.2. Un contre exemple

On considère le cas unidimensionnel

(2.6) Q ]0,1[
<%ad étant encore défini par (2.1), avec:

y~2-i /2 + i
m j=— M -—-=^-.V2 V2

On suppose que l'état est maintenant donné par y (v) — y solution de :

(2.7) - ~(v (x) + vy0, y (0) =1, y (1) 2
ax\ dxj

et la fonction coût par (2.5) avec zd 1 + x2, i.e.

(2.8) J (y)(y \y (y)-(1+x2) |2 "2.

On va vérifier rapidement que :

(2.9) Inf J (y) 0, ve%ad

et que:

(2.10) il n'existe pas U e ^ai tel que J (w) 0.

Pour montrer (2.9), on remarque que l'on peut construire une suite

vn de %ad telle que:

(2.11) vn vo 1 dans £°° 0^) faible étoile,

11 1 x2
— w0 —I dans L°° (D) faible étoile.

vn Wo 2 6

/I x2\ 1/2 m 2m + 1

(Prendre vn (x) 1 — — si — < x <
2 6 J n 2n

(1 x2\ 1/2 2m + 1 m + 1

m 0, 1,...., n— 1).

Posons j (üw) yn. On vérifie aussitôt que yn est borné dans I71 (Ü)
et donc que l'on peut extraire une sous-suite, encore notée yn, telle que:
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(2.12) y„ -yy0 dans H1 faible.

Mais l'injection de H1 (ß) -> L2 (Qétant compacte, il en résulte que:

(2.13) y„ -y y0 dans L2 (12) fort.

Par ailleurs, on déduit de (2.7), avec v que:

i~\Vn ~r) v-y"e borné de Ll (Q)
dx\ dx J

et par conséquent, on peut supposer, toujours par extraction éventuelle

d'une sous-suite, que:

(2.14) v„ ^--y Xo dans L2
dx

et:

d
(2-15) — Xo + voyo0.

dx

Mais on déduit de (2.14) et (2.11) que:

1 dyn\ 1

— vn — -> — xo dans L (Q) faible
^ V dxJ wo

i / dyn\ dyn dyo
et comme — \vn — —- — dans H 1 (Q) faible (espace dual de

vn\ dxJ dx dx
Hq (jQ) on a donc:

1 dy o
— Xo -yw0 dx

et (2.15) donne donc:

<ii6) - ^[w°d£]+v°>° - °

et (2.12) donne:

(2-17) y0(0)1 Jo (1) 2.

On remplace v0 et w0 par leurs valeurs (2.11) et on vérifie alors que
(2.16) (2.17) impliquent y0 (x) 1 + x2 de sorte que J(v„) ^ 0.
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Vérifions maintenant (2.10); si un tel u existait, on aurait nécessairement

y(u) 1 + x2, d'où en portant dans (2.7) (où l'on prend v u):
d
—(2xu) + u(l+x 0, d'où:

dx

(2.18) u Cx~1/2 exp. C constante;

or, il n'existe aucune fonction de la forme (2.18) qui puisse être dans

Remarque 2.1.

Si l'on prend J(v) (J0X | y (v) — zd (x) \2 dx)1/2, on peut se demander

pour quelle classe de zd le problème n 'admet pas de solution. Pour des résultats
dans ce sens, Cf. F. Murat-L. Tartar [1], M. F. Bidaut [1].

Remarque 2.2.

On trouvera d'autres contre exemples (pour les dimensions supérieures
et des systèmes paraboliques) dans Murât [1] [2].

Remarque 2.3.

Pour l'étude de problèmes relaxés attachés à des problèmes du type
précédent, Cf. L. Cesari [1].

2.3. Un résultat général d'existence

Nous mentionnons maintenant un résultat de J. Baranger [1], que nous
utiliserons aux n° suivants, et en particulier au n° 2.4. ci-après pour la
résolution d'un problème « voisin » de celui du n° 2.1.

On considère, dans un espace de Banach X sur R uniformément réflexif
dont la norme est notée II II, une fonction:

(2.19) cp —» M (cp) semi continu inférieurement (s.c.i.) de

X -» R M {(p) > c > — oo,

et un ensemble S <= X avec:

(2.20) S est fermé dans X.

(en particulier S n'est pas nécessairement convexe).
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On considère alors, pour £ e X,leproblème

(2.21) inf [J {(p)+ y £ — c/> ||].
(pes

On a (Baratïger, loc. ci(:) le

Théorème 2.1. On peut choisir Ç dans un ensemble c X, dense dans

X, *) de sorte qu'alors le problème (2.21) admette une solution (i.e. il existe

alors cp0 e S) tel que

j(<Po) + Il £ - (PoIIinf [J (<?>) + lu - 9 111-

epes

Si J 0, c'est un théorème dû à Edelstein [1].

2.4. Application au problème de contrôle dans les coefficients

Pour £ eL2 (,Q), on introduit (l'état y (v) étant donné par (2.2) ):

(2.22) J£ (v)Ja | y (v)-zd |2 dx )1'2 +e 11 v -£ | |t2(ß)

£ > 0.

On est alors dans les conditions d'application du Théorème 2.1, si l'on
prend :

XL2(i2) S°Uai

J(v) -JSsi\y(v) ~ zd

Donc: On peut choisir £ dans un ensemble dense de L2 (Q) de manière

qu 'alors il existe u g 411ad tel que

JE (u) inf Je (v) v g Wad.

Remarque 2.4

Les problèmes du type « contrôle dans les coefficients » se rattachent
également aux résultats de Spagnolo [l] [2] et Marino-Spagnolo [1].

i) Mue F. Bidaut [1] a montré qu'il existe x ensemble G$ dense avec la propriété.
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3. Cas linéaire quadratique — Remarques sur le système d'optimalité

3.1. Un système hyperbolique

On reprend ici certains points de Lions [3]: dans un ouvert borné
Q de Rn de frontière T régulière, on considère l'opérateur A défini

par:

" d(p
(3.1) A(p Y at (x) —

i= 1 OXi

où les fonctions at e C1 (Q); [on pourrait aussi bien considérer des

fonctions dépendant de x et /; nous nous bornons au cas où les at ne

dépendent pas de t uniquement pour un peu simplifier l'exposé]. On
introduit:

n

r_ {x \ x e r, Y ai (x) vî <
i — 1

r+ {x | x e r, Y ai(x)^i>°}
i= 1

où v {vt} désigne la normale à r dirigée vers l'extérieur de Q.

On suppose que Yétat y y (v) y (x, t;v) du système est défini par
la solution du problème mixte hyperbolique :

ôy
(3.2) — + Ay =f+ v dans Q Qx ]0, T[,

dt

(3.3) j; 0 sur x ] 0, T[,

(3.4) j (x, o) y0(x) xeQ

où / et y0 sont donnés avec:

(3.5) feL2{Q),y0eL2 (Q)
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et où v e°Uai avec:

(3.6) <*«, ensemble convexe fermé non vide de L2 (0.

Remarque 3.1.

Il s'agit donc dans le problème précédent d'un contrôle distribué.

(Cf. à ce sujet la Remarque 3.3. ci-après).

La fonction coût est donnée par :

(3.7) J(v) Jß | y (v) — zd \2 dxdt + N JQ v2 dx dt,

où zd est donnée dans L2 (Q) et où N est donné > 0.

Le problème

(3.8) inf J (v)

ve^ad

admet une solution unique (vérification immédiate) pour laquelle nous allons
écrire le « système d'optimalité ».

3.2. Système d'optimalité

Soit u la solution de (3.8). On pose y (u) — y et l'on définit Yétat

adjoint p par x):

(3.9) - ^ + A*p y - zd,

(3.10) p0 sur I+r+ x ] 0

(3.11) p (x, T) — 0 sur Q.

Le contrôle u est caractérisé par:

(3-12) Jö y-zd)(y(v)-y) dxdt + NJQw (»-«) > 0, V e <%ad.

Mais on déduit facilement de (3.9), (3.10), (3.11) que:

jq (f- 2<j) O'(^) -y) dx dt

n a
x) A* est défini par A* 9 — S — (at 9).
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de sorte que (3.12) équivaut à:

(3.13) Jq (p+Nu) (v — u) dx dt > 0,\/ve %ad.

Introduisons :

(3.14) 17 opérateur de projection dans L2 (Q) sur °llad.

Alors (3.13) équivaut à:

(3.15)

Par conséquent, le contrôle optimal est donné par la résolution du système

en {y, p}:
(3'16) % + Ay - n(-= f,

dt ' \ NJ

dp
_ — + A*p -y - zd,

dt

7 0 sur r_ /? 0 sur I+9

y (x, o) y0 (x) ,p(x,T) 0 sur Q,

puis par (3.15).

Remarque 3.2.

Puisque le problème (3.16) équivaut au problème initial, le système non
linéaire (3.16) admet une solution unique.

Remarque 3.3.

Supposons que le contrôle ne soit plus distribué mais de la forme:

m

(3.17) v(x, 0 E vi(0 MO
i= 1

où les fonctions wt sont données dans L2 (Q) (et en général dans les applications

à support compact « assez petit »), les fonctions étant les contrôles,
assujettis aux contraintes :

(3.18) vt e°Uii(ld — convexe fermé non vide de L1 (0, T), i 1, m.
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Supposons la fonction coût donnée alors par:

(3.19) J (0 Jq I y(v)- z<) I2 dx + E lor v2
i= 1

> o.

Soit u {w1? wm} le contrôle optimal. Le système de l'optimalisé
est maintenant donné de la façon suivante : soit

(3.20) Iii opérateur de projection dans L2 (0, T) sur %i>adl

alors :

(3.21)

et

(3.22)

dp
--£ + A*p-y -dt

Pi (0 1 P (x,t)w, dx,
Q

y — 0 sur /? 0 sur Z+9

y (x, o) y0 (x) p (x, T) 0 sur Q,

Nous ignorons dans quelle mesure on peut étendre à (3.21) les résultats
de comparaison relatifs à (3.16) établis au n° 3.3. ci-après.

Remarque 3.4.

Si l'on prend par exemple :

(3.23) °llad {v | v > 0 p.p. dans Q},

alors IJ (cp) (p+ sup (<p, 0) de sorte que (3.16) devient dans ce cas:
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(3.24) ty j _
dt

dp-- + A'p-y-:„

y — 0 sur p 0 sur Z+,

y (x, o) yQ (*) 9 P (x9 T) 0 sur Q.

P~
On voit l'importance ^puisque u —j de la « surface de commutation

» séparant la région où p > 0 de celle où p < 0, le contrôle u étant
nul dans la lre région.

Remarque 3.5.

Pour une étude systématique des divers systèmes d'optimalité pour des

équations d'état de natures variées et pour des contrôles distribués ou
frontière, nous renvoyons à Lions [1] [2]. On fait en particulier usage,
dans le cas des contrôles frontière, de la théorie des problèmes aux limites
non homogènes telle qu'exposée dans Lions-Magenes [1].

3.3. Propriétés de comparaison

On suppose maintenant que °llad est donné par :

(3.25) Wai {*> I VeL2(Q) a (x, t) < v (x, < (x, p.p.,

a et ß étant deux fonctions mesurables quelconques}.

On suppose dans (3.16) que zd et N sont fixés1). On désigne par
{jpPi} 0" h 2) la solution de (3.24) correspondant à / fhy0 yoi.
On a alors le:

Théorème 3.1. On suppose que (3.25) a lieu et que

(3.26) </2 y0i <y02 P-P-

*) On trouvera d'autres cas dans Lions [3].
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On a alors:

(3.27) Pi </?2 (et done ux > u2) p.p. dans Q.

Démonstration

Posons: z — y2, q Pi — Pi- On déduit de (3.16) que:

(3.28) dz

dt
+ Az n — I - n

N
Pi
N

— /1 y 2 >

dq- — + A*q-z 0,

z 0 swr q =0 sur Z+,

z (x, o) y01 (x) — y02 (x) q(x, T) 0 dans Q.

On pose ((p, \//)Q J (pi)/ dx dt, (<p9 ij/) § (p\j/ dx. On multiplie la
Q fi

lre équation (3.28) par q+ et l'on intègre sur Q. Il vient:

(3.29) z, - - + A*y ^ - {y01-y02, q+(o)) + X q+)Q

ou

(3.30) X 17 - Pi
N n(-p^),(Pl-P2)+

Utilisant la 2e équation (3.28) et posant A h A*, on peut
dt

écrire (3.29) sous la forme:

(3.31) (Aq, f\q+)Q + X (/i —/2, #+)ô + (>;oi~"J;o2? <7+(°))>

d'où, comme A w« opérateur différentiel du 1er ordre

(3.32) | A q | q + X (/i f2^ q+)o + (};oi~3;o2> #+(°))-

ci' P1
Si Ion pose cph on a:

AT
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(3.33) X - TV 77(<Pj) - 77(<p2) - ç>2) )Q

TVj (77 ((Pi) - n((p2))(<p1 -
Q

Vl<<?>2-

Mais on vérifie que (Ft (cp^ — II (<p 2)) ((p i — (p 2) >0 P-P- d'où

(3.34) X > 0.

D'après (3.26), le 2e membre de (3.32) est < 0, ce qui, avec (3.34)
donne :

Aq+ 0.

Comme q+ 0 sur I+ et q+ (.x, T) 0, on a q+ 0 d'où (3.27).

3.4. Ctfs sa/w contrainte — Equation intégro-différentielle de Riccati

Considérons maintenant, toujours dans le cadre du système (3.16), le

cas « sans contraintes », i.e.

(3.35)

Alors (3.16) s'écrit:

(3.36)

L2 (Q).

dy
ëi+Ay+û=f-

dJL

dt
+ A*p - y - zd,

y 0 sur IL /? 0 sur Z+9

y (x, o) jo (*) >P(x>T) 0 sur Q;

il s'agit maintenant d'un problème linéaire avec des conditions aux limites

pour t 0 et t T7. Il est connu (Cf. Lions [1]) que tous les systèmes de

ce genre peuvent se ramener à la résolution d'une équation non linéaire

d'évolution et d'une équation hyperbolique linéaire.
On va expliciter cela, sans donner les détails des démonstrations.
On considère le système pour s < t < T où s est fixé (quelconque)

dans ] 0, T [:
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(3.37) d(p 1

— + A <p + -A> 0,
dt N

di

dt
+ A*\j/ — (p 0,

cp Osur r.X]s,T[, \jj Osur T+X]s,T[

(p (x, s) h (x) \\j (x, T) 0 sur Q

qui admet une solution unique; en fait il s'agit là du système d'optimaJité

pour le problème suivant : l'état est donné par y (v) solution de :

(3.38)
dy

\- Av v y (s) h
9 t > s

dt

et la fonction coût par:

(3.39) | y(v) |2 dt + N J/ | v|2dt /'s

(où | v|2 J v(x)2 dx), et on minimise fhs (v) sans contraintes.
*

n
Donc le système (3.37) admet une solution unique, donc définit de

manière unique ijf (s) e L2 (Q).

L'application h ->• \j/ (,s) est linéaire continu de L2 (Q) -> L2 (iQ), donc:

(3.40) il/(s) P(s)h ,P (s) e <£ (H; H) H L2 (.Q).

On vérifie alors que l'on a l'identité (Cf. Lions, loc. cit.)

(3.41) p(t) P(t)y(t) + r(t).

On peut calculer P et r par un calcul d'identification (il faut vérifier
que les calculs effectués ci-après de façon formelle sont loisibles). On

dg
obtient, (en posant de manière générale — g'),

dt

(3.42) P'y — Py' — r' + A* Py + A* r — y — zd

et en remplaçant dans (3.42) y' par sa valeur tirée de la première équation
(3.36), on a finalement:

(3.43) -P>y+p(Ay+ r' + A* Py + A* r — y — zd.



On peut encore remplacer dans (3.43) p par sa valeur (3.41), d'où:

— P'y + P A y + A* Py H- —PPj> — y — r' + A* r + -^Pr — Pf — zd

et cela est une identité en y, d'où:

(3.44)

et

ÔP 1

h P A + A* P H—PoP /dt N

dr 1

(3.45) h ^4* r H— Pr Pf — zd.
et n

Comme p(T)0, on doit avoir:

(3.46) P (T) 0 r0.

On vérifie enfin à partir de (3.37) que:

(3.47) P(t)* P(t) dans jS? (H; H)

et que

(3.48) P(t)>0 dans H).

Plus précisément, on vérifie que:

(3.49) (P(s)h,h) mîfhs(v).
V

On note encore que:

(3.50) P (t) he D (A*) r (t) e D (A*).

D'après le théorème des noyaux de L. Schwartz [1], on peut représenter
(de façon unique), l'opérateur P (t) par un noyau P(x,Ç,t) et on peut
résumer les informations ci-dessus dans l'ensemble des conditions suivantes :

(3.51)

dP " d
~ -^7 — Yj— (f; (x) p (x, 0) - E

ôt i=i dXi i=i d£i

+ -J P(x,Ç,t)P(Ç,Ç,t)dÇ dans ö X fi X ] 0, T[,
N a

P(x, t)P(Ç,x,t),



P(x,Ç,t) 0 si x 6 r+ <üeß te]0, T[,

P(x, Ç, T)0 sur ûx û,

VheL2(Q) j P(x,l;,t)h(OdZeL2(Q)et
Q

JJ P(x,t,t)h(x)h(QdxdÇ>0.
flxfl

Ce problème admet une solution unique. La fonction r r(x,t) est

ensuite déterminée par:

-%-£ ^-(ai(x)r(x,t))+if P(x,5,0r(öd{
ôt i=i dx( N Q

(3.52) J P(x,Ç, t) dÇ- zd (x, t),
Q

r(x,t) 0 si xe T+ t e ]0, T[,

r (x, T) 0.

On va maintenant démontrer le

Théorème 3.2. La solution P (x, f) de (3.51) vérifie :

(3.53) P (x, t) > 0 p.p. sur Q x Q.

Démonstration

Considérons le système (3.37) avec h donnée > 0 p.p. dans Q.

On aura (3.53) si l'on montre que xj/ > 0 p.p. dans Q x ] s, T [. Pour
cela, on multiplie la lre équation (3.37) par x//", il vient:

fdcp \ 1
„

J h A(p \\j/ dxdt J 0lf y dxdt — 0;
fix ]s,T[ \ N' nx]s,r[

d
intégrant par parties et posant A — — + A*, il vient:

et

- J h (x) i/C(x, s) dx + J (p (Ax//~) dx dt — — J O/O2 dxdt 0
fi ßx]sj[ N Q x ]s,T[
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d'où, en tenant compte de la 2e équation (3.37):

-J h(x)i//~(x9 s)dx + J (A\jj)(A\jj~)dxdt
n .QX]S,7[

— J (ij/ )2 dx dt 0
N flx]xj[

d'où:

(3.54) (x, s)dx + Jnx]s,T[(A|/' Y dx dt

4 J O/O2 dx dt 0.
N nxjs,T[

Comme h > 0, tous les termes sont positifs, donc \f/ ~
— 0.

Remarque 3.6.

On rencontre d'autres systèmes du type (3.51) pour des opérateurs
paraboliques (Cf. Lions [1] [2]). D'autres systèmes, encore du même type,
ont été obtenus à propos de problèmes stochastiques par Bismut [1].

Des études directes de ces systèmes (et d'autres, n'entrant pas,
apparemment, dans le cadre de la théorie du contrôle) ont été faites par Da Prato
et Temam, les résultats les plus complets étant obtenus, à partir de méthodes
itératives nouvelles, par L. Tartar [1].

Remarque 3.7.

Le noyau P dépend du paramètre N : P PN. On montre (Cf. Lions [3])

que PN (x, £, t) décroît (p.p.) lorsque N décroît et que lorsque N -» 0,

PN (x, £, t) 0, au sens:

\/ he L2 (Q) Vte[0,T] JJ PN (x, f, t) h (x) h (0 dx d^ -> 0.
ßxß

4. Equations d'état non linéaires

4.1. Cas différentiable

Nous avons jusqu'ici considéré des cas où Yéquation d'état du système
était linéaire. On rencontre dans les applications de nombreuses situations
(c'est même, en fait, la situation habituelle!) où l'équation d'état est non
linéaire.
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On peut distinguer deux cas, selon que l'application -+ est, ou

non, differentiate.
Donnons un exemple de problème intervenant en biochimie x) ; l'état

(qui représente une concentration) est donné par:

S (4.1)
dt dx21 + y

a constante > 0,

(4.2) y (x, o) VoW,xe]0,l[
dy dy

(4.3) - — (o, 0 v (t),—(1, 0, e] 0,
CX OX

Les données / et y0 et le contrôle v sont > 0.

On vérifie sans peine (Cf. les détails dans Kernevez [1]) que ce problème
admet une solution unique, vérifiant:

ôy ô2y dy
(4.4) yS'JLçL2 (ß), Q Qx ] 0, T[, Q ] 0, 1 [,

dx dx dt

(4.5) y > 0.

On peut, par exemple, commencer par résoudre le problème:

d(p d2cp (p
<4-6) + d / =fdt dx 1 + I (p I

avec les conditions (4.2) (4.3) inchangées, puis l'on vérifie que la solution cp

de (4.6) (4.2) (4.3) est > 0, donc cp y.
La solution de (4.1) (4.2) (4.3) étant notée y (y), on considère la fonction

coût :

(4.7) J (v) J | y (y) — zd |2 dx dt + N J T v2 dt,
Q

où zd est donnée dans L2 (Q).
Il est facile de voir que le problème :

(4.8) inf J (v) v g °Uad

x) On trouvera dans les travaux de Kernevez et Thomas (Cf. la bibliographie) de
très nombreux autres problèmes de contrôle en biochimie; on donne ici l'un des exemples
les plus simples. Cf. aussi Brauner et Penel [1].
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ou

(4.9) °llad ensemble convexe fermé non vide de L2 (0, T),
dans l'ensemble des fonctions > 0 p.p. sur (0, T)

contenu

admet une solution (au moins).
Pour obtenir des conditions nécessaires d'optimalité, on utilise alors

le fait que la fonction v - y (v) est dijférentiable de (L2 (0, T), v > 0}
dans L2 (Q). Si l'on pose:

(4.10)

on vérifie que:

dy d2y

y dly(M+^'A=0

(4.11)

+ <7-
yy

ôt dx2 '
1 + (1 +

y(x,o) 0,

dy dy- t-(°, 0 v(t), —(1,0 o,
dx dx

0,

où y y (m).

On introduit alors l'état adjoint et l'on obtient les conditions d'optimalité
par des intégrations par parties (Cf. Kernevez [1], Lions [2]).

Remarque 4.1.

La fonction v -» J {v) n'a pas de raison d'être convexe, et il n'y a donc

pas de raison d'avoir unicité de la solution. Il serait intéressant d'étudier le

nombre éventuel des solutions (minima globaux ou locaux). Nous rencontrerons

encore des questions de ce type au n° 5 (Cf. par exemple

Remarque 5.4.).

Remarque 4.2.

On trouvera d'autres exemples, relatifs à des problèmes de conduite
de chauffe d'un four, dans J. P. Yvon [1].
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4.2. Cas non dijférentiable

Voici un exemple de problème de contrôle intervenant également en

biochimie. L'état est donné par l'équation:

dy ô2y y
(4.12) +

ôt ôx 1 + y
f+v, xe]0,1 [, £ e ] 0, Y [,

donc équation analogue à (4.1), avec cette fois le contrôle distribué v etféad,

où

(4.13) °Uaà — ensemble fermé convexe non vide de L2 (g), contenu dans
les fonctions p.p. > 0 dans g.

La condition initiale est identique à (4.2). Les conditions aux limites
sont les suivantes : soit h > 0 donné ; alors c étant une constante > 0,

(4.14) -^(o,f) -OX

dy

x-0 CX
c(y-h)+

On vérifie encore que le problème (4.12) (4.2) (4.14) admet une solution
unique, soit y y (v). Si la fonction coût est encore donnée par (4.7), le

problème :

(4.15) Inf J (y) ,v e

admet encore une solution (au moins), soit u.
Mais la fonction X 2+ n'étant pas différentiable à l'origine, l'application

v -> y (v) de L2 (g) L2 (g) n'est plus différentiable, et l'obtention
de conditions d'optimalité semble une question ouverte.

Remarque 4.3.

Du point de vue numérique (Cf. Yvon [1]) on introduit une fonction
X -> y (2) approximation différentiable de X -» X+ et l'on remplace (4.14)
par:

(4.16) dy
~ - cy (y (°> 0 -h),

^(1,0= c



— 148 —

Soit yy (y) le nouvel état, correspondant à (4.16). On montre que
yy (v) y (v) dans L2 (Q) lorsque y converge vers A + (avec y (A) A pour
A > A0 > 0) et l'on résout le problème de contrôle correspondant à yy (<v),

la fonction v -> yy (v) étant cette fois differentiate.

Remarque 4.4.

La situation décrite à la Remarque 4.3. précédente est typique des

inéquations variationnelles intervenant en Physique et en Mécanique (Cf.
Duvaut-Lions [1]) et pour la résolution numérique desquelles on emploie
constamment des processus de régularisation analogues à ceux de la

Remarque précédente (Cf. Glowinski, Lions, Tremolières [1] et la
bibliographie de ce livre).

Remarque 4.5.

Dans tous les problèmes considérés jusqu'ici, mais en particulier dans

le cas des problèmes multiphases, on peut avoir à considérer des fonctions
coût de la forme:

(4.17) J (y) j \y-(y) — zd\2 dxdt
E(v)

où E (v) est un ensemble géométrique défini à partir de y (v) (par exemple
E (v) peut être l'ensemble où y (v) > 0).

De nombreux problèmes restent à résoudre dans cette direction. Un
exemple, relatif aux équations de Stefan, est résolu dans Vasiliev [1].

5. Phénomènes de perturbations singulières

5.1. Orientations

Des phénomènes de perturbations singulières apparaissent dans la
théorie du contrôle optimal pour deux raisons:

(i) l'état du système peut être décrit par une équation (ou un ensemble

d'équations) contenant un petit paramètre e, soit ys (y) cet état,
correspondant à un contrôle v; alors la théorie des perturbations {singulières si,

comme c'est le cas le plus important, e apparaît dans des dérivées d'ordre

supérieur) permet de « remplacer » ye {v) par un « état approché » plus

simple y (v) correspondant à la valeur s 0 et avec des « corrections »
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correspondant aux couches limites; si 9e(y) désigne une telle correction,
on est donc conduit à remplacer ys (y) par y (y) + 9e (v) — ce qui conduit
à un problème de contrôle optimal approché qui peut être plus simple;
une question est alors évidemment d'analyser en fonction de s l'erreur
ainsi commise; nous ne développons pas ici ce point de vue, renvoyant
à Lions [3], Chapitre 7;

(ii) la fonction coût contient, en général, un terme de la forme N || v ||2

où y v y est une norme sur l'espace des contrôles et où N est un
paramètre > 0 d'autant plus petit que v est « bon marché ». Cela conduit aux
problèmes de contrôle où N -» 0; ce sont, comme on va voir, des problèmes
de perturbations singulières.

5.2. Cas dun système linéaire

Commençons par un exemple très simple. Dans un ouvert Q borné de
R" de frontière régulière T, on considère un système dont l'état y y (x, v)

y (v) est donné par:

(5.1) ri y (v) f dans Q,

,<• ~ 8y (v)
(5.2) v sur T

dv

où A est un opérateur elliptique du 2e ordre, — la dérivée conormale
ôv

associée à A, et où / (resp. v) est pris dans L2 (Q) (resp. L2 (r)).
On prendra par exemple A donné par :

(5.3, Av=-i±^+aoV,
où les atj vérifient (2.3) et où a0 e L"'(Çl), a0 (x) > <x0 > o p.p.

Le problème (5.1) (5.2) admet une solution unique:

(5-4) y (v)eH\Q).
La fonction coût est donnée par:

(5.5) Je(v)j | y(v) - zd\2dr + Ë\
r 'r

où zd est donné dans L2(L) et où e > 0 « petit ».
Soit par ailleurs:



— 150 —

(5.6) %ad ensemble fermé convexe non vide de L2 (f).

Le problème de contrôle optimal:

(5.7) inf JE (v) ,v e Wad,

admet une solution unique, soit uE.

Notre objet est maintenant l 'étude du comportement de uE lorsque s -» 0.

Si l'on pose:

y M ys

le contrôle optimal uE est caractérisé par:

(5-8) J (ys-Zd) (y (V) ->g dr + £ J ue) > 0, V v e aUai.

r r
On pose:

(5-9) (y (y) -y{o))r q> (y£) -y(o))r <pc.

Alors v est donné à partir de cp de la façon suivante: on résout

(5.10) A cj) 0 dans O, </> |r — cp

et l'on pose:

dj)
(5.11) s/cp /dv r

Alors :

(5.12) v jsé (p.

L'opérateur est un isomorphisme de HS(T) -> /fs_1(r), y se R
(Cf. Lions-Magenes [1], Chapitres 1 et 2).

L'opérateur inverse est donné comme suit: on résout

ôw
(5.13) A w 0 — — v sur F,

dv

et alors:

(5.14) w\r v.

On introduit:

(5.15) Jf ensemble convexe fermé (non vide) de Hx{r).



J (<jOe - (zd — j(o))) (cp- cpE)dr+ £ J s/tPe (pc) dr > 0,

r r
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Avec ces notations, le problème (5.8) équivaut à:

(5.16)
r

(pee Jf V (p g

Posons :

(5.17) g z*-y(0).

Alors (5.16) équivaut à:

(5.18) ej" sdcptsd{(p-(p^dr +| <pe((p-<pe)dr >
r r

j g((p-(pc)dr, V>e
r

C'est un problème de perturbations singulières pour des inéquations
variationnelles (Cf. D. Huet [1], J. L. Lions [4] [5]). Le résultat est alors
le suivant: on introduit

(5.19) X adhérence de dans L2 (r),

et soit cp0 la solution dans de:

(5.20) | (p0((p-(p0)dr>J g(cp-(p0)dr, V>ejf,
r r

i.e.

(5.21) cpo Proj. # g projection sur jf dans L2 (r) de g.

On a alors:

(5.22) <pe -v <p0 dans L2 (r).

Par conséquent:

Théorème 5.1. Lorsque s -> 0, o« a:

(5.23) jg j("£) j (o) + Proj. # (zd-v(o)) dans L2 (E).

On en déduit que :

(5.24) ue sé <pe -> w0 j/ <p0 dans JT"1 (T).

En général (p0 n 'estpas dans H1 (r) de sorte que 'est pas dans
L2 (F) de sorte que le résultat (5.24) ne peut pas en général être amélioré.
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Remarque 5.1.

Si (p,0 e H1 (r) (et donc à Jf) alors <pe-> cp0 dans H1 (r) et dans ce

cas u& -> u0 dans L2 (r).

Exemple 5.1.

Prenons le cas « sans contraintes »

(5.25) mad L2 (r).

Alors sé'1 °Uad H1 (r) et jf L2 (r). Donc (p 0 zd — y (o) et

par conséquent :

(5.26) j(we) zd dans L2 (r).

Pour obtenir u0, on résout :

(5.27) A (j)0 0 (j)0 zd sur T

et alors:

#o
(5.28)

dv

Exemple 5.2.

Soit SE une variété régulière de dimension (n — 2) contenue dans T.
Supposons que:

(5.29) Jf {(p | (p e H1 (r) cp 0 sur JE}.

Alors jT L2 (r). On a alors:

<pe-> g dans (F).

Si l'on fait l'hypothèse que ge H1(F), on peut utiliser Lions [4] [5]

pour définir des correcteurs 9S par:

(5.30) 6e + g g ctE i

cj ^of:^(<p-eE)cir + j ee((p-eB)dr>

J (egsi + e112g,2)(<P-0ù<ir
r

V cp avec cp A- g ejf,
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où

J Qeitydr c 11 (p | |^i(r)5 V (p £ $£,
r

J gElcpdr <c H cp ||L2(r>? \7>eJf.
r

On a alors:

(5.31) <Ps ~ (g+0e) - 0 dans H1 (L).

Le calcul de 0£ est un calcul de couche limite pour un opérateur
pseudodifférentiel (s/). Nous renvoyons pour cela à Demidov [1], Pokrovski [1].

Comme variante on peut prendre :

Donc °Uad est définie à partir des contraintes sur l'état, une situation
fréquente dans les applications.

Evidemment, on a encore ici un phénomène de couche limite au voisinage
de if lorsque s -> 0.

Remarque 5.2.

On trouvera dans Lions [4] [5] l'analyse d'autres situations du même

type (mais plus délicates).

(5.29 bis) {(p | <p g H1 (r) (p y (o) sur if}.
Cela signifie que %ad est l'ensemble des v tels que:

(5.32) y (v) 0 sur if.

5.3. Cas d'un système non linéaire

On considère maintenant le système dont l'état est donné par:

(5.33) — Ay + ß (y) 0 dans Q,

dy
— v sur rôv

où À -> ß (2) est une fonction continue strictement croissante de R -> R,
nulle à l'origine. Dans (5.33), on suppose que veL2(r); le problème
(5.33) admet une solution unique telle que:
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(5.34) y e H1 (Q)

et

(5.35) J yß(y)dx< oo.

r r
et °Uad est encore un ensemble fermé convexe non vide de L2 (r).

On vérifie sans peine qu'il existe uE tel que:

mais la fonction v J£ (v) n'ayant pas de raison d'être convexe, il n'y a

aucune raison pour que ue soit unique.

Remarque 5.3.

On pourra trouver dans Lions [2], Chapitre 3, n° 2, des exemples
d'équations d'état non linéaires conduisant à des fonctions coût convexes.

Remarque 5.4.

Il serait intéressant de pouvoir donner des « estimations topologiques »
du nombre éventuel de solutions du problème (5.37).

Notre objet est maintenant de faire tendre e vers 0.

De manière formelle, lorsque ^éad L2 (L), on considère le problème
de Dirichlet non homogène

(5.37) Je (ue) inf Je (v) v g %ad

(5.38) - A<$>o + ß((j)o) 0,

<£o — Zd

r
qui admet une solution unique dans H1 (Q) si zde H1/2 (r).

Faisons l'hypothèse (de régularité sur zd et sur ß) que:

(5.39) o ~ eL2(r).
3v r

On a alors:
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(5.40) uE étant une solution quelconque de (5.37), us -> u0 dans

L2 (F) faible.

En effet, on note que (en posant | (p \2 J cp2 dT):
r

s\ue\2 <J£(ue) <Je(u0)e I Wo I2

donc:

(5.41) |n,|<|«0|.
On peut donc extraire une suite, encore notée uE, telle que:

(5.42) uE -» w dans L2 (r) faible.

On vérifie sans peine que y (w£) -> y (w) dans H1 (T) faible et qu'alors:

(5.43) Je (us)-+ J(w)J | (w) - zd |2 dT.
r

Mais:

Js (ue) < J£ (p) V v g L2 (r) donne, avec (5.43) :

J(w)<J(y) \/veL2{T)

donc /(w) </(w0) 0 donc j (w) zd donc y (w) </>0, donc
r

w w0, d'où (5.40).
A la lumière des résultats du n° 5.2., on peut conjecturer que sans

l'hypothèse de régularité (5.39), uE converge vers u0 dans un espace «plus
grand » que L2 (r).

Ce problème est ouvert; pour un peu en préciser l'énoncé, on est
conduit à la question des problèmes « non linéaires non homogènes » qui
est abordée au n° suivant.

5.4. Remarques sur certains problèmes elliptiques
non linéaires non homogènes

Avec un changement de notations par rapport à (5.38), on étudie le
problème suivant: trouver cj) solution de

(5.44) - Acj) + ß ((/)) 0,

=8
r
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où g est, par exemple, donné dans 2 (T) (le problème est facile si

geHll2(ni
11 faut évidemment introduire (puisqu'il en est déjà ainsi dans les cas

linéaires analogues; Cf. Lions-Magenes [1], Chapitre 2) des solutions
faibles de (5.44): on dira que 0 est solution faible de (5.44) si:

(5.45) (4>, -A*) + (ß (4>), *)= -1
r dv

pour toute fonction 0 « régulière » dans Q et nulle sur r (on a posé

(0, 0) J 4> 0 dx).
Q

Cela posé, on a le résultat suivant, dû à H. Brezis [1].

Théorème 5.2. Soit ô (x) distance de x à F. Si g est donné dans L1 (T)
le problème (5.45) admet une solution unique telle que :

(5.46) cj) eL1 (Q),

(5.47) ô ß (0) g L1 0Q),

et où dans (5.45) on peut prendre \j/ e H2,co(Q) n Hll^°(Q) 1).

En outre l 'application g -» 0 0 (g) est Lipschitzienne, au sens suivant :

Si gt eL1 (T) et si 0 (gf) (ßb on a:

(5.48) ||^ -02 H + Il öß((ßi) ~ b ß (02) H

Ll(ß) Ll(ß)

< C 110! - g2IILi(r)

On va maintenant appliquer la théorie de l'interpolation non linéaire

(Cf. Lions [6], J. Peetre [1]).
On vérifie sans peine que :

(5.49) ||0 II <|| g II
Lœ(Q) L°°(r)

L'application g -> 0 0 (g) vérifie donc (5.49) et

(5.50) 11 <Kfi) - «K&t) 11 <c||gi-g2||
ii(fl) Li(n

On peut alors interpoler entre ces estimations (Cf. Lions [6]) et l'on
en déduit le

1)Ie- 41 0 sur r.
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Theoreme 5.3. Pour geLp(r), 1 </?<oo, le problème (5.45) admet

une solution 0 (g) unique dans Lp (Q).

On a en outre :

(5.51) ||0(g) Il < c H g II
LP(Q) LP (n

Remarque 5.5.

On peut en outre montrer que dans les conditions du Théorème

précédent :

(5.52) ôllp ß (0) eLp(Q).

Remarque 5.6.

Si en particulier g e L2 (F), alors la solution faible de (5.44) vérifie:

0eL2(£), ô1/2 ß((j))eL2(Q) (donc Ô1'2 A 0 eL2 (Q)).
Ô(j)

Il ne semble pas que l'on puisse définir — dans ces conditions. Mais
dv

30
si g eLp (T), p > 2, alors on peut définir — dans un espace de distribu-

ôv

tions sur T, par adaptation des méthodes de Lions-Magenes [1].
Pour d'autres résultats et d'autres applications de l'interpolation non

linéaire, cf. L. Tartar [2].

6. Problèmes de gestion optimale et inéquations variationnelles

6.1. Un problème de gestion optimale x)

Soit l'instant initial, 5 e [0, T] et soit x le stock de produits à l'instant s.

On se donne un processus de Wiener f(t) (/(0) 0) qui représente
la demande cumulée jusqu'à l'instant t; si l'on pose:

(6-1) Ef(t) — jx{t)

on a:

(6.2) E(f(t) - n (0 (/(s) - n(s))J0min er2 (t) dx.

Q Les résultats des n° 6.1 et 6.2 sont dus à Bensoussan et l'auteur [2] [3] et à Bensoussan,
Goursat et l'auteur [1]; nous renvoyons aux articles détaillés des ces auteurs pour les
(longs) détails techniques.

L'Enseignement mathém., t. XIX, fasc. 1-2. j {
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On se donne des temps d'arrêts en nombre fini mais quelconques, avec:

(6.3) 0 < x1 < t2 < < ti < tn < T p.s.

et des v.a. wx wt wN avec wt adaptée à f(t), te [0, tJ.
La suite (finie) th wt est la variable de contrôle (stochastique).
L'état y (t) du système est donné par:

(6.4) y(t) X - (f{t) -f(s)) + £ Wf TÄ < f < Tf+1.
j=i

Soit t -> JY (t) une fonction de R R, de classe C1, > 0, telle que
iV (t) désigne le coût d'une commande de produits à l'instant t.

La fonction coût du problème est alors :

(6.5)

ou

(6.6)

Js ((Ti> w;» E[çN (t.) + 1/ / (t))

l (A) > 0 2 -> / (2) continue / (0) 0,

/ étant décroissante si A < 0, croissante si A > 0.

Pour fixer les idées :

(6.7) / (A) Ci A~ + c2 A+ c2 > 0, > 0.

On pose :

(6.8) w (x, «s) inf J* ((zh wf) ;

(*; wi)

notre objet essentiel est d'obtenir une caractérisation fonctionnelle de w

(fonction définie sur R Xx ] 0, T [).

Nous renvoyons à Bensoussan et Lions [2] pour la vérification du résultat

suivant :

(6.9) w(x, t)<iN(t) + inf w(x+Ç, t) VxeR £e]0, T[,
£>0

ôw 1
^

d2w ôw
(6.10) - —- + n(t) — leR, te~\Ç),T[,

et 2 ox ôx

(6.11) w(x91) N(t)+ inf w(x + Ç, t) pour x<L1(0?
— o

ôw 1
0

ô2w ôw
(6.12) - - - a2 (t) + m (t) — l(x) pour x >

ôt 2 ôx ôx
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(6.13) w(x,T) 0.

Nous allons maintenant montrer comment les égalités et inégalités

(6.9) (6.13), caractérisent la fonction w (pourvu d'ajouter des conditions
de croissance à l'infini en x sur w). L'unicité résulte des raisonnements

probabilistes conduisant aux inégalités précédentes. On donne seulement
dans la suite des indications sur l'existence d'une solution.

6.2. Réduction à une inéquation quasi variationnelle d'évolution

On introduit:

(6.14) w •

N{t)

Les conditions (6.9) (6.13) deviennent:

(6.15) u(x, 0<1 + inf u(x + Ç,t)
£>i

(6.16) - ^ + A(t)u</(*,0 ,fdt

(6.17) u(x,t) l+ inf u(x + ^,t) x ^I1(t),

dw
(6.18) + (r) w / pour x > I1 (t),

et

(6.19) u{x,T) 0,

où ^4(0 est défini par:

1
2 5<p W(/)

2 dx dx jV(/)
(6.20) ^ (0ç> --^(O^ + ^O^ -^V

On va maintenant transformer (6.15) (6.19) en une inéquation quasi
variationnelle.

Remarque 6.1.

La transformation simple (6.14) a pour but de transformer (6.9)
en (6.15). La condition (6.9) conduit à introduire l'ensemble des fonctions
(p sur R, à croissance convenable à l'infini, et telles que:
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(6.21) cp (x) < N (t) + inf cp (x+£)$
s>o

ensemble qui dépend de t\ sous la forme (6.15), cela revient à prendre
N (t) 1 dans (6.21) et l'ensemble correspondant ne dépend plus de /;
cette simplification est techniquement utile.

On va utiliser des espaces fonctionnels hilbertiens contenant des poids
choisis de manière que l(x) appartienne à ces espaces.

Pour X > 0 *), on pose :

(6.22)

et l'on introduit:

(6.23)

(6.24)

mx (x)exp (-A | x |)

Hx {(,p\mxcpe)},

Vx {(p\(peHx, ~eHx};

l'espage Hk est un Hilbert pour la norme | mx cp | | (p |A (où
| mx <p |2 ml (x) (p (x)2 dx) et V\ est un Hilbert pour la norme:

,1/2
(6.25) <pu +

dcp

dx

Pour u, veVx, on pose:

(6.26)
bx (t ; u, v)

1 du dv
<72(0JRm\-r~rdx -x°2 (OjRWij—j

x du

2

if)\dx J

dx dx

N'(t)

x | \dx
v dx

+ A»(0Jr»»î( X )vdx ~

On vérifie que u, v -> bx (t; u, v) est une forme bilinéaire continue sur

Vk et on a fait ce qu'il fallait pour avoir:

(6.27) bx (t;u,v)JR m\ v dx

(si par exemple v est à support compact et u assez régulière).
On introduit :

(6.28) M(cp)(x) 1 + inf <p(x + £),
£>0

K [q> | <p e Vx(p (x) < M {(p) (x)}

x) On pourra prendre X arbitrairement petit.
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ce qui définit un ensemble convexe fermé non vide de Vx.

On considère alors 1' « inéquation quasi variationnelle d'évolution »

suivante: trouver une fonction t —> u (t) de [0, telle que:

(6.29)

(6.30)

(6.31)

u(t)eK p.p.,

ôu \
— (t),v — u(t) ] + bx(t;u(t),v — u(t))
ôt Jx

> (f(t\ v-u(t))x, Vv < M(u)

u (T) 0.

Remarque 6.2.

Il s'agit d'une « quasi inéquation » — l'inéquation variationnelle
correspondant au convexe K étant obtenue lorsque dans (6.30) on prend
v dans K, i.e. v < M (v) (au lieu de v < M (u)).

On va maintenant donner quelques indications brèves sur la solution
de la quasi inéquation précédente. On renvoie à Bensoussan-Goursat-
Lions [1] pour la comparaison entre la solution de l'inéquation et de la
quasi inéquation.

Commençons par le cas stationnaire.
On a alors une forme bx (iu, v) coercive sur Vx et on considère la quasi

inéquation :

(6.32) bx(u,v-u)>(/,«- u)x, Vu<M(m),

U < M (w) U,VE Vx.

On montre Yexistence d 'une solution u > 0 lorsque f est donnée 0,

par le procédé itératif suivant; on part de u° solution de:

(6.33) bx (u°, v) (/; v)x,Vve Vk.

puis l'on définit u1par la solution de Y inéquation variationnelle'.

(6.34) bxiu1,"" — u1)>(/,f— u1)^, v avec v <
u1 < M(w°)

et l'on définit de proche en proche un à partir de u" ~1
par la solution de

l'inéquation variationnelle :
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bk (un, v — un) > (/, v — u")k V f < M(if~J),

un < M(un~l).

On démontre que:

(6.36) w° > u1 > > wn_1 > wn > > 0

et que un demeure dans un borné de Vk. Donc:

un -> u dans Vx faible, u satisfait à (6.32) et u est > 0.

Dans le cas d'évolution on introduit (Cf. Bensoussan-Lions [3]) les

solutions faibles de la quasi inéquation, de la même façon que la solution
faible des inéquations. On considère la classe de fonctions:

(6.37) r {v| v,j eL2(0, VÀ), v 0}

Supposons que u soit solution de (6.29) (6.30) (6.31) et calculons la
quantité :

(6.38) dv
— — v—m + bx (t;u,v- ~ dt,

v e V v < M(u).

On a:

(6.39) + bx(t;u,v-u) - (f,v-u+ Y,*=fo

Y f0T( (v — u), v — u\ dtJ
V sr A 2

v(0)-u (0) 0.

D'après (6.30) le premier terme du deuxième membre de (6.39) est > 0,

et par conséquent X > 0.

On définit alors une solution faible du problème (6.29) (6.30) (6.31)

comme étant une fonction u telle que:

(6.40) u e L2 (0, T; VÀ) u < M (u),
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(6.41)
v — u) + bx(t\ u, v — u) — (f,v — ü)x dt > 0

X

Vvef tel que v <M(«).

On montre encore (cf. Bensoussan, Lions [3]) Yexistence d'une solution

z/ > 0 de (6.40) (6.41) lorsque f est donnée > 0.

Le principe d'une démonstration est d'utiliser un processus d'itération
analogue à (6.35) mais où l'on doit alors régulariser M de façon convenable

(pour que l'inéquation varationnelle correspondante admette une solution

forte). Une autre démonstration repose sur la méthode des différences

finies.

Remarque 6.3.

Naturellement on rencontre les problèmes analogues en dimension

quelconque d'espace — la dimension de l'espace correspondant au nombre
de biens à gérer. On rencontre aussi de nombreuses autres fonctionnelles
M correspondant à diverses situations économiques. Nous renvoyons à

Bensoussan, Lions [2]; on trouvera dans M. Goursat [1] l'étude de
l'approximation numérique de la solution de ces inéquations quasi variation-
nelles.

Remarque 6.4.

Les inéquations variationnelles, stationnaires ou d'évolution,
interviennent dans de nombreux problèmes de Physique et de Mécanique
(cf. Duvaut, Lions [1] et la bibliographie de ce livre, C. Baiocchi et
E. Magenes [1], H. Brezis et G. Duvaut [1], H. Brezis et G. Stampacchia [1]).

On a montré dans Bensoussan-Lions [1] comment des problèmes de

temps d'arrêt optimal se ramènent à l'étude d'inéquations variationnelles
du type suivant:

6.3. Problèmes de temps d'arrêt optimal

(6.42)
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où

(6.43) Ky {v|v <0p.p. ,veVx},

avec:

(6.44) u(t)eK1

et une condition de croissance pour | u (t) |A lorsque t -+ + oo | u (t) |A

doit croître moins vite qu'une exponentielle convenable).
On a montré que ce problème admet une solution unique.

Remarque 6.5.

Pour un problème analogue en théorie des jeux, nous renvoyons à

A. Friedman [1]. Pour des résultats supplémentaires de régularité, cf.

A. Friedman [2].
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