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variétés algébriques a été établie par Grothendieck (1964, b); voir également
Dwork (1966, b). Pour 'application de ce résultat a I’étude des sommes
exponentielles, voir notamment Bombieri (1966).

§ 5: les exemples de ce paragraphe sont empruntés essentiellement a
Davenport-Hasse (1934) et & Weil (1949). Signalons que le lemme 1 (sect. 5.2)
peut aussi se démontrer & P’aide de la proposition 9, (ii) (chap. 5), et du
résultat suivant, dii & Stickelberger (1890): si y est un caractére multipli-
catif de F o, et si 0 est un élément primitif de F 2/F,, ona t (y [ B) = x () p,
sip # 2,et T(y [ B) = p si p = 2; pour une démonstration de ce dernier
énoncé, voir aussi Carlitz (1956, a).

Pour V=V, etg= —1 (mod 6), ou V = V,* et ¢ = — 1 (mod 4),
ouV = V;* et g= — 1 (mod 3), on a trouvé la méme expression

Z(Vit) = (1+q)/(1 -0 (1—qt);

ceci résulte (1) du fait que, dans les trois cas,ona N; = g + l,et(2)dela
relation Z (V;t) = (1+ (N,—q—1) t+qt*)/(1—1) (1—gqt), valable pour
toute courbe ¥V (projective, non singuliére) de genre 1, définie sur k et
ayant N, points rationnels sur k (cette relation se déduit facilement du
théoréme 3 et du théoréme 2, corollaire 1 et remarque). En fait, si deux
courbes de genre 1, définies sur k&, ont méme nombre N, de points rationnels
sur k, alors, elles ont le méme nombre N, de points rationnels sur k,, pour
tout m, puisqu’elles ont méme fonction z€ta (appliquer la formule ci-
dessus !): on peut prouver que ceci se produit si et seulement si les deux
courbes sont isogeénes sur k (voir [4], p. 242, pour la partie « si », et Tate
(1966), pour la partie « seulement si ».)
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