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(5.3.5) Z(F6; t)1/(1 -0 (1 -qt)(1-q2t)(1-n(1-S2f)3

V6 désignant la surface cubique étudiée. Ce résultat est conforme aux conjectures

de Weil: on aP0(() 1 - t, PtP3 1, PA 1 — q2t,
et P2 (0 (1 —qt) (1 —n2t)3 (1 — 7i2t)3',l'hypothèse de Riemann se réduit à

| *2 | | S2 | 17t (x, x, X)| q (chap. 5, prop. 10, cor. 1, (ii>) ; la
« caractéristique d'Euler-Poincaré » est égale à 1 + 7 + 1 9, et l'équation
fonctionnelle s'écrit Z(V6; 1 /q2t) - q9t9Z(V6; t).

Notes sur le chapitre 9

§ 1-2-3-4: l'idée d'étudier arithmétiquement un corps de fonctions
algébriques d'une variable sur un corps fini semble apparaître nettement pour
la première fois chez Dedekind (1857). Mais c'est dans la thèse d'Artin
(1924), puis dans les travaux de Schmidt (1931) et Hasse (1933, 1934, 1936),

qu'est définie la notion de fonction zêta (« Kongruenzzetafunktion ») et

formulée 1'« hypothèse de Riemann » en caractéristique p (Artin, Schmidt,
Hasse utilisent le langage des corps de fonctions algébriques d'une variable,
et non celui des courbes : mais ces deux langages sont équivalents, ou plutôt,
le sont devenus depuis les «Foundations» de Weil; voir d'ailleurs Weil
(1949), Introduction). L'équation fonctionnelle pour £ (V; s) (c'est-à-dire,
aux notations près, la proposition 3) est due à Schmidt (1931); la démonstration

de l'hypothèse de Riemann pour g 1 est due à Hasse (1933, 1934),

et, pour g quelconque, à Weil (1940; 1948, a). Les diverses définitions de

Z (V; t) données au paragraphe 1 figurent, pour une courbe, dans Weil
(1948, a), et, pour une variété projective non singulière de dimension

quelconque, dans Weil (1949); cet article contient également l'énoncé (et, pour
des cas particuliers, la vérification) des « conjectures de Weil ». L'existence
d'une « formule de Lefschetz » en géométrie algébrique est conjecturée dans

Weil (1954) (p. 556): d'où la notion de « cohomologie de Weil» — cette

terminologie étant d'ailleurs considérée par Weil lui-même comme « tout
à fait inadéquate » (iwholly unsuitable). Au sujet du lien formel entre
théories cohomologiques des variétés algébriques et propriétés des fonctions
zêta, voir Demazure (1969), notamment §§7 et 9. Au sujet du lien entre
méthodes />-adiques et méthodes cohomologiques, voir Katz (1972) (cet

exposé contient une abondante bibliographie).
Signalons qu'à côté des fonctions zêta, on peut (comme en arithmétique)

construire, pour les variétés algébriques, des « séries L »; pour une définition
générale (en langage des schémas, et englobant d'ailleurs les séries L de la

théorie des nombres), voir [16], pp. 86-91. La rationalité des séries L des
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variétés algébriques a été établie par Grothendieck (1964, b); voir également

Dwork (1966, b). Pour l'application de ce résultat à l'étude des sommes

exponentielles, voir notamment Bombieri (1966).

§ 5: les exemples de ce paragraphe sont empruntés essentiellement à

Davenport-Hasse (1934) et à Weil (1949). Signalons que le lemme 1 (sect. 5.2)

peut aussi se démontrer à l'aide de la proposition 9, (ii) (chap. 5), et du

résultat suivant, dû à Stickelberger (1890): si x es^ un caractère multiplicatif

de ¥p2, et si 6 est un élément primitif de Fp2/Fp, on a x (x \ ß) — X (ß) P>

si p ^ 2, et x (x | ß) p si p =2; pour une démonstration de ce dernier

énoncé, voir aussi Carlitz (1956, a).

Pour V V1 et q — 1 (mod 6), ou V — V2* et q — 1 (mod 4),

ou V F3* et q — 1 (mod 3), on a trouvé la même expression

Z(V;t) (l+qt2)/(l-

ceci résulte (1) du fait que, dans les trois cas, ona^ q + 1, et (2) de la

relation Z{V;t) (1 + (A^-q-1) t + qt2)/(l -1) (1 —qt), valable pour
toute courbe V (projective, non singulière) de genre 1, définie sur k et

ayant points rationnels sur k (cette relation se déduit facilement du
théorème 3 et du théorème 2, corollaire 1 et remarque). En fait, si deux
courbes de genre 1, définies sur k, ont même nombre N1 de points rationnels
sur k, alors, elles ont le même nombre Nm de points rationnels sur km pour
tout m, puisqu'elles ont même fonction zêta (appliquer la formule ci-
dessus !): on peut prouver que ceci se produit si et seulement si les deux
courbes sont isogènes sur k (voir [4], p. 242, pour la partie « si », et Täte
(1966), pour la partie « seulement si ».)
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