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et V, et non du procédé, cohomologique ou autre, utilisé pour établir la
formule (4.1.1).

§ 5. Calcul explicite de certaines fonctions zéta.

5.1. Ce dernier paragraphe donne, a titre d’illustration de ce qui pré-
cede, le calcul explicite des fonctions z€ta de certaines variétés algébriques
(courbes ou hypersurfaces) définies par des équations diagonales. On utilise
essentiellement les résultats du chapitre 5, du chapitre 6 (§ 3), et le théoréme
suivant, dii a Davenport et Hasse (1934), qui permet de comparer les
sommes de Gauss relatives a k et celles relatives a k,, (m > 1):

THEOREME 4 (Davenport-Hasse). — Soient f§ et y un caractére additif et un
caractére multiplicatif non triviaux de k; pour m > 1, soient d’autre part
T™ et N™ la trace et la norme dans l’extension k,lk, et posons B™
=BoT™, y™ = yo N™. Alors

(i) B est un caractére additif non trivial de k,; x™ est un caractére
multiplicatif non trivial de k,,, et y'™ a méme ordre que y.

(i) Sion désigne par t et t™ les sommes de Gauss ©(x | B) et T (x™ | B)
relatives a k et k,, respectivement, on a

(5.1.1) M = (=) lgm,

Démonstration. — (i) Il suffit de noter que T™: k, — k*, et N™:
kX _ k* sont des homomorphismes surjectifs (chap. 1, prop. 9 et 10).

(i) (D’aprés Weil (1949), pp. 503-505). Pour tout polyndme unitaire P (U)
= U" + a,U" ' + ... + a, appartenant a k [U] (resp. & k,, [U]), posons
@ (P) = B(ay) x(ay (tesp. @™ (P) = ™ (ay) ™ (an); ¢ et o™ sont
évidemment des caractéres multiplicatifs sur les anneaux principaux k [U]
et k, [U], et on peut leur associer, « & la Dirichlet », les « séries L » sui-
vantes:

L) = Y, o) t*® = T[] 1/(1—q(P) D),

unit. irréd.

L, = Y, o™ @)t ® = [] 1/(1-™ (P)1*=®),

P P ynit.
unit. irréd.

(P étant supposé appartenir & k [U] et k,, [U] respectivement, bien entendu.)
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LEMME 1. — Ona L(t) =1 + 1t, L, (1) = 1 + 1™ t.

Vérifions par exemple la premiére égalité. On a L(f) = 1 + ¢4t + ...
+ ¢t* + ..., avec ¢, = ) ¢ (P), cette somme étant étendue a tous les
P ek [U] unitaires et de degré h, donc de la forme U* + a,U""' + ..

+ a,, les a;ek; pour A = 1, on trouve ainsi ¢; = Y, f(ay) x(a) =7
ayjek

(noter que j (0) = 0); pour # >>2 au contraire, on trouve

o =q"(2 Fla))( 2 x@),

aje ape

donc ¢, = 0, chacune des deux sommes étant nulle (chap. 5, prop. 2 et 5).

LEMME 2. — Si w désigne une racine primitive m-iéme de [’unité dans C,
on a
m—1
(5.1.2) L, = [] L(e9).
j=0

Pour chaque P € k [U], irréductible et unitaire, considérons le produit fini
L") = l;[ 1A -o™ (@)™,

Q parcourant seulement I’ensemble des facteurs irréductibles et unitaires
de P dans k,, [U]; on a évidemment
(513) Lm (tm) = H Lm,P (tm) .

P unit,
irréd.

Transformons maintenant L, p(t"), P étant supposé fixé. Posons
h = deg(P), et soit £ une racine de P dans k; on a [k (&):k] = h, et bien
entendu [k,,: k] = m; si alors d = (h,m), le p.p.c.m. de & et m est égal a
hm/d, et on a (chap. 1, prop. 4, cor. 1) [k,, (&): k] = hm/d, donc [k, (&): k,,]
= h/d. 1l en résulte que la décomposition de P en facteurs irréductibles et

unitaires de P dans k,, [U] est de la forme

P=0,0,..0,,

mﬂ ’gm (}') chacun des facteurs Q; étant de degré r
% (;) = h/d. Soit alors Q celui des Q; dont ¢ est
R racine, et calculons ¢ ™ (Q). Notons a, et g,
la trace et la norme de — ¢ dauns I’extension
% k (&)/k, et by et b, la trace et la norme de
ym. — ¢ dans Pextension k,, (¢)/k,,; on a P (U)
=U"+a,U" '+ .. 4+4a, et QU) = U"

+ b, U™ + ... + b,, et par conséquent

A

P




— 108 —

(5.1.4) @) = Bla) x(ar), o™ (Q) = ™ B ™ (b))

L’utilisation de la transitivité de la trace et de la norme dans le diagramme de
corps ci-dessus donne d’autre part

(5.1.5) T (by) = (mld)a;, N™(b,) = ay".
(5.1.4), (5.1.5) et la définition de @™ permettent alors d’écrire

(5.1.6) 0" (Q) = B((m/d)ay) x(ay") = o (P)".

Les d facteurs irréductibles Q; de P dans k,, [U] donnent donc la méme valeur
a o™, dou |

(5.1.7) Ly p (™) = 1/(1—q P)y" "
Mais, quel que soit « € C, on a
m—1
(5.1.8) (1 —omm™? = TT (1 —oa (o’ 1)) ;
j=0

les deux membres sont en effet des polyndomes unitaires en ¢, & coefficients
complexes, de méme degré mh, et ayant les mémes racines (toutes multiples
d’ordre d). Dans (5.1.8), faisons & = ¢ (P), et portons dans (5.1.7); comme

m—1

h = deg (P), il vient L,, p (") = ] 1/1(—¢ (P) (w’t) *& ®), ce qui, compte
=0

tenu de (5.1.3) et de la définition de L(t), donne (5.1.2) et prouve le lemme 2.
Démontrons alors le théoréme 4. Les lemmes 1 et 2 permettent d’écrire

m—1
L4+ = ] (1+t0/);
j=o0

la comparaison des termes de plus haut degré en ¢t donne donc

m—1
(m — I_I Tl = nim-—1/2 m _ (—1)”1_11"",
j=0

C.Q.F.D.

COROLLAIRE 1. — Soient y et y deux caractéres multiplicatifs non triviaux
de k, et supposons également y\ non trivial. Alors, si ¥'™ = yo N™ et si
Y™ = o N™, ona

(5.1.9) n (™, ™) = (=" (oY)

Démonstration. — II suffit d’appliquer le théoréme 4 et la proposition 9,
(i1) du chapitre 5.
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5.2. Appliquons alors le théoréme 4 et son corollaire 1 au calcul des
fonctions zéta des courbes de genre 1 étudiées au chapitre 6, sections 3.3
a 3.5 (dont on conserve les notations).

(1) La courbe V| d’équation Y* =1 — X° (p # 2, 3).

Supposons d’abord ¢ = 1 (mod 6); la formule (3.3.1) (chap. 6) appli-
quée au corps de base k,, donne N*% = g™ + n (0™, x™) + (o™, 1)
N*E étant évidemment le nombre de points de V; « & distance finie » et
rationnels sur k,,; posons « = — n (¢, ¥), utilisons le corollaire 1 du théo-
réme 4, et remarquons que ¥, admet exactement un point a I'infini, rationnel
sur k; il vient alors Ny, =4" + 1 — o™ — &", d’ou finalement (th. 2,
cor. 1): ' ‘

(5.2.1) Z(Vt) = —at) (1—a)/(1—1) (1 —qt),
e qui est évidemment conforme au théoréme 3.
| Supposons maintenant ¢ = — 1 (mod 6) (donc p = — 1 (mod 6) et f

~ impair). On aura besoin du lemme suivant:

LEMME 1. — Soit p = — 1 (mod 6), et soient ¢, et x, deux caractéres
multiplicatifs de K = F 5, respectivement d’ordre 2 et d’ordre 3 (noter que
p? =1 (mod 6)). Alors n(¢,, x2) = p.

Démonstration. — Comme K contient six racines 6-iémes de 'unité, il
est facile de voir que le nombre N de solutions dans K? de I’équation Y2
= 1 — X satisfait & N = 5 (mod 6) (comparer avec le chap. 6, sect. A.1,
exemple 2). Posons © = m(¢,, y,);ona N = p* + n + 7 (chap. 6, (3.3.1)),
et la congruence relative a N donne

(5.2.2) n +7 =4 (mod 6).

Mais =, 7 e Z [p] (p =e*™/3), nt = p* (chap. 5, prop. 9, cor. 1), et p est
inerte dans Z [p]; ainsi, = = €p, T = Ep, & étant une racine 6-iéme de
Punité. (5.2.2) donne alors (e+&)p =4 (mod 6), puis e + 6 = — 4 =2
(mod 6), ce qui implique ¢ = 1 (examiner les six valeurs possibles de &).
Finalement, 7 = ¢p = p, C.Q.F.D.

Calculons alors le‘ff,,. Si m est impair, on a ¢" = — 1 (mod 3), donc
N lf‘f}; = ¢". Supposons maintenant m pair, m = 2m’, et soient ¢ et y deux
caractéres multiplicatifs de k,, respectivement d’ordre 2 et d’ordre 3; le
lemme 1 et le corollaire 1 du théoréme 4 (appliqué a k,/F ,») donnent d’abord
n(p, x) = (=1’ 7'p/ = ¢q; le corollaire 1 du théoréme 4, appliqué a
knlk,, donne dautre part 7 (™7, ")) = (=)™ " 1g" = — (=g,
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donc (chap. 6, (3.3.1)) N;*T = g™ — 2 (—¢)™/%: Posons alors a = ig!/?;
les calculs précédents montrent que, quelle que soit la parité de m, on a
le‘if,, =q" —a" — &, donc Ny, = q" + 1 — o™ — &"; finalement, on
trouve encore

(5.2.3) Z(V) =0 —-at)(1—at)/(1—1) (1 —qi);
compte tenu de la valeur explicite « = ig’/%, on a méme, dans ce cas,
(5.2.4) Z(Vi;t) = (L+qgtd)/(1—1t) (1 —qb).

(2) La courbe V, d’équation Y? =1 — X* (p#2).

Supposons d’abord ¢ = 1 (mod 4); la formule (3.3.2) (chap. 6) appliquée
au corps de base k,,, combinée au corollaire 1 du théoréme 4, donne, comme
en (1), N,§ = g™ — 1 — o™ — &, avec & = — 7 (¢, ¥); d’autre part, V,
admet a I'infini un point double rationnel sur k: comptons-le pour deux
(ce qui revient & remplacer ¥, par sa normalisée ¥, ™ : voir d’ailleurs chap. 8,
sect. 2.4); on trouve ainsi Nz,*,,, =q4q"+1—o" — &, donc

(5.2.5) Z(*50) = 1—at) (1—an/(1 —1) (1 —q1),

ce qui est toujours conforme au théoréme 3. Remarquer que la fonction zéta
de V, non normalisée est Z (V,; t) = (1—at) (1—ar)/(1—qt).

Si on suppose au contraire ¢ = — 1 (mod 4), un calcul analogue a celui
fait en (1) (pour ¢ = — 1 (mod 6)) donnerait encore

(5.2.6) Z(V,*;0) = A +q)/(1—1t) (1 —qb).
(3) La courbe V, d’équation Y> =1 — X3 (p#3).

On laisse au lecteur le soin de vérifier que les formules (5.2.5) et (5.2.6)
restent valides pour la normalisée ¥,* de ¥V, respectivement pour g = 1
(mod 3) (et avec &« = — m (¥, x): voir chap. 6, (3.3.3)), d’une part; et pour

= — 1 (mod 3), d’autre part.

(4) La courbe V, d’équation Y* = X — X3 (pour ¢ = 1 (mod 4)).
Il résulte des calculs faits au chapitre 6 (sect. 3.4) que
(5.2.7) Z(Vyt) = Z(V,*;0).

(En fait, V, est un modéle projectif non singulier de V,, de sorte qu’on peut
choisir pour V,* la courbe V,.) L’égalité (5.2.7) reste d’ailleurs vraie pour
g = — 1 (mod 4).
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5.3. Terminons par deux exemples simples d’hypersurfaces (dans P3).
(5) La quadrique d’équation homogéne X* + Y* + Z* + T? = 0 (p#2).

Le nombre N, ° de points rationnels sur k,, du céne défini dans A, par
I’équation ci-dessus est donné (chap. 6, th. 1) par

N,° = q¢*™ + g ™ (@"—D1(p™)*,

@ désignant le caractére de Legendre de k; mais 7 (p™)* = ¢" @™ (=1),
et (¢"—1) N, + 1 = N,° (N,, étant le nombre de points de la quadrique
rationnels sur k,); d’otl immédiatement N,, = g°™ + 2¢™ + 1, et (th. 2,
cor. 1)

(5.3.1) Z(Vs;) = 11~ (1 —g0)* (1 —q*D),

Vs désignant la quadrique étudiée. (On aurait pu calculer N, a I'aide des
formules du chap. 6, prop. 2). Ce résultat est évidemment conforme a
(4.2.1) (sect. 4.2), c’est-a-dire au théoréme de Dwork pour les hypersurfaces:
onaP(t) =1—gt,dedegré 1,et (—1)" = (—=1)> = — 1, ce qui « envoie »
P (t) au dénominateur.

(6) La surface cubique d’équation homogéne X* + Y3 + 2> + T3 =0
(p#3).

On se limitera pour simplifier au cas ol ¢ = 1 (mod 3). On pourrait
procéder comme en (5), et utiliser le théoréme 1 du chapitre 6. Il est plus
commode de remarquer que (avec des notations évidentes) N, = N2f
+ Nof. N2 est e nombre de solutions rationnelles sur k,, de 1’équation
X?®+ Y? + Z> = — 1; si x est un caractére multiplicatif d’ordre 3 de k,
le théoréme 2 du chapitre 6, la proposition 10 du chapitre 5 et le théoréme 4
ci-dessus donnent

(5.3.2) N?nﬁ = q2m + (=)™ + (=)™ + 37, + 37,7,

avec 1y = 7 (x, x) = — n (X, X, x) (chap. 5, prop. 10, (1)) et 7, = 7 (¥, 1, X);
quant 3 Nt cest le nombre de points rationnels sur k,, de la cubique
d’équation projective X* + Y? + Z3 = 0; d’ou

(5.3.3) Nof =gq™ + 1 —(=n)" — (=7)"

(chap. 6, (3.3.3); tenir compte des trois points a I'infini !): au total,
(5.3.4) N,=¢"+q"+1+3n," + 3n,",

et (th. 2, cor. 1, une derniére fois)
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(5.3.5) Z(Vei) = 1(1—1) (1—qt) (1 —g%) (L =m0 (1 —2,0)°,

Ve désignant la surface cubique étudiée. Ce résultat est conforme aux conjec-
tures de Weil:ona Py(t) = 1 — t, P, (1) = P, (t) = 1, P, () = 1 — g*t,
et P, (1) = (1—qt) (1—n,1)* (1 —mn,1)%; Phypothése de Riemann se réduit a

InZI = |7_.C2] = ]77:(%, Xs Z)I =4 (Chap' 59 p1op. 103 COr. 1, (11))> la
« caractéristique d’Euler-Poincaré » est égaleal + 7 + 1 = 9, et ’équation
fonctionnelle s’écrit Z (V; 1/g*t) = — ¢°t°Z (Vs 0).

Notes sur le chapitre 9

§ 1-2-3-4: 'idée d’étudier arithmétiquement un corps de fonctions algé-
briques d’une variable sur un corps fini semble apparaitre nettement pour
la premiere fois chez Dedekind (1857). Mais c’est dans la thése d’Artin
(1924), puis dans les travaux de Schmidt (1931) et Hasse (1933, 1934, 1936),
qu’est définie la notion de fonction zé€ta (« Kongruenzzetafunktion ») et
formulée I'« hypothése de Riemann » en caractéristique p (Artin, Schmidt,
Hasse utilisent le langage des corps de fonctions algébriques d’une variable,
et non celui des courbes: mais ces deux langages sont équivalents, ou plutot,
le sont devenus depuis les « Foundations » de Weil; voir d’ailleurs Weil
(1949), Introduction). L’équation fonctionnelle pour { (V;s) (c’est-a-dire,
aux notations pres, la proposition 3) est due a Schmidt (1931); la démons-
tration de ’hypothése de Riemann pour g = 1 est due a Hasse (1933, 1934),
et, pour g quelconque, a Weil (1940; 1948, a). Les diverses définitions de
Z (V;t) données au paragraphe 1 figurent, pour une courbe, dans Weil
(1948, a), et, pour une variété projective non singuliére de dimension quel-
conque, dans Weil (1949); cet article contient également 1’énoncé (et, pour
des cas particuliers, la vérification) des « conjectures de Weil ». L’existence
d’une « formule de Lefschetz » en géométrie algébrique est conjecturée dans
Weil (1954) (p. 556): d’ou la notion de « cohomologie de Weil » — cette
terminologie étant d’ailleurs considérée par Weil lui-méme comme « tout
a fait inadéquate » (wholly unsuitable). Au sujet du lien formel entre
théories cohomologiques des variétés algébriques et propriétés des fonctions
zéta, voir Demazure (1969), notamment §§ 7 et 9. Au sujet du lien entre
méthodes p-adiques et méthodes cohomologiques, voir Katz (1972) (cet
exposé contient une abondante bibliographie).

Signalons qu’a cdté des fonctions z€ta, on peut (comme en arithmétique)
construire, pour les variétés algébriques, des « séries L »; pour une définition
générale (en langage des schémas, et englobant d’ailleurs les séries L de la
théorie des nombres), voir [16], pp. 86-91. La rationalité des séries L des
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