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et V, et non du procédé, cohomologique ou autre, utilisé pour établir la
formule (4.1.1).

§ 5. Calcul explicite de certaines fonctions zêta.

5.1. Ce dernier paragraphe donne, à titre d'illustration de ce qui
précède, le calcul explicite des fonctions zêta de certaines variétés algébriques
(courbes ou hypersurfaces) définies par des équations diagonales. On utilise
essentiellement les résultats du chapitre 5, du chapitre 6 (§ 3), et le théorème

suivant, dû à Davenport et Hasse (1934), qui permet de comparer les

sommes de Gauss relatives à k et celles relatives à km (m > 1):

Théorème 4 (Davenport-Hasse). — Soient ß et % un caractère additifet un

caractère multiplicatif non triviaux de k ; pour m > 1, soient d'autre part
T(m) et iV(m) la trace et la norme dans l'extension kjk, et posons /?(m)

ß o T{m\ £(m) x o Alors

(i) ß{m) est un caractère additif non trivial de km; x(m} est un caractère

multiplicatif non trivial de kmy et %(m) a même ordre que %.

(ii) Si on désigne par x et r(m) les sommes de Gauss x (x | ß) et x (^(m) | ß(m))

relatives à k et km respectivement, on a

Démonstration. — (i) Il suffit de noter que T(m) : k* -» k+, et iV(m):

km - k*9 sont des homomorphismes surjectifs (chap. 1, prop. 9 et 10).

(ii) (D'après Weil (1949), pp. 503-505). Pour tout polynôme unitaire P (U)
Uh + a1t/Ä"1 + + ah appartenant à k[U] (resp. à km[U]), posons

<p(P) ß(ai)x(aj)(resp.<p(m) (P) jß(m) x(m) <p et cp(m) sont
évidemment des caractères multiplicatifs sur les anneaux principaux k [t/]
et km [U], et on peut leur associer, « à la Dirichlet », les « séries L »

suivantes :

(5.1.1) T<m> =(-!)'im—1 xm

ut)\ x (p> n i/(i -<?(p)ideg(p>)
p

unit.
P unit,
irréd.

Lm(t) x <p(m>(P)tde8(p> n i/(i-9(m)(p)tdeg(p)),
p

unit.
P unit,
irréd.

(P étant supposé appartenir à k [U] et km [U] respectivement, bien entendu.)
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Lemme 1. — On a L(t) 1 + tt, Lm (0 1 + ^(m) t.

Vérifions par exemple la première égalité. On a L(t) — 1 + cxt +
+ chth + avec ch £<p(P), cette somme étant étendue à tous les

Pek[U\ unitaires et de degré h, donc de la forme Uh + a^U11'1 +
+ an, les atek; pour h 1, on trouve ainsi ß (aj x(ai) T

a\ek
(noter que % (0) 0); pour Ä >2 au contraire, on trouve

ch<ih~2 I ß(aE* 0/.)) '
a\ek ahek

donc ch 0, chacune des deux sommes étant nulle (chap. 5, prop. 2 et 5).

Lemme 2. — Si œ désigne une racine primitive m-ième de l 'unité dans C,

on a
m— 1

(5.1.2) Lm(0 [I L(coJt).
j=o

Pour chaque P e k [U], irréductible et unitaire, considérons le produit fini

Lm,P(n n
Q

Q parcourant seulement l'ensemble des facteurs irréductibles et unitaires
de P dans km[U]; on a évidemment

(5.1.3) Lm(r)n
P unit,
irréd.

Transformons maintenant Lm P (tm), étant supposé fixé. Posons
h deg(P), et soit ç une racine de P dans on a [A: (ç): k] h, et bien
entendu [km:k] m; si alors d {h, m), le p.p.c.m. de et est égal à

hmjd, et on a (chap. 1, prop. 4, cor. 1) [km (ç)'.k] — donc [kjç): km]
hfd. Il en résulte que la décomposition de P en facteurs irréductibles et

unitaires de P dans km [£/] est de la forme

/An r«J\ ^ öd 'rcti/â- Q
{Jchacundes facteurs g; étant de degré r

hjd.Soit alors g celui des Q{ dont ç est
racine, et calculons (p(m> (g). Notons al et
la trace et la norme de — £ dans l'extension
k(Ç)/k, et et br la trace et la norme de

•fl/tV -£ dans l'extension km (Ç)/km; on a P (U)

^ Uh + a1+ + ah et g (17) Ur
+ b1Ur~1+ + br, et par conséquent

A
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(5.1.4) cp(P) ßiaJxian),<p(m)(ô) ß(ra)(&i)X(m)(M •

L'utilisation de la transitivité de la trace et de la norme dans le diagramme de

corps ci-dessus donne d'autre part

(5.1.5) (mld)at a^d.

(5.1.4), (5.1.5) et la définition de <p{m) permettent alors d'écrire

(5.1.6) <pC>(Q) ß((m/d)aß)x

Les d facteurs irréductibles Qt de P dans km [U] donnent donc la même valeur
à cp(m\ d'où

(5.1.7) LnhP(tm) 1/(1 -(p(P)m/dtmh/d)d

Mais, quel que soit a g C, on a

m- 1

(5.1.8) (1 -amldtmh/d)d (l-oc(œjt)h);
j=o

les deux membres sont en effet des polynômes unitaires en t, à coefficients

complexes, de même degré mh, et ayant les mêmes racines (toutes multiples
d'ordre d). Dans (5.1.8), faisons a cp (P), et portons dans (5.1.7); comme

m- 1

h deg(P), il vient Lm P(tm) — J^[ 1/1(—<p(P) (coJt)deg (p)), ce qui, compte
j=o

tenu de (5.1.3) et de la définition de L(t), donne (5.1.2) et prouve le lemme 2.

Démontrons alors le théorème 4. Les lemmes 1 et 2 permettent d'écrire

m— 1

1 + T0»)f* Yl (1 +tcjojt);
j= 0

la comparaison des termes de plus haut degré en t donne donc

m— 1

T<w> Yl (-1 )m_1Tm,
i=0

C.Q.F.D.

Corollaire 1. — Soient x et \j/ deux caractères multiplicatifs non triviaux
de k, et supposons également xnon trivial. Alors, si %(m) x° N(m) ^
^(M) =\jfO N(m\ on a

(5.1.9) 7i{x{m\^m)) « {-ir-'nix^T
Démonstration. — Il suffit d'appliquer le théorème 4 et la proposition 9,

(ii) du chapitre 5.
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5.2. Appliquons alors le théorème 4 et son corollaire 1 au calcul des

fonctions zêta des courbes de genre 1 étudiées au chapitre 6, sections 3.3

à 3.5 (dont on conserve les notations).

(1) La courbe V1 d'équation Y2 1 — X3 (p # 2, 3).

Supposons d'abord q 1 (mod 6); la formule (3.3.1) (chap. 6) appliquée

au corps de base km donne Nx% — qm + ti (cp(m\ x(m)) + ^(<P(m)5 X(m))

étant évidemment le nombre de points de V± « à distance finie » et

rationnels sur km ; posons a — 7i(cp, /), utilisons le corollaire 1 du théorème

4, et remarquons que V1 admet exactement un point à l'infini, rationnel

sur k; il vient alors N1>m qm + 1 - am - âm, d'où finalement (th. 2,

cor. 1):

(5.2.1) Z(F1;0 (1-af)(l-äO/(l -t){l-qt),
ce qui est évidemment conforme au théorème 3.

Supposons maintenant q — 1 (mod 6) (donc p — 1 (mod 6) et /
impair). On aura besoin du lemme suivant:

Lemme 1. — Soit p — 1 (mod 6), et soient cp2 et %2 deux caractères

multiplicatifs de K ~Fp2, respectivement d'ordre 2 et d'ordre 3 (noter que
p2 1 (mod 6)). Alors n(cp2, Xi) P•

Démonstration. — Comme K contient six racines 6-ièmes de l'unité, il
est facile de voir que le nombre N de solutions dans K2 de l'équation Y2

1 — Xs satisfait à N 5 (mod 6) (comparer avec le chap. 6, sect. A.l,
exemple 2). Posons n n((p2, Xi) \ on a N — P2 + 71 + k (chap. 6, (3.3.1)),
et la congruence relative à N donne

(5.2.2) n + îi 4 (mod 6)

Mais 7i, 7Ï e Z [p] (p=e2ltl/3), nn p2 (chap. 5, prop. 9, cor. 1), et p est

inerte dans Z [p] ; ainsi, n sp, n ëp, e étant une racine 6-ième de

l'unité. (5.2.2) donne alors (s+ë)p 4 (mod 6), puis s + ë —4 2

(mod 6), ce qui implique s 1 (examiner les six valeurs possibles de s).

Finalement, n ep p, C.Q.F.D.
Calculons alors Si m est impair, on a qm — 1 (mod 3), donc

Nffm (T- Supposons maintenant m pair, m 2m', et soient cp et % deux
caractères multiplicatifs de k2, respectivement d'ordre 2 et d'ordre 3; le
lemme 1 et le corollaire 1 du théorème 4 (appliqué à k2jYp2) donnent d'abord
7i(cp,x) (-I/"1/ Ie corollaire 1 du théorème 4, appliqué à

kjk2, donne d'autre part n x{m {—\)m ~1qm' — — q)m\
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donc (chap. 6, (3.3.1)) qm — 2 — q)m/2: Posons alors a iqi/2;
les calculs précédents montrent que, quelle que soit la parité de m, on a

Ni? ~ qm — am — âm, donc N1>nt qm + 1 — am — äm; finalement, on
trouve encore

(5.2.3) Z(Fi; t) ** (1 -at) (1 -50/(1 -0 (1 -qt) ;

compte tenu de la valeur explicite a iq1/2, on a même, dans ce cas,

(5.2.4) Z(V1; t) (1 +qt2)l(l-t)(l-qt).
(2) La courbe V2 d'équation Y2 — 1 — X4 (p¥=2).

Supposons d'abord q 1 (mod 4); la formule (3.3.2) (chap. 6) appliquée
au corps de base kmy combinée au corollaire 1 du théorème 4, donne, comme
en (1), 7V2?m qm — l — ocm — äm, avec a — n (<p, ij/); d'autre part, V2

admet à l'infini un point double rationnel sur k: comptons-le pour deux

(ce qui revient à remplacer V2 par sa normalisée V2* : voir d'ailleurs chap. 8,

sect. 2.4); on trouve ainsi N2*m qm + 1 — oem — âm, donc

(5.2.5) Z(V2*; t) (1-«0(1-«0/(1-0(1-«0,
ce qui est toujours conforme au théorème 3. Remarquer que la fonction zêta

de V2 non normalisée est Z(V2; t) (1— at) (1 — ât)/(l — qt).
Si on suppose au contraire q — 1 (mod 4), un calcul analogue à celui

fait en (1) (pour q ~ 1 (mod 6)) donnerait encore

(5.2.6) Z(F2*;0 (l+^2)/(l —0(1 —«0-

(3) La courbe V3 d'équation Y3 1 — X3 (/?#3).

On laisse au lecteur le soin de vérifier que les formules (5.2.5) et (5.2.6)
restent valides pour la normalisée F3* de V3, respectivement pour q 1

(mod 3) (et avec a — n (x, %): voir chap. 6, (3.3.3)), d'une part; et pour
q — 1 (mod 3), d'autre part.

(4) La courbe V4 d'équation Y2 X — X3 (pour q 1 (mod 4)).

Il résulte des calculs faits au chapitre 6 (sect. 3.4) que

(5.2.7) Z(V4;t) Z(V2*;t).

(En fait, V4 est un modèle projectif non singulier de V29 de sorte qu'on peut
choisir pour F2* la courbe V4.) L'égalité (5.2.7) reste d'ailleurs vraie pour
q — 1 (mod 4).
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5.3. Terminons par deux exemples simples d'hypersurfaces (dans P3).

(5) La quadrique d'équation homogène X2 + Y2 + Z2 + T2 0 {p^X).

Le nombre Nmc de points rationnels sur km du cône défini dans A4 par

l'équation ci-dessus est donné (chap. 6, th. 1) par

Nmc q3m +q-m(qm-l)ï((pim))\

cp désignant le caractère de Legendre de k\ mais t (<p(m))2 #m<p(m)( — 1),

et (qm-1) Nm + 1 Nmc (Nm étant le nombre de points de la quadrique
rationnels sur km); d'où immédiatement Nm — q2m + 2qm + 1, et (th. 2,

cor. 1)

(5.3.1) Z(V5;t) m-t)(l-qt)2(l-q2t),
V5 désignant la quadrique étudiée. (On aurait pu calculer Nmc à l'aide des

formules du chap. 6, prop. 2). Ce résultat est évidemment conforme à

(4.2.1) (sect. 4.2), c'est-à-dire au théorème de Dwork pour les hypersurfaces :

on aP (t) 1 - qt, de degré 1, et (- l)w (-1)3 — 1, ce qui « envoie »

P (t) au dénominateur.

(6) La surface cubique d'équation homogène X3 + Y3 4- Z3 + T3 0

(P^3).

On se limitera pour simplifier au cas où q 1 (mod 3). On pourrait
procéder comme en (5), et utiliser le théorème 1 du chapitre 6. Il est plus
commode de remarquer que (avec des notations évidentes) Nm —

+ iV^f; Nest le nombre de solutions rationnelles sur km de l'équation
X3 + Y3 + Z3 — 1 ; si x est un caractère multiplicatif d'ordre 3 de k,
le théorème 2 du chapitre 6, la proposition 10 du chapitre 5 et le théorème 4

ci-dessus donnent

(5.3.2) Nf=q2m+( -7z,)"1+ -^)m + 3 3 n2m

avec 7tin (j, x) -n(x, X, X) (chap. 5, prop. 10, (i)) et (x, x, £);
quant à N{, c'est le nombre de points rationnels sur km de la cubique
d'équation projective X3 +Y3 + Z3 0; d'où

(5.3.3) N'm«T + 1 -(--(-7
(chap. 6, (3.3.3); tenir compte des trois points à l'infini !): au total,

(5.3.4) Nm q2m + qm+ 1 + 3 7r2m + 3 7t2m

et (th. 2, cor. 1, une dernière fois)
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(5.3.5) Z(F6; t)1/(1 -0 (1 -qt)(1-q2t)(1-n(1-S2f)3

V6 désignant la surface cubique étudiée. Ce résultat est conforme aux conjectures

de Weil: on aP0(() 1 - t, PtP3 1, PA 1 — q2t,
et P2 (0 (1 —qt) (1 —n2t)3 (1 — 7i2t)3',l'hypothèse de Riemann se réduit à

| *2 | | S2 | 17t (x, x, X)| q (chap. 5, prop. 10, cor. 1, (ii>) ; la
« caractéristique d'Euler-Poincaré » est égale à 1 + 7 + 1 9, et l'équation
fonctionnelle s'écrit Z(V6; 1 /q2t) - q9t9Z(V6; t).

Notes sur le chapitre 9

§ 1-2-3-4: l'idée d'étudier arithmétiquement un corps de fonctions
algébriques d'une variable sur un corps fini semble apparaître nettement pour
la première fois chez Dedekind (1857). Mais c'est dans la thèse d'Artin
(1924), puis dans les travaux de Schmidt (1931) et Hasse (1933, 1934, 1936),

qu'est définie la notion de fonction zêta (« Kongruenzzetafunktion ») et

formulée 1'« hypothèse de Riemann » en caractéristique p (Artin, Schmidt,
Hasse utilisent le langage des corps de fonctions algébriques d'une variable,
et non celui des courbes : mais ces deux langages sont équivalents, ou plutôt,
le sont devenus depuis les «Foundations» de Weil; voir d'ailleurs Weil
(1949), Introduction). L'équation fonctionnelle pour £ (V; s) (c'est-à-dire,
aux notations près, la proposition 3) est due à Schmidt (1931); la démonstration

de l'hypothèse de Riemann pour g 1 est due à Hasse (1933, 1934),

et, pour g quelconque, à Weil (1940; 1948, a). Les diverses définitions de

Z (V; t) données au paragraphe 1 figurent, pour une courbe, dans Weil
(1948, a), et, pour une variété projective non singulière de dimension

quelconque, dans Weil (1949); cet article contient également l'énoncé (et, pour
des cas particuliers, la vérification) des « conjectures de Weil ». L'existence
d'une « formule de Lefschetz » en géométrie algébrique est conjecturée dans

Weil (1954) (p. 556): d'où la notion de « cohomologie de Weil» — cette

terminologie étant d'ailleurs considérée par Weil lui-même comme « tout
à fait inadéquate » (iwholly unsuitable). Au sujet du lien formel entre
théories cohomologiques des variétés algébriques et propriétés des fonctions
zêta, voir Demazure (1969), notamment §§7 et 9. Au sujet du lien entre
méthodes />-adiques et méthodes cohomologiques, voir Katz (1972) (cet

exposé contient une abondante bibliographie).
Signalons qu'à côté des fonctions zêta, on peut (comme en arithmétique)

construire, pour les variétés algébriques, des « séries L »; pour une définition
générale (en langage des schémas, et englobant d'ailleurs les séries L de la

théorie des nombres), voir [16], pp. 86-91. La rationalité des séries L des
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