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que P (t) n'admet également aucun zéro dans le domaine | t1 > q~1/2 :

tous les zéros de P (t) sont donc sur le cercle 1t1 q~1/2, ce qui prouve (iii)
et achève la démonstration du théorème 3.

Corollaire 1. — Tom les zéros de la fonction £ (V; s) sont sur la droite
Re(s) 1/2.

Démonstration. — On a en effet £ (V; s) Z (V; q~s), et le changement
de variable t q~s transforme les t de module q~1/2 en les s de partie
réelle 1/2.

3.2. Ce corollaire 1 constitue l'analogue géométrique de l'hypothèse
de Riemann, et résulte directement du théorème 3 du chapitre 8.

Inversement, ce corollaire 1 (ou, ce qui revient au même, la partie (iii) du théorème

3 ci-dessus) implique le théorème 3 du chapitre 8: écrivons en effet

Z (V; t) P (0/(1 — t) 0 -qt), et soient oq (1 < i < 2g) les inverses des

2g zéros de P(t); on a alors Z{V\ t) (1 — a^)... (1 — (x2gt)/(l ~~0(1
donc (voir sect. 2.2), Nm qm + 1 — a1m — — a2; pour m 1, ceci

permet d'écrire | q + 1 — Nx | < | ol1 | + + | <x2g | ; si maintenant on

suppose que les 2g zéros de P ont pour module #~1/2, on a | oq | q112

pour i 1, 2g, et la dernière inégalité se réduit (puisque N Nj) à

\q +1 -N\<2
on retrouve bien l'inégalité (3.1.1) du chapitre 8.

3.3. Remarquons pour terminer que dans la démonstration du théorème

3 ci-dessus, la rationalité de Z (V; t) a été établie directement (à l'aide
du théorème de Riemann-Roch), indépendamment du théorème 2. Signalons
d'autre part que l'entier h qui s'est introduit au cours de la démonstration
de la proposition 3 est égal au nombre de classes de diviseurs de degré 0 du

corps de fonctions algébriques k (V)/k, et qu'on a P (1) h \ ainsi, dans le

cas géométrique comme dans le cas arithmétique, il y a un rapport étroit
entre nombre de classes et comportement de la fonction £ au point s 1

(à ce sujet, voir par exemple [19], chap. VII).

§ 4. Conjectures de Weil.

4.1. Soit maintenant V une variété projective non singulière de type
(in, d, r) (voir chap. 8, § 4) définie sur k. Une description de Z(V; t),
généralisant le théorème 3 (qui correspond h r 1), est donnée par les énoncés

suivants, dits «conjectures de Weil» (voir Weil (1949), p. 507):
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(CW1) (Théorème de Lefschetz). — Il existe 2 + 1 familles d'entiers

algébriques fajdi.7,-b;, 0 < i < 2r, telles qu'en posant, pour chaque i,
Bi

Pi (0 Il (1-aji0> on ait
j=i

p1(t)p3(t)...(0

de plus, P0 (0 1 — t et P2r (0 — 1 ~
2 r

(CW2) (Equation fonctionnelle). — on pose %— £ — 1)1^é> ^
i 0

(4.1.2) Z(F;l/4r0 ±^rX/2PZ(F;0.

(CW3) (« Hypothèse de Riemann »). —Pour tout couple d'indices j, z, on a

(4.1.3) I | îi/2

(CW4) (Rationalité des « polynômes de Weil » Pt). — Chacun des

polynômes Pt est à coefficients entiers rationnels, de terme constant égal à 1.

(CW5) (Interprétation des entiers Bt comme nombres de Betti). — Si V
se relève en caractéristique 0 (autrement dit, s'il existe un anneau de valuation
discrète £>, contenu dans C, et dont le corps résiduel s'identifie à k, et une

variété projective non singulière V0, définie sur £), et dont la variété réduite
modulo l'idéal maximal de £) s'identifie à V), alors les Bt sont égaux aux
nombres de Betti de V0, considérée comme variété topologique complexe

compacte de dimension complexe r, donc de dimension réelle 2r. (L'exposant
X, dans l'équation fonctionnelle (4.1.2), est alors la caractéristique d'Euler-
Poincaré de V0).

On remarquera que, compte tenu de la définition des Pu (4.1.1) équivaut
(voir th. 2, cor. 1 et remarque) à la collection d'égalités

Nm I(-ly«7, (m 1, 2, ;
i, J

de même, (4.1.2) équivaut à l'assertion suivante: quel que soit i (0 < z < 2 r),
les deux familles et sont identiques (à une
permutation près).

4.2. L'ensemble de ces conjectures a été démontré par Weil lui-même
lorsque V est une courbe (th. 3), et lorsque V est une variété abélienne (voir
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par exemple [9], notamment p. 140). Le cas où F est une hypersurface (c'est-
à-dire où r n — 1) a été traité par Dwork (1962, 1964; 1966, a) qui a

montré, en perfectionnant les méthodes />-adiques de son article de 1960,

qu'on a alors

(4.2.1) Z(V; t) P(0(-1}7(1 - 0 (1 ~q0 (1 *0

P(t) étant un polynôme de degré d~1 ((d—1)"+1 + (—1)"+1 (J—1)): ceci

prouve (CW1), (CW2) et (CW5) pour les hypersurfaces.

4.3. Les conjectures (CW1), (CW2) et (CW5) ont été démontrées en
toute généralité par Artin et Grothendieck (voir Grothendieck (1964, a; b))
et, de deux manières différentes, par Lubkin (1967, 1968). Le principe de ces

démonstrations est la construction, pour les variétés algébriques (ou plus
précisément les schémas), d'une cohomologie à coefficients dans un corps K
de caractéristique 0 (« cohomologie de Weil »), consistant en la donnée, pour
tout i > 0, d'un foncteur H1 de la catégorie des schémas projectifs non
singuliers dans la catégorie des espaces vectoriels de dimension finie sur K,
cette famille de foncteurs possédant (entre autres) les propriétés suivantes:

(4.3.1) Si dim (F) r alors H1 (F) 0 pour i > 2r.

(4.3.2) (Formule « des traces », ou « des points fixes », de Lefschetz). —
Sif est un morphisme F -> F, et si fi H1 (/) est Vendomorphisme
correspondant dans H1 (V), alors le nombre d'intersection i (F • A) du graphe F
de f avec la diagonale A de V x V est donné par

i(r-A)yc-1yrrCQ.
i 0

(4.3.3) (Formule de dualité). — L'espace vectoriel H2r (V) est isomorphe
à K (r désignant toujours la dimension de V), et il existe pour tout i tel que
0 < i < 2r une application bilinéaire H1 (V) x Hlr~l (V) -> Hlr (F) ~ K
mettant H1 (F) et Hlr~l (F) en dualité.

(4.3.4) Si V se relève en caractéristique 0 selon une variété complexe F0,

la « cohomologie de Weil » de V s'identifie à la cohomologie ordinaire de V0

(à coefficients dans K).

La « cohomologie de Weil » d'Artin-Grothendieck est -la cohomologie
/-adique étale, pour laquelle K Qh l désignant n'importe quel nombre

premier différent de la caractéristique p du corps de base k ; les « coho-

mologies de Weil » de Lubkin utilisent respectivement comme corps de
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coefficients K Qh lïp (Lubkin (1967)) et K Qp (Lubkin (1968)).

A titre d'exemple, montrons comment la formule (4.1.1) peut se déduire de

la formule des traces de Lefschetz: k et F étant fixés, soit/l'endomorphisme
de F défini par/(x) x(«} (x e F; voir chap. 8, § 2) et soit F le graphe de/
dans Fx F; on peut montrer que tous les points du cycle intersection

r • A ont pour multiplicité 1 ; comme ces points correspondent bijectivement

aux points de F invariants par /, donc rationnels sur k, la formule de

Lefschetz donne

Ni E(-iyTr(/);
i 0

appliquant le même raisonnement au corps de base km et à l'endomorphisme

/m, on trouve plus généralement, pour tout m > 1,

Z(-iyrr(//),
i 0

et par conséquent

(4.3.5) logZ (F ; /) I(-l)' £ Triff) tm/m.
1 0 m^l

Mais A.' étant de caractéristique 0, on a, dans K [[/]],

(4.3.6) dét (1 - tfd exp - I Tr (/fm) tm/m)
m^l

(c'est un résultat qui a déjà été mentionné au § 2, et qu'on peut prouver en

triangularisant/ sur la clôture algébrique Kde K); si alors on pose P/ (0
dét (1 — tfi), (4.3.5) et (4.3.6) donnent

(4 3 7) 2 (V.).
ceci prouve (CW1), moins le caractère algébrique des a/f; mais il suffit de

mettre le second membre de (4.3.7) sous forme irréductible, de noter P/(t)
« ce qui reste » de après cette simplification, et d'utiliser le théorème

2 et son corollaire 1, pour démontrer la totalité de (CW1).
Les conjectures (CW2) et (CW5) se démontrent de même à partir de

(4.3.3) et (4.3.4). A l'heure actuelle, en revanche, les conjectures (CW3)
et (CW4) ne semblent pas avoir été démontrées en toute généralité. Notons
qu'il résulte de (CW3) que les polynômes de Weil Pt ne dépendent que de k
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et V, et non du procédé, cohomologique ou autre, utilisé pour établir la
formule (4.1.1).

§ 5. Calcul explicite de certaines fonctions zêta.

5.1. Ce dernier paragraphe donne, à titre d'illustration de ce qui
précède, le calcul explicite des fonctions zêta de certaines variétés algébriques
(courbes ou hypersurfaces) définies par des équations diagonales. On utilise
essentiellement les résultats du chapitre 5, du chapitre 6 (§ 3), et le théorème

suivant, dû à Davenport et Hasse (1934), qui permet de comparer les

sommes de Gauss relatives à k et celles relatives à km (m > 1):

Théorème 4 (Davenport-Hasse). — Soient ß et % un caractère additifet un

caractère multiplicatif non triviaux de k ; pour m > 1, soient d'autre part
T(m) et iV(m) la trace et la norme dans l'extension kjk, et posons /?(m)

ß o T{m\ £(m) x o Alors

(i) ß{m) est un caractère additif non trivial de km; x(m} est un caractère

multiplicatif non trivial de kmy et %(m) a même ordre que %.

(ii) Si on désigne par x et r(m) les sommes de Gauss x (x | ß) et x (^(m) | ß(m))

relatives à k et km respectivement, on a

Démonstration. — (i) Il suffit de noter que T(m) : k* -» k+, et iV(m):

km - k*9 sont des homomorphismes surjectifs (chap. 1, prop. 9 et 10).

(ii) (D'après Weil (1949), pp. 503-505). Pour tout polynôme unitaire P (U)
Uh + a1t/Ä"1 + + ah appartenant à k[U] (resp. à km[U]), posons

<p(P) ß(ai)x(aj)(resp.<p(m) (P) jß(m) x(m) <p et cp(m) sont
évidemment des caractères multiplicatifs sur les anneaux principaux k [t/]
et km [U], et on peut leur associer, « à la Dirichlet », les « séries L »

suivantes :

(5.1.1) T<m> =(-!)'im—1 xm

ut)\ x (p> n i/(i -<?(p)ideg(p>)
p

unit.
P unit,
irréd.

Lm(t) x <p(m>(P)tde8(p> n i/(i-9(m)(p)tdeg(p)),
p

unit.
P unit,
irréd.

(P étant supposé appartenir à k [U] et km [U] respectivement, bien entendu.)
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