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que P (¢) n’admet également aucun zéro dans le domaine || > g~'/2:
tous les zéros de P (¢) sont donc sur le cercle | 7| = ¢~ /2, ce qui prouve (ii)
et achéve la démonstration du théoréme 3.

COROLLAIRE 1. — Tous les zéros de la fonction { (V; s) sont sur la droite
Re (s) = 1)2.

Démonstration. — On aen effet { (V;5) = Z (V; ¢~ %), et le changement

de variable t = ¢~ transforme les ¢ de module ¢~ !/% en les s de partie
réelle 1/2. |

3.2. Ce corollaire 1 constitue ’analogue géométrique de I’hypothése
de Riemann, et résulte directement du théoréme 3 du chapitre 8. Inver-
sement, ce corollaire 1 (ou, ce qui revient au méme, la partie (iii) du théo-
réme 3 ci-dessus) implique le théoréme 3 du chapitre 8: écrivons en effet
ZV;t) =P@)/(1—t) (1—gqt), et soient «; (1 <i << 2g) les inverses des
2g zéros de P(¢); on a alors Z(V;t) = (1—oyt) ... (1 —oy,t)/(1—2)(1—qt),

donc (voir sect. 2.2), N,, = ¢" + 1 —a;™ — ... — a,; pour m = 1, ceci
permet d’écrire | g + 1 — Ny | <|oy | + ... + | oz, |; si maintenant on
suppose que les 2¢ zéros de P ont pour module ¢~/ on a |a;| = ¢'/?

pour i = 1, ..., 2g, et la derniére inégalité se réduit (puisque N = N,) a
lg +1 —N|<29q'?:

on retrouve bien I'inégalité¢ (3.1.1) du chapitre 8.

3.3. Remarquons pour terminer que dans la démonstration du théo-
réme 3 ci-dessus, la rationalité de Z (V; ¢) a été établie directement (a I’aide
du théoréme de Riemann-Roch), indépendamment du théoréme 2. Signalons
d’autre part que ’entier 4 qui s’est introduit au cours de la démonstration
de la proposition 3 est égal au nombre de classes de diviseurs de degré 0 du
corps de fonctions algébriques k (V)/k, et qu’on a P (1) = h; ainsi, dans le
cas géométrique comme dans le cas arithmétique, il y a un rapport étroit
entre nombre de classes et comportement de la fonction { au point s = 1
(& ce sujet, voir par exemple [19], chap. VII).

§ 4. Conjectures de Weill.

4.1. Soit maintenant ¥ une variété projective non singulicre de type
(n, d, r) (voir chap. 8, § 4) définie sur k. Une description de Z (V;t), géné-
ralisant le théoréme 3 (qui correspond a r = 1), est donnée par les énoncés
suivants, dits « conjectures de Weil » (voir Weil (1949), p. 507):
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(CW1) (Théoréme de Lefschetz). — Il existe 2r + 1 familles d’entiers
algébriques (0;;)1 —j—p;» 0 <i <2r, telles qu’en posant, pour chaque i,

Pi (1) = 1—1 (l—‘ijit), on aqit
j=1
Pi(t) P3(D) ... Py, -1 (1)
Po(t) Py(8) ... P2, (1)
de plus, Po(t) = 1 —tet P, () =1 -4t

(4.1.1) Z(V;1) =

2r

(CW2) (Equation fonctionnelle). — Si on pose x = Y (—1)'B; on a
i=0

(4.1.2) Z(V;1]qt) = + q™***Z(V;1).
(CW3) (« Hypothése de Riemann »). — Pour tout couple d’indices j, i, on a
(4.1.3) I aji I = qilz .

(CW4) (Rationalité des « polyndmes de Weil » P;). — Chacun des poly-
noémes P; est a coefficients entiers rationnels, de terme constant égal a 1.

(CW5) (Interprétation des entiers B; comme nombres de Betti). — Si V
se reléve en caractéristique O (autrement dit, s’il existe un anneau de valuation
discréte O, contenu dans C, et dont le corps résiduel s’identifie a k, et une
variété projective non singuliére V., définie sur O, et dont la variété réduite
modulo 1’idéal maximal de O s’identifie @ V), alors les B; sont égaux aux
nombres de Betti de V,, considérée comme variété topologique complexe
compacte de dimension complexe r, donc de dimension réelle 2r. (L ’exposant
X, dans [’équation fonctionnelle (4.1.2), est alors la caractéristique d’Euler-
Poincaré de V).

On remarquera que, compte tenu de la définition des P;, (4.1.1) équivaut
(voir th. 2, cor. 1 et remarque) a la collection d’égalités

Np = (=Dl (m=1,2,..);
3 J

de méme, (4.1.2) équivaut a I’assertion suivante: quel que soit i (0 < i < 2r),
les deux familles (;;);_j_gp, -, €t (q'oc"j,-l)1 —;—p sont identiques (2 une
permutation pres).

4.2. L’ensemble de ces conjectures a été démontré par Weil lui-méme
lorsque ¥ est une courbe (th. 3), et lorsque V est une variété abélienne (voir
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par exemple [9], notamment p. 140). Le cas out V est une hAypersurface (c’est-
a-dire ou r = n — 1) a été traité par Dwork (1962, 1964; 1966, a) qui a
montré, en perfectionnant les méthodes p-adiques de son article de 1960,
qu’on a alors |

(4.2.1)  Z(V;0) = PO (1 —t) (1—qt)...(1 —g"" 1),

P (7) étant un polyndme de degré d ™' ((d—1)"*" + (—1)"* " (d—1)): ceci
prouve (CW1), (CW2) et (CWS5) pour les hypersurfaces.

4.3. Les conjectures (CW1), (CW2) et (CW5) ont été démontrées en
toute généralité par Artin et Grothendieck (voir Grothendieck (1964, a; b))
et, de deux maniéres différentes, par Lubkin (1967, 1968). Le principe de ces
démonstrations est la construction, pour les variétés algébriques (ou plus
précisément les schémas), d’'une cohomologie & coefficients dans un corps K
de caractéristique 0 (« cohomologie de Weil »), consistant en la donnée, pour
tout i >0, d’'un foncteur H' de la catégorie des schémas projectifs non
singuliers dans la catégorie des espaces vectoriels de dimension finie sur K,
cette famille de foncteurs possédant (entre autres) les propriétés suivantes:

(4.3.1) Sidim (V) = r. alors H' (V) = 0 pour i > 2r.

(4.3.2) (Formule « des traces », ou « des points fixes », de Lefschetz). —
Si f est un morphisme V — V, et si f; = H' (f) est l’endomorphisme corres-
pondant dans H* (V), alors le nombre d’intersection i (I' - A) du graphe T
de f avec la diagonale A de V' x V est donné par

2r
i(Id) = 3 (=1 Tr(f).

(4.3.3) (Formule de dualité). — L ’espace vectoriel H*" (V') est isomorphe
a K (r désignant toujours la dimension de V), et il existe pour tout i tel que
0 < i < 2r une application bilinéaire H' (V) x H*'"'(V) - H*' (V) ~ K
mettant H' (V) et H*"~* (V) en dualité.

(4.3.4) Si V se reléve en caractéristique O selon une variété complexe V),

la « cohomologie de Weil » de V s’identifie a la cohomologie ordinaire de V,,
(a coefficients dans K).

La « cohomologie de Weil » d’Artin-Grothendieck est la cohomologie
[-adique étale, pour laquelle K = Q,, / désignant n’importe quel nombre
premier différent de la caractéristique p du corps de base k; les « coho-
mologies de Weil » de Lubkin utilisent respectivement comme corps de
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coefficients K = Q,, / # p (Lubkin (1967)) et K = Q, (Lubkin (1968)).
A titre d’exemple, moutrons comment la formule (4.1.1) peut se déduire de
la formule des traces de Lefschetz: k et V étant fixés, soit f1’endomorphisme
de V défini par f(x) = x@ (x € V; voir chap. 8, § 2) et soit I le graphe de f
dans ¥ x V; on peut montrer que tous les points du cycle intersection
I - A ont pour multiplicité 1; comme ces points correspondent bijectivement
aux points de V invariants par f, donc rationnels sur k, la formule de Lef-
schetz donne

Ni= Y (=D Tr(f);

appliquant le méme raisonnement au corps de base k,, et a ’endomorphisme
f™, on trouve plus généralement, pour tout m > 1,

N = T (=D TrOm,

et par conséquent

2r
(4.3.5) logZ(V;) = Y (=D ) Tr(f™mt"/m.
i=0 m=1
Mais K étant de caractéristique 0, on a, dans K [[¢]],
(4.3.6) dét (1—1f) =exp(— Y Tr(fi"t"/m)
m>1

(c’est un résultat qui a déja été mentionné au § 2, et qu’on peut prouver en
triangularisant f; sur la cldture algébrique K de K); si alors on pose P;* ()
= dét (1—1f)), (4.3.5) et (4.3.6) donnent

Py*(H) Py*(1) ... Py, 24 () .

(337 VS0 = B s P . P ()

ceci prouve (CW1), moins le caractére algébrique des o;;; mais il suffit de
mettre le second membre de (4.3.7) sous forme irréductible, de noter P, (z)
«ce qui reste » de P;* (¢) aprés cette simplification, et d’utiliser le théo-
réme 2 et son corollaire 1, pour démontrer la totalité de (CW1).

Les conjectures (CW2) et (CW5) se démontrent de méme & partir de
(4.3.3) et (4.3.4). A TI’heure actuelle, en revanche, les conjectures (CW3)
et (CW4) ne semblent pas avoir été démontrées en toute généralité. Notons

qu’il résulte de (CW3) que les polyndmes de Weil P; ne dépendent que de k
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et V, et non du procédé, cohomologique ou autre, utilisé pour établir la
formule (4.1.1).

§ 5. Calcul explicite de certaines fonctions zéta.

5.1. Ce dernier paragraphe donne, a titre d’illustration de ce qui pré-
cede, le calcul explicite des fonctions z€ta de certaines variétés algébriques
(courbes ou hypersurfaces) définies par des équations diagonales. On utilise
essentiellement les résultats du chapitre 5, du chapitre 6 (§ 3), et le théoréme
suivant, dii a Davenport et Hasse (1934), qui permet de comparer les
sommes de Gauss relatives a k et celles relatives a k,, (m > 1):

THEOREME 4 (Davenport-Hasse). — Soient f§ et y un caractére additif et un
caractére multiplicatif non triviaux de k; pour m > 1, soient d’autre part
T™ et N™ la trace et la norme dans l’extension k,lk, et posons B™
=BoT™, y™ = yo N™. Alors

(i) B est un caractére additif non trivial de k,; x™ est un caractére
multiplicatif non trivial de k,,, et y'™ a méme ordre que y.

(i) Sion désigne par t et t™ les sommes de Gauss ©(x | B) et T (x™ | B)
relatives a k et k,, respectivement, on a

(5.1.1) M = (=) lgm,

Démonstration. — (i) Il suffit de noter que T™: k, — k*, et N™:
kX _ k* sont des homomorphismes surjectifs (chap. 1, prop. 9 et 10).

(i) (D’aprés Weil (1949), pp. 503-505). Pour tout polyndme unitaire P (U)
= U" + a,U" ' + ... + a, appartenant a k [U] (resp. & k,, [U]), posons
@ (P) = B(ay) x(ay (tesp. @™ (P) = ™ (ay) ™ (an); ¢ et o™ sont
évidemment des caractéres multiplicatifs sur les anneaux principaux k [U]
et k, [U], et on peut leur associer, « & la Dirichlet », les « séries L » sui-
vantes:

L) = Y, o) t*® = T[] 1/(1—q(P) D),

unit. irréd.

L, = Y, o™ @)t ® = [] 1/(1-™ (P)1*=®),

P P ynit.
unit. irréd.

(P étant supposé appartenir & k [U] et k,, [U] respectivement, bien entendu.)
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