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qu’on ait (2.2.2) pour tout m > 1, alors la fonction zéta de V est donnée par

(2.2.1): on utilisera cette remarque & plusieurs reprises aux paragraphes 3,
4 et 5.

§ 3. Fonction zéta d’une courbe projective non singuliére.

3.1. Si V est une courbe projective non singuliére définie sur k, la
fonction Z (V;t) est décrite avec précision par le théoréme suivant, di a
Weil (1940, 1948) (voir aussi [19], chap. VII, p. 130):

THEOREME 3. — Si V est une courbe projective non singuliere de genre g
définie sur k, on a
(3.1.1) ZW;n =P@OA-1)A—q1)),

P étant un polynéme a coefficients entiers rationnels vérifiant les propriétés
suivantes :

(i) Le degré de P est égal a 2g; son coefficient dominant est égal a q° et
son terme constant a 1.

(ii) P satisfait a l’équation fonctionnelle

(3.1.2) P(1/qt) = q % *9P (1).

(iii) Les zéros de P (qui sont des inverses d’entiers algébriques, d’aprés (1)),
ont tous pour module g~ /2

Démonstration. — On utilise essentiellement le théoréme 3 du chapitre 8
et le résultat suivant:

PROPOSITION 3. — Mémes hypothéses que dans le théoréme 3 ; la fonction
zéta de V satisfait a 1’équation fonctionnelle

(3.1.3) Z(V;1jqt) = q* 7% Z(V;1).

Prouvons cette proposition (et convenons, pour simplifier, d’écrire Z (¢)
au lieu de Z (V; t), et de dire systématiquement diviseur au lieu de diviseur
rationnel sur k). La formule (1.3.1) montre que Z(¢t) = ) D,t™, D,

m>.0

désignant ici (puisque V est une courbe) le nombre de diviseurs positifs de
degré m sur V. Mais V posséde un diviseur m, (non nécessairement positif)
de degré 1 (chap. 8, th. 3, cor. 2); d’autre part, les diviseurs positifs de
degré g sur V forment un ensemble fini, et I’équivalence linéaire entre divi-
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seurs partage cet ensemble en classes d’équivalence: on peut donc trouver
une famille my, ..., m, de diviseurs positifs de degré g sur V telle que tout
diviseur positif m de degré g sur V soit linéairement équivalent & un m;
(1 <j < h)etun seul; et ceci reste d’ailleurs vrai méme si on ne suppose pas
m positif (en effet, si deg (m) = g, le théoréme de Riemann-Roch donne
[ (m) > 1, de sorte que tout diviseur m de degré g sur V est linéairement
équivalent a un diviseur positif de degré g sur V).
Pour tout m >0 et tout j (1 < j < h), posons alors

(3.1.4) m;, =m; +(m—g)mg,.

Il est clair que, quel que soit le diviseur positif m sur V, il existe un couple
(j, m) et un seul tel que m ~ m; , (m étant d’ailleurs égal a deg (m)). Cal-
culons maintenant D,; si D; , est le nombre de diviseurs positifs sur V
linéairement équivalents & m; ,, il résulte de ce qui précede que

h
(3.1.5) D, =j;Dj,m;

par ailleurs, on sait que les diviseurs positifs sur ¥ qui sont linéairement
équivalents a un diviseur donné n forment un espace projectif de dimension
I(n) — 1 sur k (c’est la série lindaire compléte | n | associée & n); on a donc
(316) Dj,m = Card (Imj,ml) = (ql(mj’m) - 1)/(q - 1) .

(1.3.1), (3.1.5) et (3.1.6) donnent ainsi, aprés multiplication par g — 1:

(3.1.7) | (q—DZ@® = > Y (¢"Mrm™ —1)¢.

m=0 j=1

Posons alors

29g—2 h
(3.1.8) F() = Z Z g!Mpmigm -
m=0 j=1
2g-2 h
(3.1.9) R@® = — Y t"+ht > > (¢tMim 1),
m=0 m>2g—1 j=1
on a évidemment
(3.1.10) (gq—1D)Z((t) = F(t) + hR(¥);

mais le théoréme de Riemann-Roch montre que pour deg (m) = m > 2g
— l,onal(m) = m — g + 1; ceci permet, dans R (¢), de remplacer chaque
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n
somme Y. (¢"Mim) — 1) ¢™ par h(¢" 9" ' —1)¢", et donne aprés somma-
i=1

tion de deux séries géométriques

(3.1.11) R() = — 1/(1 =16 + ¢’ (1 —q1) .
Un calcul direct prouve alors que

(3.1.12) R(1/qt) = q* 7> %9R (1) .

D’autre part, si w est un diviseur canonique sur ¥, le théoréme de Riemann-
Roch donne

Imj,,) =m—-—g+1+ I(w—m;,,);

en outre, pour toute valeur de m telle que 0 <m <<2g — 2, il est clair
que les A nombres / (w—m; ,) (1 <j < h) sont les mémes, a 'ordre pres,
que les Anombres [ (M 5,-5-,,) (1 <j < h); il résulte de ces deux remarques
(et de la définition (3.1.8) de F (¢)) que

(3.1.13) F(l/qt) = ¢ ™92 2F ().

Le rapprochement de (3.1.10), (3.1.12) et (3.1.13) donne immédiatement
I’équation fonctionnelle (3.1.3), et la proposition 3 se trouve établie.
Démontrons alors le théoréme 3. Posons par définition

Pty =(1-0(1—q)Z();

’équation fonctionnelle (3.1.3) pour Z(¢) (prop. 3) implique I’équation
fonctionnelle (3.1.2) pour P(¢), ce qui prouve (i1). Les formules (3.1.10),
(3.1.8) et (3.1.11) (voir la démonstration de la prop. 3) montrent que P (t)
est un polyndme a coefficients entiers: (i) résulte alors de (ii), en ce qui
concerne le degré de P et la valeur de son coefficient dominant; et du fait

que P(0) = Z(0) = 1, en ce qui concerne son terme constant.
Reste a démontrer (ii1). On a

logP(f) =logZ(t) —log(1—1)(1—qt) = » (N, —1—g™t"/m;
m>0
‘ le théoreme 3 du chapitre 8 montre que la série entiére de droite admet
- pour majorante la série Y. 2¢™/?t™, qui est holomorphe dans le disque

m>..0
| 1| < g~ '/% de C; log P(¢) est donc holomorphe dans ce disque, de sorte
que P (¢) n’admet aucun zéro dans le disque | 7| < ¢~ */?; comme la trans-
formation ¢ > 1/gf échange I'intérieur et Pextérieur de ce disque, (i) montre
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que P (¢) n’admet également aucun zéro dans le domaine || > g~'/2:
tous les zéros de P (¢) sont donc sur le cercle | 7| = ¢~ /2, ce qui prouve (ii)
et achéve la démonstration du théoréme 3.

COROLLAIRE 1. — Tous les zéros de la fonction { (V; s) sont sur la droite
Re (s) = 1)2.

Démonstration. — On aen effet { (V;5) = Z (V; ¢~ %), et le changement

de variable t = ¢~ transforme les ¢ de module ¢~ !/% en les s de partie
réelle 1/2. |

3.2. Ce corollaire 1 constitue ’analogue géométrique de I’hypothése
de Riemann, et résulte directement du théoréme 3 du chapitre 8. Inver-
sement, ce corollaire 1 (ou, ce qui revient au méme, la partie (iii) du théo-
réme 3 ci-dessus) implique le théoréme 3 du chapitre 8: écrivons en effet
ZV;t) =P@)/(1—t) (1—gqt), et soient «; (1 <i << 2g) les inverses des
2g zéros de P(¢); on a alors Z(V;t) = (1—oyt) ... (1 —oy,t)/(1—2)(1—qt),

donc (voir sect. 2.2), N,, = ¢" + 1 —a;™ — ... — a,; pour m = 1, ceci
permet d’écrire | g + 1 — Ny | <|oy | + ... + | oz, |; si maintenant on
suppose que les 2¢ zéros de P ont pour module ¢~/ on a |a;| = ¢'/?

pour i = 1, ..., 2g, et la derniére inégalité se réduit (puisque N = N,) a
lg +1 —N|<29q'?:

on retrouve bien I'inégalité¢ (3.1.1) du chapitre 8.

3.3. Remarquons pour terminer que dans la démonstration du théo-
réme 3 ci-dessus, la rationalité de Z (V; ¢) a été établie directement (a I’aide
du théoréme de Riemann-Roch), indépendamment du théoréme 2. Signalons
d’autre part que ’entier 4 qui s’est introduit au cours de la démonstration
de la proposition 3 est égal au nombre de classes de diviseurs de degré 0 du
corps de fonctions algébriques k (V)/k, et qu’on a P (1) = h; ainsi, dans le
cas géométrique comme dans le cas arithmétique, il y a un rapport étroit
entre nombre de classes et comportement de la fonction { au point s = 1
(& ce sujet, voir par exemple [19], chap. VII).

§ 4. Conjectures de Weill.

4.1. Soit maintenant ¥ une variété projective non singulicre de type
(n, d, r) (voir chap. 8, § 4) définie sur k. Une description de Z (V;t), géné-
ralisant le théoréme 3 (qui correspond a r = 1), est donnée par les énoncés
suivants, dits « conjectures de Weil » (voir Weil (1949), p. 507):
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