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qu'on ait (2.2.2) pour tout m > 1, alors la fonction zêta de V est donnée par

(2.2.1): on utilisera cette remarque à plusieurs reprises aux paragraphes 3,

4 et 5.

§ 3. Fonction zêta d'une courbe projective non singulière.

3.1. Si V est une courbe projective non singulière définie sur k, la

fonction Z(V;t) est décrite avec précision par le théorème suivant, dû à

Weil (1940, 1948) (voir aussi [19], chap. VII, p. 130):

Théorème 3. — Si V est une courbe projective non singulière de genre g
définie sur k, on a

(3.1.1) Z(V;t) P(0/(1-0(1-40,
P étant un polynôme à coejficients entiers rationnels vérifiant les propriétés

suivantes :

(i) Le degré de P est égal à 2g ; son coefficient dominant est égal à q9 et

son terme constant à 1.

(ii) P satisfait à l'équation fonctionnelle

(3.1.2) P (1/qt) q~9t~2gP{t)

(iii) Les zéros de P (qui sont des inverses d'entiers algébriques, d'après (i)J,
ont tous pour module q~1/2.

Démonstration. — On utilise essentiellement le théorème 3 du chapitre 8

et le résultat suivant:

Proposition 3. — Mêmes hypothèses que dans le théorème 3 ; la fonction
zêta de V satisfait à l'équation fonctionnelle

(3.1.3) Z(F; 1/qt) q1~9t2~2dZ{V\ t)

Prouvons cette proposition (et convenons, pour simplifier, d'écrire Z (t)
au lieu de Z(V; t), et de dire systématiquement diviseur au lieu de diviseur
rationnel sur k). La formule (1.3.1) montre que Z (t) Dmtm, Dm

désignant ici (puisque V est une courbe) le nombre de diviseurs positifs de

degré m sur V. Mais V possède un diviseur rrt0 (non nécessairement positif)
de degré 1 (chap. 8, th. 3, cor. 2); d'autre part, les diviseurs positifs de

degré g sur V forment un ensemble fini, et l'équivalence linéaire entre divi-
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seurs partage cet ensemble en classes d'équivalence: on peut donc trouver
une famille mu mh de diviseurs positifs de degré g sur V telle que tout
diviseur positif m de degré g sur V soit linéairement équivalent à un rrtj
(1 <J < h) et un seul ; et ceci reste d'ailleurs vrai même si on ne suppose pas
m positif (en effet, si deg (m) g, le théorème de Riemann-Roch donne

/(m) ^ 1, de sorte que tout diviseur m de degré g sur V est linéairement
équivalent à un diviseur positif de degré g sur V).

Pour tout m > 0 et tout j (1 <7 < h), posons alors

(3.1.4) m;>m m7 + (m - g) m0.

Il est clair que, quel que soit le diviseur positif m sur V, il existe un couple
(y, m) et un seul tel que rrt ~ mj>m (m étant d'ailleurs égal à deg (m)).
Calculons maintenant Dm\ si Dj m est le nombre de diviseurs positifs sur V
linéairement équivalents à m/Vw, il résulte de ce qui précède que

par ailleurs, on sait que les diviseurs positifs sur V qui sont linéairement

équivalents à un diviseur donné n forment un espace projectif de dimension

/ (n) — 1 sur k (c'est la série linéaire complète | n | associée à n); on a donc

(1.3.1), (3.1.5) et (3.1.6) donnent ainsi, après multiplication par q — 1:

h

(3.1.5) Dm I Dhm ;

(3.1.6) DJ m card (|my>m|) -l)l(q-l)

(3.1.7) =£ X
m^O j= 1

Posons alors

20-2 h

(3.1.8) F(0 X Z
m=0j=l

20-2 h

(3.1.9) R(t) YJtm+h-1 Y 1) ;

m — 0 1 j= 1

on a évidemment

(3.1.10) (q-l)Z(t) + ;

mais le théorème de Riemann-Roch montre que pour deg (m) m >
— 1, on a / (m) m — g + 1 ; ceci permet, dans R (t), de remplacer chaque



somme £ _ j) t»> par jr
1 _ i) et donne après somma-

j= 1

tion de deux séries géométriques

(3.1.11) R(t) — 1/(1 -0 + «'t2'-1/(l -«0 •

Un calcul direct prouve alors que

(3.1.12) Ä(l/«0 «1_'t2"2'Ä(0-

D'autre part, si m est un diviseur canonique sur F, le théorème de Riemann-

Roch donne

l (j,m) m ~ 0 + 1 + 1 fa ;

en outre, pour toute valeur de m telle que 0 < m < 2g — 2, il est clair

que les h nombres / (ro-rn^J (1 < j < A) sont les mêmes, à l'ordre près,

que les h nombres l (mj>2g-2-m) <J < h) 1 ^ résulte de ces deux remarques
(et de la définition (3.1.8) de F (t)) que

(3.1.13) F(llqt)

Le rapprochement de (3.1.10), (3.1.12) et (3.1.13) donne immédiatement

l'équation fonctionnelle (3.1.3), et la proposition 3 se trouve établie.

Démontrons alors le théorème 3. Posons par définition

P(0 (1-0 (l-qt)Z(t);

l'équation fonctionnelle (3.1.3) pour Z(t) (prop. 3) implique l'équation
fonctionnelle (3.1.2) pour P(t), ce qui prouve (ii). Les formules (3.1.10),

(3.1.8) et (3.1.11) (voir la démonstration de la prop. 3) montrent que P(t)
est un polynôme à coefficients entiers: (i) résulte alors de (ii), en ce qui
concerne le degré de P et la valeur de son coefficient dominant; et du fait
que P (0) Z (0) 1, en ce qui concerne son terme constant.

Reste à démontrer (iii). On a

log P(0 logZ(t) -log(1-0 (l-qt) £ (jV,„-l-qm)tm/m ;

le théorème 3 du chapitre 8 montre que la série entière de droite admet

pour majorante la série £ 2qm/2tm, qui est holomorphe dans le disque
m^O

|*| < tf~1/2 de C; log P(t) est donc holomorphe dans ce disque, de sorte

que P (;t) n'admet aucun zéro dans le disque | 11 < q~1/2 ; comme la
transformation t b> l/qt échange l'intérieur et l'extérieur de ce disque, (ii) montre
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que P (t) n'admet également aucun zéro dans le domaine | t1 > q~1/2 :

tous les zéros de P (t) sont donc sur le cercle 1t1 q~1/2, ce qui prouve (iii)
et achève la démonstration du théorème 3.

Corollaire 1. — Tom les zéros de la fonction £ (V; s) sont sur la droite
Re(s) 1/2.

Démonstration. — On a en effet £ (V; s) Z (V; q~s), et le changement
de variable t q~s transforme les t de module q~1/2 en les s de partie
réelle 1/2.

3.2. Ce corollaire 1 constitue l'analogue géométrique de l'hypothèse
de Riemann, et résulte directement du théorème 3 du chapitre 8.

Inversement, ce corollaire 1 (ou, ce qui revient au même, la partie (iii) du théorème

3 ci-dessus) implique le théorème 3 du chapitre 8: écrivons en effet

Z (V; t) P (0/(1 — t) 0 -qt), et soient oq (1 < i < 2g) les inverses des

2g zéros de P(t); on a alors Z{V\ t) (1 — a^)... (1 — (x2gt)/(l ~~0(1
donc (voir sect. 2.2), Nm qm + 1 — a1m — — a2; pour m 1, ceci

permet d'écrire | q + 1 — Nx | < | ol1 | + + | <x2g | ; si maintenant on

suppose que les 2g zéros de P ont pour module #~1/2, on a | oq | q112

pour i 1, 2g, et la dernière inégalité se réduit (puisque N Nj) à

\q +1 -N\<2
on retrouve bien l'inégalité (3.1.1) du chapitre 8.

3.3. Remarquons pour terminer que dans la démonstration du théorème

3 ci-dessus, la rationalité de Z (V; t) a été établie directement (à l'aide
du théorème de Riemann-Roch), indépendamment du théorème 2. Signalons
d'autre part que l'entier h qui s'est introduit au cours de la démonstration
de la proposition 3 est égal au nombre de classes de diviseurs de degré 0 du

corps de fonctions algébriques k (V)/k, et qu'on a P (1) h \ ainsi, dans le

cas géométrique comme dans le cas arithmétique, il y a un rapport étroit
entre nombre de classes et comportement de la fonction £ au point s 1

(à ce sujet, voir par exemple [19], chap. VII).

§ 4. Conjectures de Weil.

4.1. Soit maintenant V une variété projective non singulière de type
(in, d, r) (voir chap. 8, § 4) définie sur k. Une description de Z(V; t),
généralisant le théorème 3 (qui correspond h r 1), est donnée par les énoncés

suivants, dits «conjectures de Weil» (voir Weil (1949), p. 507):
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