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k, et conjuguées sur k, a pour fonction z&€ta 1/(1 —1¢) (1 —gqt) (1+ qt), fraction
rationnelle qui admet, dans le disque | 7| < ¢~ '/?, les deux poles t = ¢~ *
ett = —qg L

§ 2. Rationalité des fonctions zéta.

2.1. THEOREME 2 (théoréme de Dwork). — Quel que soit V, ensemble
algébrique défini sur k, Z (V'; t) est une fraction rationnelle en t.

Démonstration. — Soient 61, la cloture algébrique du corps p-adique
Q,, Q le complété p-adique de 6,,, ord: Q* — Q, la valuation p-adique de £,
normalisée par ord (p) = 1, et |.|,: @ - R, la valeur absolue p-adique de
Q, normalisée par | D ] , = p_'; Qestun corps algébriquement clos, complet
pour [ . |, c’est 'analogue p-adique de C. Soit maintenant R un nombre
réel positif (ou + c0), et soit D le « disque» de @ défini par | 7|, < R.
Une fonction (définie dans une partie de Q, a valeurs dans Q U { o }) sera
dite holomorphe dans D si elle est représentable dans ce disque comme
somme d’une série entiere convergente; elle sera dite méromorphe dans D
si elle est égale dans ce disque au quotient de deux fonctions holomorphes.

Cela étant, la démonstration du théoréme 2 repose essentiellement sur le
résultat suivant:

PrOPOSITION 1. — Z (V; t) est méromorphe dans Q tout entier.

Indiquons le principe de la démonstration (d’aprés Dwork (1960), et
Serre (1959)). La formule (1.3.4) montre que si V', et V, sont deux sous-
ensembles algébriques d’un méme ensemble algébrique, et si on pose
Va=V, vV, V, =V, 0V, les fonctions z€ta de ces quatre ensembles
algébriques sont liées par Z (V;t) Z(Vyit) = Z(V5;t) Z(V,; t) (remar-
quer qu’'on a, avec des notations évidentes, Ny ,, + Ny, = N3, + Ny )
Un argument combinatoire simple prouve alors qu’on peut se ramener au
cas ol V est une hypersurface affine d’équation F (X4, ..., X,) = ), a, X"

ueU

= 0 (notation analogue a celle du chapitre 7, section 2.2), et qu’on ne
modifie pas le probléme en remplagant Z(V;t) par Z*(V;t) =
= exp ( ), Nnt™/m), N, désignant le nombre de points x = (xy, ..., X,)

m>1
e V, rationnels sur k,, et tels que x,x, ... x, # 0. Soit f§,, un caractére additif
non trivial de k,, a valeurs dans Q (*); un calcul semblable a celui fait au
chapitre 5, section 1.3, montre qu'on a

*) C’est-a-dire un homomorphisme non trivial k,,* - Q%
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(211) qu:: = (qm_l)n + Zﬁm(xOF(xla "°9xn))a

la sommation étant étendue 2 tous les X = (Xo, ..., X,) € (km)" " .

On va transformer le second membre de (2.1.1). Soit { une racine pri-
mitive p-iéme de I'unité dans Q, notons 7¥,, la trace dans I'extension k,,/F,
et prenons pour fB,, (comme d’habitude) le caractére défini par

ﬁ (y) = CTrm(y) == C}"*'J’P+...+ypfm—1
m

(y e k,). Ce caractére peut se « factoriser » grace au résultat suivant:

LeMME 1. — 1l existe une fonction B (t) holomorphe dans le disque ord (1)
> — 1/(p—1) de Q, et possédant les deux propriétés ci-dessous :

(1) Sibg+ byt + ... + bt™ + ... est le développement en série entiére de
B (t) dans ce disque, on a by = 1, et ord (b,,) > m/(p—1) pour tout m.

() Si on identifie le corps résiduel de Q a k, et si, pour tout y € ky,, on
désigne par y 1’unique racine (q™—1)-iéme de I’unité contenue dans Q et
ayant y comme image résiduelle dans k,, < k, on a

(2.1.2) B.(») = BG)BGP) ...BP™ Y.

Une telle fonction B (¢) peut se construire directement (voir Serre (1959),
pp. 4-5, ou Dwork (1960), pp. 634-636); on peut aussi la définir a partir de
I’exponentielle d’Artin-Hasse (voir Dwork (1960), p. 636; pour les pro-
priétés de l’exponentielle d’Artin-Hasse, voir par exemple Yamamoto
(1959)) ou méme a partir de 'exponentielle p-adique ordinaire: en fait, si
n € Q est tel que n? = — p, on peut prendre B (¢) = exp (nt—ntP).

Cela étant, (2.1.1) peut s’écrire successivement

q"Nm = (@"=1" + Y [] Bulax")

x ueU

(pour la notation X*, voir chap. 7, sect. 2.2), puis, compte tenu de (2.1.2),

Jm—1

(2.1.3) q"Nm = (q"=1" + ¥ TI T B(ax"?)

x ueU j=0

(x signifie évidemment (x,, ..., X,); si a, = 0, a, vaut par définition O;
enfin, la sommation est étendue a tous les x e (k;5)"*1). Ici, faisons un
changement de notation: pour tout y € k,, écrivons y au lieu de y (ce qui

revient a identifier les éléments y de k, avec leurs « représentants multi-
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plicatifs » ydans Q); notons par ailleurs 7, le groupe des racines (g™ — 1)-
iemes de I'unité dans Q. La relation (2.1.3) devient

fm—1 .
214  ¢"NE=@ -1+ ¥ II I1BG@x"™).
xeT':n+1 ueU j=0

S-1 )
Posons alors C(t) = [[ B(¢*") (si on a pris B(t) = exp (nt—mnt?), on
i=0

a tout simplement C () = exp (nt—nt?)); on vérifie immédiatement (a
l’aide de la partie (i) du lemme 1) que C (¢) est elle-méme holomorphe dans
le disque ord (¢) > — 1/(p—1) de Q, et que son développement en série
entiére ¢, + ¢4t + ... + ¢,t™ + ... dans ce disque satisfait &

(2.1.5) co =1; ord(c,) >m/(p—1) pour tout m ;

comme aq,? = g, pour tout ue U (le polyndme F est a coefficients dans
k = k), la relation (2.1.4) peut s’écrire

(2.1.6) g"NE =(@"-1"+ ¥ 1] f]C(aux"'qf).

xeT%+1uer=0
Introduisons alors la série formelle 4 n + 1 variables

G(X) = HUC(aUX"’) =Y g, X"

(v parcourant N”*1). La relation (2.1.6) devient

2.1.7) ¢"Nf =@"-1)"+ Y GX®GKE)..GEx"T,

xeT%+1

et (2.1.5) permet d’autre part de vérifier que G (X) posséde la propriété
suivante:

(2.1.8) 1l existe un nombre réel M > 0 tel que pour tout v = (vg, ..., V,),
on ait ord (g,) > M (vo+...+v,).

Soit alors E I’anneau de séries formelles & n + 1 variables @ [[X 1],
considéré comme espace vectoriel sur Q, et définissons de la fagon suivante
deux endomorphismes @ et ¥ de E: si H(X) = > h,X" est un élément
quelconque de E, on a & (H) = thvX V. et Y(H) = & (GH); pour
m > 1, soit également Y™ le m-iéme itéré de V. Alors

LEMME 2. — (i) La série qui donne la trace Tr (V™) de la matrice (infinie)
de W™ par rapport aux X' (ve N"*1) est convergente dans Q et on a
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(2.1.9) (¢"—-1yTr(¥m = Y G(x)G(x)..Gx"T).

n+1
xXe Tm

(ii) Le déterminant caractéristique de ¥ est donné par

(2.1.10) dét (1 —1¥) = exp(— Y, Tr(¥™t"/m).

m>1
(iii) Enfin, 4 (t) = dét (1—t¥) est une fonction holomorphe dans 2 tout
entier.

Pour une démonstration de ce lemme, voir Serre (1959), pp. 7-9 (la
démonstration utilise essentiellement la propriété (2.1.8) des coefficients de
G (X); la partie (i) du lemme est presque immédiate; la partie (ii) généralise
une formule bien connue en dimension finie).

Démontrons alors la proposition 1. Les relations (2.1.7) et (2.1.9)
donnent

q"Nm = (@" ="+ (¢"—1D)""" Tr(¥™);

si on développe (g"—1)" et (¢"—1)"*! par la formule du bindme et si on
utilise la définition de Z* (V; t) et la formule (2.1.10) (voir le lemme 2, (ii)
et (iil)), on trouve

(2.1.11) Z*(V;t) = K; (1) K, (1),

avec

Kl(t) — I_-‘L(l __pn—i—lt)(—l)i+1(i) ,

n+1 nt1

Ky(t) = [[ 4@ o0
i=0

K, (¢) est une fraction rationnelle; comme 4 (¢) est holomorphe dans @
tout entier (lemme 2, (iii)), K, (¢) est évidemment méromorphe dans Q tout
entier; (2.1.11) montre alors que Z* (V; t) est elle-méme méromorphe dans
€2 tout entier, et la proposition 1 est établie.

La démonstration du théoréme 2 utilise également le résultat suivant:

ProrosiTION 2 (critére de rationalité de Dwork). — Soit F(t) une série
formelle en t a coefficients entiers rationnels, et supposons qu’il existe deux
nombres réels positifs R et R, tels que (1) F(t) soit méromorphe dans le
disque | t| < R de C; (ii) F (¢) soit méromorphe dans le disque | t|, < R,
de Q; (ii)) RR, > 1. Alors F(t) est une fraction rationnelle.

L’Enseignement mathém., t. XIX, fasc. 1-2. 7
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On peut supposer R, >1. Si R, = 1 (et par conséquent R > 1), on
retombe sur le classique critére de Borel (voir Borel (1894)). 1l suffit donc
d’examiner le cas ou R, > 1. Si alors F(f) = ay + ayt + ... + a,t™ + ...,
et si on pose pour tout & > 1

Dy = dét (am+i+j)Oéi,j<h >

le principe de la démonstration consiste & déduire de (1), (i) et (iii) I’exis-
tence d’un entier 4 tel que | D,, ;| | Dy |, < 1 pour tout m suffisamment
grand; comme D,, , est un entier, ceci n’est possible que si D, , = 0 pour
m suffisamment grand, donc si, & partir d’'un certain rang, les a,, satisfont
a une relation de récurrence linéaire de longueur 4: mais ceci équivaut a dire
que F (t) est une fraction rationnelle. Pour les détails de la démonstration,
voir par exemple Serre (1959), pp. 2-4.

Cela étant, le théoréme 2 est immédiat: d’apres la section 1.4, il existe un
entier n tel que Z (V;t) soit holomorphe dans le disque | t | < g " de C;
posons R = ¢~ " et (par exemple) R, = ¢""'; on a RR, =g > 1, et
Z (V;t) est évidlemment méromorphe dans le disque | t | » <R, de Q
(prop. 1); la proposition 2 est donc applicable a Z (V;t), qui est effecti-
vement une fraction rationnelle, C.Q.F.D.

n

2.2. On sait (voir Fatou (1906)) que si F(¢) est une fraction rationnelle
en t & coefficients dans Q, si F (0) = 1, et si le développement en série entiére
de F(t) a tous ses coefficients entiers, alors les zéros et les pdles de F(?)
sont des inverses d’entiers algébriques. Ceci s’applique a Z (V'; t) et montre
qu’on peut écrire

r S

(2.2.1) ZWi = [[A-a)/ [TA-80,

i=1 j=1

les «; et les f; étant des entiers algébriques (respectivement les inverses des
zéros et des poOles de Z (V; t)). Prenant les logarithmes des deux membres et
utilisant la formule (1.3.4), on arrive alors au résultat suivant:

COROLLAIRE 1. — 1] existe deux familles (¢.;)1 —; —, et (B;)1 =, d entiers
algébriques telles que pour tout m > 1, on ait

(2.2.2) N, ="+ ..+B" —ay" — ... —a,".

Remarquons qu’inversement, si V" est un ensemble algébrique défini sur
ket si (0;); =iz (B;)1—j=s sont deux familles d’entiers algébriques telles
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qu’on ait (2.2.2) pour tout m > 1, alors la fonction zéta de V est donnée par

(2.2.1): on utilisera cette remarque & plusieurs reprises aux paragraphes 3,
4 et 5.

§ 3. Fonction zéta d’une courbe projective non singuliére.

3.1. Si V est une courbe projective non singuliére définie sur k, la
fonction Z (V;t) est décrite avec précision par le théoréme suivant, di a
Weil (1940, 1948) (voir aussi [19], chap. VII, p. 130):

THEOREME 3. — Si V est une courbe projective non singuliere de genre g
définie sur k, on a
(3.1.1) ZW;n =P@OA-1)A—q1)),

P étant un polynéme a coefficients entiers rationnels vérifiant les propriétés
suivantes :

(i) Le degré de P est égal a 2g; son coefficient dominant est égal a q° et
son terme constant a 1.

(ii) P satisfait a l’équation fonctionnelle

(3.1.2) P(1/qt) = q % *9P (1).

(iii) Les zéros de P (qui sont des inverses d’entiers algébriques, d’aprés (1)),
ont tous pour module g~ /2

Démonstration. — On utilise essentiellement le théoréme 3 du chapitre 8
et le résultat suivant:

PROPOSITION 3. — Mémes hypothéses que dans le théoréme 3 ; la fonction
zéta de V satisfait a 1’équation fonctionnelle

(3.1.3) Z(V;1jqt) = q* 7% Z(V;1).

Prouvons cette proposition (et convenons, pour simplifier, d’écrire Z (¢)
au lieu de Z (V; t), et de dire systématiquement diviseur au lieu de diviseur
rationnel sur k). La formule (1.3.1) montre que Z(¢t) = ) D,t™, D,

m>.0

désignant ici (puisque V est une courbe) le nombre de diviseurs positifs de
degré m sur V. Mais V posséde un diviseur m, (non nécessairement positif)
de degré 1 (chap. 8, th. 3, cor. 2); d’autre part, les diviseurs positifs de
degré g sur V forment un ensemble fini, et I’équivalence linéaire entre divi-
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