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k2 et conjuguées sur k, a pour fonction zêta 1/(1 — r) (1 — ^r) (1 -h qt), fraction
rationnelle qui admet, dans le disque | t1 < q~1/2, les deux pôles t q'1
et t — q~\

§ 2. Rationalité des fonctions zêta.

2.1. Théorème 2 (théorème de Dwork). — Quel que soit V, ensemble

algébrique défini sur k, Z (V; t) est une fraction rationnelle en t.

Démonstration. — Soient Qp la clôture algébrique du corps /?-adique

Qp, Q le complété /?-adique de Qp, ord : Q* -> Q, la valuation ^-adique de Q,

normalisée par ord (p) 1, et | \p: Q -» R, la valeur absolue /?-adique de

Q, normalisée par \p\p p~1 ; Q est un corps algébriquement clos, complet

pour | |p: c'est l'analogue j^-adique de C. Soit maintenant R un nombre
réel positif (ou + oo), et soit D le « disque » de Q défini par | 11

p < R.

Une fonction (définie dans une partie de Q, à valeurs dans Q u { oo }) sera

dite holomorphe dans D si elle est représentable dans ce disque comme
somme d'une série entière convergente; elle sera dite méromorphe dans D
si elle est égale dans ce disque au quotient de deux fonctions holomorphes.
Cela étant, la démonstration du théorème 2 repose essentiellement sur le

résultat suivant:

Proposition 1. — Z (V; t) est méromorphe dans Q tout entier.

Indiquons le principe de la démonstration (d'après Dwork (1960), et

Serre (1959)). La formule (1.3.4) montre que si V1 et V2 sont deux sous-
ensembles algébriques d'un même ensemble algébrique, et si on pose
V3 — V1 kj V2, V1 nV2, les fonctions zêta de ces quatre ensembles

algébriques sont liées par Z (V1 ; t) Z (V2 ; t) Z (V3 ; t) Z (V4; t) (remarquer

qu'on a, avec des notations évidentes, N1>m + 7V2 m 7V3 m + N4ftn).

Un argument combinatoire simple prouve alors qu'on peut se ramener au

cas où V est une hypersurface affine d'équation F(X1, Xn) £ auXn
ueU

0 (notation analogue à celle du chapitre 7, section 2.2), et qu'on ne

modifie pas le problème en remplaçant Z(V;t) par Z*(V;t)
exp J] N*tmlm), TV* désignant le nombre de points x (xu xn)

m^l
e V, rationnels sur km et tels que x1x2 xn ^ 0. Soit ßm un caractère additif
non trivial de km, à valeurs dans Q (*) ; un calcul semblable à celui fait au

chapitre 5, section 1.3, montre qu'on a

*) C'est-à-dire un homomorphisme non trivial km + H*.
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(2.1.1) qmN* (qm-lT+ ^ ßm(x0F (xl
X

la sommation étant étendue à tous les x (x0, xn) e (k*)n+
On va transformer le second membre de (2.1.1). Soit une racine

primitive p-ième de l'unité dans Q, notons Trm la trace dans l'extension km/¥p,

et prenons pour ßm (comme d'habitude) le caractère défini par

ß _ çTrm(y) _ ^y + yP +... +ypfm~1

(yekm). Ce caractère peut se «factoriser» grâce au résultat suivant:

Lemme 1. — II existe une fonction Bit) holomorphe dans le disque ord (/)
> — l/(/7— 1) de Q, et possédant les deux propriétés ci-dessous :

(i) Si b0 -h bxt + + bmtm + est le développement en série entière de

B (t) dans ce disque, on a b0 1, et ord (bm) > mj{p— 1) pour tout m.

(ii) Si on identifie le corps résiduel de Q à k, et si, pour tout yek*, on

désigne par y l'unique racine (qm-l)-ième de l'unité contenue dans Q et

ayant y comme image résiduelle dans km cz k, on a

(2.1.2) ßjy) =B(y)B(y")...B

Une telle fonction B(t) peut se construire directement (voir Serre (1959),

pp. 4-5, ou Dwork (1960), pp. 634-636); on peut aussi la définir à partir de

l'exponentielle d'Artin-Hasse (voir Dwork (1960), p. 636; pour les

propriétés de l'exponentielle d'Artin-Hasse, voir par exemple Yamamoto
(1959)) ou même à partir de l'exponentielle 77-adique ordinaire: en fait, si

71 e Q est tel que tzp — p, on peut prendre B (t) exp (nt — 7itp).

Cela étant, (2.1.1) peut s'écrire successivement

qmN* 0 qm-l)n+ Z n
x ue U

(pour la notation Xu\ voir chap. 7, sect. 2.2), puis, compte tenu de (2.1.2),

fm- 1

(2.1.3) qmNt (qm-lf +Z n n B(aS-u'pi)
x ue U j 0

(x signifie évidemment (x0,...,x„);si a„ 0, âu vaut par définition 0;
enfin, la sommation est étendue à tous les xe(^)"+1). Ici, faisons un
changement de notation: pour tout yek*, écrivons y au lieu de y (ce qui
revient à identifier les éléments y de k* avec leurs « représentants multi-
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plicatifs » j^dans Q); notons par ailleurs Tm le groupe des racines (qm— 1)-
ièmes de l'unité dans Q. La relation (2.1.3) devient

fm- 1

(2.1.4) qmN* {qm — 1)" + £ ïl B (aux^J)
xeT"m+1 ue U j 0

f-1
Posons alors C (t) ]^[i?(?pl) (si on a pris B (t) exp (jit — ntp), on

i 0

a tout simplement C (t) exp (nt — 7itq)); on vérifie immédiatement (à
l'aide de la partie (i) du lemme 1) que C (t) est elle-même holomorphe dans
le disque ord (t) > — lj(p—l) de Q, et que son développement en série

entière c0 + c{t + + cmtm + dans ce disque satisfait à

(2.1.5) c0 1 ; ord (cm) >ra/(/?—1) pour tout m ;

comme auq au pour tout ne U (le polynôme F est à coefficients dans

k k±), la relation (2.1.4) peut s'écrire

m — 1

(2.1.6) qmN*=(qm-l)"+ X [1 11 C(a^).
xe r"+ *

ue U j 0
m

Introduisons alors la série formelle h n + 1 variables

Gff) EI C(«u^u') X <7v*v
uet/

(v parcourant Nn+1). La relation (2.1.6) devient

(2.1.7) qmNt («"-I)" + S G (x) G (x*) G (x^m ~*)
Tn +1xe m

et (2.1.5) permet d'autre part de vérifier que G (X) possède la propriété
suivante :

(2.1.8) Il existe un nombre réel M > 0 tel que pour tout v (v09 vn),

on ait ord (gv) > M(v0 +...+vn).

Soit alors E l'anneau de séries formelles à n + 1 variables Q [[X]~],
considéré comme espace vectoriel sur Q, et définissons de la façon suivante
deux endomorphismes # et W de E: si H (X) YKX^ est un élément

quelconque de E, on a $ (H) YKX\ e* ?(ff) $(<?#); pour
m > 1, soit également Wm le m-ième itéré de T. Alors

Lemme 2. — (i) La série qui donne la trace Tr *Fm) de la matrice (infinie)
de Wm par rapport aux Xy (vgN" + *) est convergente dans Q et on a
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(2.1.9) (qm-l)n+1 TrÇ¥m) £ G(x) G(x«) G(x«m *).
^«+1xe m

(ii) Le déterminant caractéristique de ÎP ei? donné par

(2.1.10) dét(l-fY) exp(- £ (Tm) ?m/m).

(iii) Enfin, A (t) dét (1 -?'L) est une fonction holomorphe dans Q tout

entier.

Pour une démonstration de ce lemme, voir Serre (1959), pp. 7-9 (la

démonstration utilise essentiellement la propriété (2.1.8) des coefficients de

G (X); la partie (i) du lemme est presque immédiate; la partie (ii) généralise

une formule bien connue en dimension finie).
Démontrons alors la proposition L Les relations (2.1.7) et (2.1.9)

donnent

qmNt (qm - 1)" + (qm -l)n + 1 Tr (Ym) ;

si on développe (qm-l)n et (<qm-l)n+1 par la formule du binôme et si on
utilise la définition de Z* (V; t) et la formule (2.1.10) (voir le lemme 2, (ii)
et (iii)), on trouve

(2.1.11) Z*(V;t) K^K^t),
avec

Kfit) n (i
i 0

K2(t) nY[A(pn-ity-1)i+1(n+i
i=0

Kt (t) est une fraction rationnelle; comme A (t) est holomorphe dans Q

tout entier (lemme 2, (iii)), K2 (t) est évidemment méromorphe dans Q tout
entier; (2.1.11) montre alors que Z* (V;t) est elle-même méromorphe dans

Q tout entier, et la proposition 1 est établie.

La démonstration du théorème 2 utilise également le résultat suivant:

Proposition 2 (critère de rationalité de Dwork). — Soit F (t) une série

formelle en t à coefficients entiers rationnels, et supposons qu 'il existe deux
nombres réels positifs R et Rp tels que (i) F(t) soit méromorphe dans le

disque | t \ < R de C; (ii) F (t) soit méromorphe dans le disque | t \p < Rp
de Q ; (iii) RRp > 1. Alors F (t) est une fraction rationnelle.

L'Enseignement mathém., t. XIX, fasc. 1-2. 7
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On peut supposer Rp > 1. Si Rp 1 (et par conséquent R > 1), on
retombe sur le classique critère de Borel (voir Borel (1894)). Il suffit donc
d'examiner le cas où Rp > 1. Si alors F{t) a0 + axt + + amtm 4-

et si on pose pour tout h > 1

Dm,h dét (am + i + j)o^i,j<h 9

le principe de la démonstration consiste à déduire de (i), (ii) et (iii) l'existence

d'un entier h tel que | Dm h
| | Dmh |p < 1 pour tout m suffisamment

grand; comme Dm h est un entier, ceci n'est possible que si Dm h 0 pour
m suffisamment grand, donc si, à partir d'un certain rang, les am satisfont
à une relation de récurrence linéaire de longueur h : mais ceci équivaut à dire

que F(t) est une fraction rationnelle. Pour les détails de la démonstration,
voir par exemple Serre (1959), pp. 2-4.

Cela étant, le théorème 2 est immédiat: d'après la section 1.4, il existe un
entier n tel que Z(V;t) soit holomorphe dans le disque | t \ < q~n de C;
posons R q~n et (par exemple) Rp qn+1; on a RRp q > 1, et

Z(V;t) est évidemment méromorphe dans le disque \t\p < Rp de Q

(prop. 1); la proposition 2 est donc applicable à Z(V;t), qui est
effectivement une fraction rationnelle, C.Q.F.D.

2.2. On sait (voir Fatou (1906)) que si F(t) est une fraction rationnelle

en t à coefficients dans Q, si F (0) 1, et si le développement en série entière
de F{t) a tous ses coefficients entiers, alors les zéros et les pôles de F(t)
sont des inverses d'entiers algébriques. Ceci s'applique à Z (V; t) et montre
qu'on peut écrire

(2.2.1) Z(V;t) ft (1-0,0/11(1-/^),
i=i j= i

les af et les ßj étant des entiers algébriques (respectivement les inverses des

zéros et des pôles de Z (F; t)). Prenant les logarithmes des deux membres et

utilisant la formule (1.3.4), on arrive alors au résultat suivant:

Corollaire 1. — Il existe deux familles (oq)^^,. et (ßj)i^j^s d'entiers

algébriques telles que pour tout m > 1, on ait

(2.2.2) Nm ßf1 + + ßsm - aim - - arM.

Remarquons qu'inversement, si V est un ensemble algébrique défini sur

k et si (oq)l£Éi^r, (ßj)i^j^s sont deux familles d'entiers algébriques telles
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qu'on ait (2.2.2) pour tout m > 1, alors la fonction zêta de V est donnée par

(2.2.1): on utilisera cette remarque à plusieurs reprises aux paragraphes 3,

4 et 5.

§ 3. Fonction zêta d'une courbe projective non singulière.

3.1. Si V est une courbe projective non singulière définie sur k, la

fonction Z(V;t) est décrite avec précision par le théorème suivant, dû à

Weil (1940, 1948) (voir aussi [19], chap. VII, p. 130):

Théorème 3. — Si V est une courbe projective non singulière de genre g
définie sur k, on a

(3.1.1) Z(V;t) P(0/(1-0(1-40,
P étant un polynôme à coejficients entiers rationnels vérifiant les propriétés

suivantes :

(i) Le degré de P est égal à 2g ; son coefficient dominant est égal à q9 et

son terme constant à 1.

(ii) P satisfait à l'équation fonctionnelle

(3.1.2) P (1/qt) q~9t~2gP{t)

(iii) Les zéros de P (qui sont des inverses d'entiers algébriques, d'après (i)J,
ont tous pour module q~1/2.

Démonstration. — On utilise essentiellement le théorème 3 du chapitre 8

et le résultat suivant:

Proposition 3. — Mêmes hypothèses que dans le théorème 3 ; la fonction
zêta de V satisfait à l'équation fonctionnelle

(3.1.3) Z(F; 1/qt) q1~9t2~2dZ{V\ t)

Prouvons cette proposition (et convenons, pour simplifier, d'écrire Z (t)
au lieu de Z(V; t), et de dire systématiquement diviseur au lieu de diviseur
rationnel sur k). La formule (1.3.1) montre que Z (t) Dmtm, Dm

désignant ici (puisque V est une courbe) le nombre de diviseurs positifs de

degré m sur V. Mais V possède un diviseur rrt0 (non nécessairement positif)
de degré 1 (chap. 8, th. 3, cor. 2); d'autre part, les diviseurs positifs de

degré g sur V forment un ensemble fini, et l'équivalence linéaire entre divi-
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