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nitions de Z (V; t), ’énoncé (mais non la démonstration) du théoréme 2,
et le corollaire 1 de ce théoréme 2 (on y utilise également les résultats des
chapitres 5 et 6).

§ 1. Definitions, propriétés élémentaires.

1.1. Soit ¥ un ensemble algébrique (affine ou projectif) défini sur k, et
soit M I’ensemble des cycles de dimension 0, premiers rationnels sur k, et
portés par V (voir [15], chap. I, §§ 9.2 et 9.3); rappelons qu’un tel cycle m
est une combinaison linéaire formelle x; + ... + x,, de points de V (algé-
briques sur k) satisfaisant aux deux conditions suivantes:

(D) k(xy) = ... = k(X = kpy;

(i) les x; (1 <j <<m) sont permutés transitivement par le groupe de
Galois de k,/k;

I’entier m s’appelle degré de m, on le note deg (m); entier g*#M = card (k,,)
est noté¢ Nm; cela étant:

DEFINITION 1. — On appelle fonction zéta (« minuscule ») de V la fonction
d’une variable complexe s définie par

(1.1.1) ((V;s) = J] 1/ —=Nm™%).

meM
(On verra plus loin que ce produit infini converge quand la partie réelle de s
est suffisamment grande.)

Si V est une k-variété affine, il existe une bijection canonique de M sur
Iensemble des idéaux maximaux de I'anneau de coordonnées 4 = k [V]
(conséquence facile du théoréme des zéros de Hilbert); faisons 1’'identifica-
tion correspondante; si alors me M, A4/m est isomorphe a k,, avec m
= deg (m), et on a Nm = card (4/m); la définition (1.1.1) de {(V; s)
a partir de 4 = k [V'] et de ’ensemble M des idéaux maximaux de A est
dans ce cas entiérement analogue a celle de la fonction { (K; s) d’un corps de
nombres K a partir de ’anneau A = Oy des entiers de K et de I’ensemble des
idéaux maximaux de A. (Ces deux définitions sont en fait des cas parti-
culiers de la notion générale de fonction z€ta d’un schéma de type fini sur Z:
voir [16], pp. 82-86).

1.2. La relation Nm = ¢ incite a faire le changement de variable
t = g~ ° et a poser une seconde définition:
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DEFINITION 2. — On appelle fonction zéta (« majuscule ») de V la fonction
d’une variable complexe t définie par

(1.2.1) O Z;H = J] 11—y,
mMeM

(On verra que ce produit infini converge quand | t | est suffisamment petit.)
On a alors évidemment

(1.2.2) ((V;s) =Z(V;q7).

1.3. On va transformer la définition (1.2.1) de Z (V;t). Pour tout
j >1, soit d; le nombre de cycles m e M tels que deg (m) = j: le nombre
de points x € V tels que [k (x): k] = j est évidlemment égal a jd;. Soit
maintenant m un entier > 1; le nombre de points x € V rationnels sur k,,
(c’est-a-dire tels que k (x) < k,,, donc que [k (x): k] divise m: chap. 1,
prop. 4) est alors donné par

(1.3.1) N, = Y jd;.

D’autre part, I’égalité (1.2.1) peut s’écrire

(1.3.2) Z(V;n = [l 1A —v)i.

j=1

Considérons provisoirement ¢ comme une indéterminée; dans ’anneau de
séries formelles Q [[t]], le produit infini figurant au second membre de
(1.3.2) est évidemment convergent, et il est de la forme 1 + tG (1), avec
G()eZ [[t]]. Si D; désigne le nombre de cycles positifs de dimension 0
et de degré d rationnels sur k (mais non nécessairement premiers) et portés
par V, un calcul facile (analogue a celui qui permet de transformer en série
de Dirichlet la fonction z€ta de Riemann, supposée définie comme produit
« eulérien » infini) montre d’ailleurs qu’on a de fagon précise

(1.3.3) Z(V;t) =1+ ) D™.

m>1

Prenons alors, dans Q [[t]], les logarithmes des deux membres de (1.3.2);
il vient

logZ(V;t) = > > d;i"n,

Jj=1 n>1

soit, en multipliant par j le numérateur et le dénominateur du terme général,
en posant m = nj, et en tenant compte de (1.3.1),
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logZ(V;t) = > N,t"[m.
m>1
Ainsi:
PRroOPOSITION 1. — Considérons Z (V; t) comme élément de Q [[t]]. Alors

(i) Z(V;?t) appartient a 1 + tZ[[t]], et elle est donnée explicitement par
la formule (1.3.3).

(1) Si N,, désigne le nombre de points de V rationnels sur k,,, on a
(1.3.4) Z(V;t) =exp( ), Nyt"/m).
m>.1

La formule (1.3.4) est plus maniable que la formule (1.2.1), et c’est elle
qu’on prend généralement comme définition de Z (V;t); { (V;s) est alors
définie par la formule (1.2.2).

1.4. Considérons a nouveau ¢ comme une variable complexe, et
Z (V;t) comme une fonction de variable complexe. Si on suppose V affine,
plongé dans A,, ’entier N,, est majoré par le nombre de points de A, ra-
tionnels sur k,,; on a donc N,, <(¢")" = (¢")", et la série entiére » N, t"/m

m>1

admet pour majorante la série entiére Y (¢"t)"/m = log 1/(1—¢"t), qui

m>1
est holomorphe dans le disque | 7| < ¢™"; ainsi, Z (V; t) est holomorphe
(au moins) dans le disque | t | < g~ ". Méme raisonnement et méme conclu-
sion si V est projectif, plongé dans P,; on a alors N,, < (¢")" + ("~ )™ + ...
+ g™ + 1, et la série Y. N, t"/m admet pour majorante la fonction log 1/

m>.1
(1—1)(1—g?) ... (1—¢"t), qui est holomorphe dans |7| < ¢~". Compte
tenu de (1.2.2), on peut donc énoncer:

PROPOSITION 2. — Si V désigne un ensemble algébrique défini sur k et
plongé dans [’espace affine ou projectif de dimension n sur k, la fonction
Z (V;t) (supposée définie par (1.3.4)) est holomorphe (au moins) dans le
disque l tl < g~ ", la fonction { (V;s) est holomorphe (au moins) dans le
demi-plan Re (s) > n.

On laisse au lecteur le soin de vérifier, en passant par 'intermédiaire de la
formule (1.3.3), que le produit infini (1.2.1) converge pour | ¢| < ¢™" (au
moins) et que le produit infini (1.1.1) converge alors pour Re (s) > n (au
moins). Notons d’autre part que les majorantes introduites ci-dessus ne sont
autres que les logarithmes des fonctions z€ta de A, et P,; ainsi
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PROPOSITION 3. — Considérons A, et P, comme variétés définies sur k ;
alors
(1.4.1) ZA;H = 1/(1-4");
(1.4.2) ZP,;t) = 1/(1-1)(1—qt)...(1—4").

Si ¥ est une variété, le théoréme 4 du chapitre 8 permet d’en dire plus:

THEOREME 1. — Soit V une variété (affine ou projective) de dimension r,
définie sur k. Alors

G) Z (V;t) est holomorphe dans le disque | t | <q "
(ii) Elle se prolonge analytiquement en une fonction méromorphe dans le
disque | t| < g~ "" /2,

(iii) Ainsi prolongée, elle n’admet aucun zéro, et elle a pour seule singularité

r

un pole simple en t = q ™ ".

Démonstration. — D’aprés le chapitre 8 (sect. 4.1, th. 1, pour le cas
projectif; sect. 4.3, pour le cas affine), on peut, pour tout m > 1, écrire
(1.4.3) Nn = (@™ + Bu (g™~ 42,

et la suite B, (m=1, 2, ...) est alors bornée; posons

H(w) = 3 Buu"m; |
m>1
H (u) est holomorphe dans le disque Iul < 1, et (1.4.3), joint a (1.3.4),
permet d’écrire

(1.4.4) Z(V;1) =exp(H (@~ Y201 —-q");

le numérateur et le dénominateur du membre de droite sont holomorphes

dans le disque | 7| < ¢7"* 1/, et le numérateur ne s’y annule évidemment

pas; comme par ailleurs le dénominateur ne s’annule dans ce disque qu’en
= ¢~ ", qui est un zéro simple, le théoréme 1 se trouve établi.

Les assertions (i) et (ii) du théoréme 1 restent vraies pour un ensemble
algébrique V quelconque (en ce qui concerne (ii), on a déja annoncé, et on
démontrera au paragraphe 2, que Z (V; t) est une fraction rationnelle: elle
se prolonge donc analytiquement a C tout entier !); tel n’est plus le cas pour
’assertion (iii): par exemple, si ¢ = 3 (mod 4), la k-variété projective définie
dans P, (rapporté & un systeme de frois coordonnées homogenes x, y, z)
par I’équation X?* + Y2 = 0, et qui est formée de deux droites définies sur
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k, et conjuguées sur k, a pour fonction z&€ta 1/(1 —1¢) (1 —gqt) (1+ qt), fraction
rationnelle qui admet, dans le disque | 7| < ¢~ '/?, les deux poles t = ¢~ *
ett = —qg L

§ 2. Rationalité des fonctions zéta.

2.1. THEOREME 2 (théoréme de Dwork). — Quel que soit V, ensemble
algébrique défini sur k, Z (V'; t) est une fraction rationnelle en t.

Démonstration. — Soient 61, la cloture algébrique du corps p-adique
Q,, Q le complété p-adique de 6,,, ord: Q* — Q, la valuation p-adique de £,
normalisée par ord (p) = 1, et |.|,: @ - R, la valeur absolue p-adique de
Q, normalisée par | D ] , = p_'; Qestun corps algébriquement clos, complet
pour [ . |, c’est 'analogue p-adique de C. Soit maintenant R un nombre
réel positif (ou + c0), et soit D le « disque» de @ défini par | 7|, < R.
Une fonction (définie dans une partie de Q, a valeurs dans Q U { o }) sera
dite holomorphe dans D si elle est représentable dans ce disque comme
somme d’une série entiere convergente; elle sera dite méromorphe dans D
si elle est égale dans ce disque au quotient de deux fonctions holomorphes.

Cela étant, la démonstration du théoréme 2 repose essentiellement sur le
résultat suivant:

PrOPOSITION 1. — Z (V; t) est méromorphe dans Q tout entier.

Indiquons le principe de la démonstration (d’aprés Dwork (1960), et
Serre (1959)). La formule (1.3.4) montre que si V', et V, sont deux sous-
ensembles algébriques d’un méme ensemble algébrique, et si on pose
Va=V, vV, V, =V, 0V, les fonctions z€ta de ces quatre ensembles
algébriques sont liées par Z (V;t) Z(Vyit) = Z(V5;t) Z(V,; t) (remar-
quer qu’'on a, avec des notations évidentes, Ny ,, + Ny, = N3, + Ny )
Un argument combinatoire simple prouve alors qu’on peut se ramener au
cas ol V est une hypersurface affine d’équation F (X4, ..., X,) = ), a, X"

ueU

= 0 (notation analogue a celle du chapitre 7, section 2.2), et qu’on ne
modifie pas le probléme en remplagant Z(V;t) par Z*(V;t) =
= exp ( ), Nnt™/m), N, désignant le nombre de points x = (xy, ..., X,)

m>1
e V, rationnels sur k,, et tels que x,x, ... x, # 0. Soit f§,, un caractére additif
non trivial de k,, a valeurs dans Q (*); un calcul semblable a celui fait au
chapitre 5, section 1.3, montre qu'on a

*) C’est-a-dire un homomorphisme non trivial k,,* - Q%
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