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nitions de Z (V; t), l'énoncé (mais non la démonstration) du théorème 2,

et le corollaire 1 de ce théorème 2 (on y utilise également les résultats des

chapitres 5 et 6).

§ 1. Definitions, propriétés élémentaires.

1.1. Soit V un ensemble algébrique (affine ou projectif) défini sur k, et
soit M l'ensemble des cycles de dimension 0, premiers rationnels sur k, et
portés par V (voir [15], chap. I, §§ 9.2 et 9.3); rappelons qu'un tel cycle m
est une combinaison linéaire formelle xx + + xw de points de V
(algébriques sur k) satisfaisant aux deux conditions suivantes :

(i) k(xj) k (xm) km;

(ii) les Xy (1 <y < m) sont permutés transitivement par le groupe de

Galois de kjk\
l'entier m s'appelle degré de m, on le note deg (m) ; l'entier gdeg(m) card (km)

est noté Nm; cela étant:

Définition 1. — On appelle fonction zêta « minuscule ») de V la fonction
d'une variable complexe s définie par

(1.1.1) UVis) n 1/(1
rrteM

(On verra plus loin que ce produit infini converge quand la partie réelle de s

est suffisamment grande.)
Si V est une k-variété affine, il existe une bijection canonique de M sur

l'ensemble des idéaux maximaux de l'anneau de coordonnées A k [V]
(conséquence facile du théorème des zéros de Hilbert); faisons l'identification

correspondante; si alors m g M, A/m est isomorphe à km, avec m

deg (m), et on a Nm card (A/m); la définition (1.1.1) de Ç (V; s)

à partir de A k [V] et de l'ensemble M des idéaux maximaux de A est

dans ce cas entièrement analogue à celle de la fonction (K; s) d'un corps de

nombres K à partir de l'anneau A — 0K des entiers de K et de l'ensemble des

idéaux maximaux de A. (Ces deux définitions sont en fait des cas
particuliers de la notion générale de fonction zêta d'un schéma de type fini sur Z:
voir [16], pp. 82-86).

1.2. La relation Nm gdeg(m> incite à faire le changement de variable

t q~s et à poser une seconde définition:
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Définition 2. — On appelle fonction zêta « majuscule ») de V lafonction
d'une variable complexe t définie par

(1.2.1) Z(V;t)n l/(l-lde8(m))-
rrteM

(On verra que ce produit infini converge quand | t1 est suffisamment petit.)
On a alors évidemment

(1.2.2) UV;s) Z(V;q-s).

1.3. On va transformer la définition (1.2.1) de Z(V;t). Pour tout

j > 1, soit dj le nombre de cycles m e M tels que deg (m) — y: le nombre

de points xeV tels que [fc(x):/c] j est évidemment égal à jdj. Soit

maintenant m un entier > 1 ; le nombre de points x e V rationnels sur km

(c'est-à-dire tels que A: (x) cz km, donc que [fc(x):/:] divise m : chap. 1,

prop. 4) est alors donné par

(1.3.1) Nm£ jdj.
j'lm

D'autre part, l'égalité (1.2.1) peut s'écrire

(1.3.2) Z(F;0 El 1/(1

Considérons provisoirement t comme une indéterminée; dans l'anneau de

séries formelles Q [[t]], le produit infini figurant au second membre de

(1.3.2) est évidemment convergent, et il est de la forme 1 + tG (t), avec
G (t) e Z [[*]]. Si Dj désigne le nombre de cycles positifs de dimension 0

et de degré d rationnels sur k (mais non nécessairement premiers) et portés

par V, un calcul facile (analogue à celui qui permet de transformer en série

de Dirichlet la fonction zêta de Riemann, supposée définie comme produit
« eulérien » infini) montre d'ailleurs qu'on a de façon précise

(1.3.3) Z(V;t)1 + X Dmtm.
m 1

Prenons alors, dans Q [[t]], les logarithmes des deux membres de (1.3.2);
il vient

logZ(V;t) X Z djtnj/n

soit, en multipliant par j le numérateur et le dénominateur du terme général,
en posant m nj, et en tenant compte de (1.3.1),
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logZ(F;0 £ Nmtmlrn
m^l

Ainsi:

Proposition 1. — Considérons Z (V; t) comme élément de Q [M]- Alors

(i) Z (F; f) appartient à 1 + fZ [[*]], ef e//<? donnée explicitement par
la formule (\33).
(ii) Si Nm désigne le nombre de points de V rationnels sur km, on a

(1.3.4) Z(V;t)exp( £ Nmtmlrn).
m^l

La formule (1.3.4) est plus maniable que la formule (1.2.1), et c'est elle

qu'on prend généralement comme définition de Z (V; t); (V; s) est alors

définie par la formule (1.2.2).

1.4. Considérons à nouveau t comme une variable complexe, et

Z (V; t) comme une fonction de variable complexe. Si on suppose V affine,

plongé dans A„, l'entier Nm est majoré par le nombre de points de A„
rationnels sur km \ on a donc Nm < (qn)m (qn)m, et la série entière Nmtmjrn

m^l
admet pour majorante la série entière £ (qnt)mjm log 1/(1— #"0, ffi-û

m^l
est holomorphe dans le disque | 11 < q~n; ainsi, Z (F; t) est holomorphe
(au moins) dans le disque | 11 < q~n. Même raisonnement et même conclusion

si V est projectif, plongé dans P„; on a alors Nm

+ qm +1, et la série £ Nmtmlm admet pour majorante la fonction log 1/

— qui est holomorphe dans | 11 < q~n. Compte
tenu de (1.2.2), on peut donc énoncer:

Proposition 2. — Si V désigne un ensemble algébrique défini sur k et

plongé dans l'espace affine ou projectif de dimension n sur k, la fonction

Z(V\t) (supposée définie par (\3A)) est holomorphe (au moins) dans le

disque | 11 < q~n ; la fonction (V; s) est holomorphe (au moins) dans le

demi-plan Re (s) > n.

On laisse au lecteur le soin de vérifier, en passant par l'intermédiaire de la

formule (1.3.3), que le produit infini (1.2.1) converge pour | 11 < q~n (au

moins) et que le produit infini (1.1.1) converge alors pour Re (s) > n (au

moins). Notons d'autre part que les majorantes introduites ci-dessus ne sont

autres que les logarithmes des fonctions zêta de A„ et P„ ; ainsi



— 93 —

Proposition 3. — Considérons An et P„ comme variétés définies sur k ;
alors

(1.4.1) Z (A„; t) 1/(1-«"0;

(1.4.2) Z(P„; t) 1/(1 —0 (1 —qt) (1 —qnt) -

Si F est une variété, le théorème 4 du chapitre 8 permet d'en dire plus:

Théorème 1. — Soit V une variété (affine ou projective) de dimension r,

définie sur k. Alors

(i) Z (V;t) est holomorphe dans le disque | 11 < q~r.

(ii) Elle se prolonge analytiquement en une fonction méromorphe dans le

disque \ 11 < q~r+(-1/2).

(iii) Ainsi prolongée, elle n \admet aucun zéro, et elle a pour seule singularité

un pôle simple en t q~r.

Démonstration. — D'après le chapitre 8 (sect. 4.1, th. 1, pour le cas

projectif; sect. 4.3, pour le cas affine), on peut, pour tout m > 1, écrire

(1.4.3) JVm (qmY+-Bm(«mr(1/2),

et la suite Bm (m=1, 2,...) est alors bornée ; posons

H (h) £ Bmumlrn;

H (u) est holomorphe dans le disque | u | < 1, et (1.4.3), joint à (1.3.4),

permet d'écrire

(1.4.4) Z(V;t) exp (H (qr~a/2)t))l(l ~qrt) ;

le numérateur et le dénominateur du membre de droite sont holomorphes
dans le disque | 11 < q~r+(1/2\ et le numérateur ne s'y annule évidemment

pas; comme par ailleurs le dénominateur ne s'annule dans ce disque qu'en
t q~r, qui est un zéro simple, le théorème 1 se trouve établi.

Les assertions (i) et (ii) du théorème 1 restent vraies pour un ensemble

algébrique V quelconque (en ce qui concerne (ii), on a déjà annoncé, et on
démontrera au paragraphe 2, que Z (V; t) est une fraction rationnelle: elle
se prolonge donc analytiquement à C tout entier ; tel n'est plus le cas pour
l'assertion (iii): par exemple, si q 3 (mod 4), la k-variété projective définie
dans P2 (rapporté à un système de trois coordonnées homogènes x, y, z)

par l'équation X2 + Y2 0, et qui est formée de deux droites définies sur
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k2 et conjuguées sur k, a pour fonction zêta 1/(1 — r) (1 — ^r) (1 -h qt), fraction
rationnelle qui admet, dans le disque | t1 < q~1/2, les deux pôles t q'1
et t — q~\

§ 2. Rationalité des fonctions zêta.

2.1. Théorème 2 (théorème de Dwork). — Quel que soit V, ensemble

algébrique défini sur k, Z (V; t) est une fraction rationnelle en t.

Démonstration. — Soient Qp la clôture algébrique du corps /?-adique

Qp, Q le complété /?-adique de Qp, ord : Q* -> Q, la valuation ^-adique de Q,

normalisée par ord (p) 1, et | \p: Q -» R, la valeur absolue /?-adique de

Q, normalisée par \p\p p~1 ; Q est un corps algébriquement clos, complet

pour | |p: c'est l'analogue j^-adique de C. Soit maintenant R un nombre
réel positif (ou + oo), et soit D le « disque » de Q défini par | 11

p < R.

Une fonction (définie dans une partie de Q, à valeurs dans Q u { oo }) sera

dite holomorphe dans D si elle est représentable dans ce disque comme
somme d'une série entière convergente; elle sera dite méromorphe dans D
si elle est égale dans ce disque au quotient de deux fonctions holomorphes.
Cela étant, la démonstration du théorème 2 repose essentiellement sur le

résultat suivant:

Proposition 1. — Z (V; t) est méromorphe dans Q tout entier.

Indiquons le principe de la démonstration (d'après Dwork (1960), et

Serre (1959)). La formule (1.3.4) montre que si V1 et V2 sont deux sous-
ensembles algébriques d'un même ensemble algébrique, et si on pose
V3 — V1 kj V2, V1 nV2, les fonctions zêta de ces quatre ensembles

algébriques sont liées par Z (V1 ; t) Z (V2 ; t) Z (V3 ; t) Z (V4; t) (remarquer

qu'on a, avec des notations évidentes, N1>m + 7V2 m 7V3 m + N4ftn).

Un argument combinatoire simple prouve alors qu'on peut se ramener au

cas où V est une hypersurface affine d'équation F(X1, Xn) £ auXn
ueU

0 (notation analogue à celle du chapitre 7, section 2.2), et qu'on ne

modifie pas le problème en remplaçant Z(V;t) par Z*(V;t)
exp J] N*tmlm), TV* désignant le nombre de points x (xu xn)

m^l
e V, rationnels sur km et tels que x1x2 xn ^ 0. Soit ßm un caractère additif
non trivial de km, à valeurs dans Q (*) ; un calcul semblable à celui fait au

chapitre 5, section 1.3, montre qu'on a

*) C'est-à-dire un homomorphisme non trivial km + H*.
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