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voir Igusa (1949) et Roquette (1953) (voir aussi [5], chap. V, §§ 1-5); dans

tous les cas, le point essentiel est l'inégalité cr(ÇÇ') > 0 (inégalité (23),

p. 292, dans [5], par exemple); pour un commentaire sur cette inégalité

(dite « de Castelnuovo »), voir Weil (1954), p. 553. Pour une application

aux « sommes exponentielles », voir Weil (1948, b).

§ 4: la constante A1 (n, d, r) (lemme 1) peut être prise égale à (2d)r (en

fait, elle ne dépend donc pas de n)\ en revanche, la constante A2(n9 d, r)
(lemme 2) et par conséquent la constante A (n, d, r (th. 4) dépendent de n ;

on ne sait d'ailleurs pas en général les majorer explicitement, faute de

renseignements précis sur le degré e (;n, d, r) de l'ensemble algébrique E.

Pour d'autres remarques sur les résultats ci-dessus, voir également le

chapitre 9.

Chapitre 9

FONCTIONS ZÊTA

Dans ce dernier chapitre, on se donne comme toujours un corps fini k
à q pf éléments, de clôture algébrique k; pour tout entier m > 1, km

désigne l'unique extension de degré m de k contenue dans k (chap. 1, § 1).

A tout ensemble algébrique V défini sur fc, on peut alors associer la série

formelle Z (V; t) exp £ où Nm désigne le nombre de points

de V rationnels sur km, et où t est une indéterminée. Il se trouve que cette
série formelle est en fait une fraction rationnelle en t, et que, moyennant
des hypothèses convenables sur F, cette fraction rationnelle peut être décrite

avec précision. Le paragraphe 1 de ce chapitre énonce diverses définitions
équivalentes de Z (F; t), et justifie le nom de « fonction zêta de V» qui lui
est attribué. Le paragraphe 2 donne une esquisse de la démonstration de la
rationalité de Z(F; t). Le paragraphe 3 montre comment le théorème de

Riemann-Roch et le théorème 3 du chapitre 8 permettent d'obtenir une
description très complète de Z(F; t) quand F est une courbe projective
non singulière. Le paragraphe 4 indique sans démonstration diverses
généralisations des résultats du paragraphe 3. Enfin, le paragraphe 5 donne des

exemples de calcul explicite de fonctions zêta; ce paragraphe peut d'ailleurs
être lu directement après le paragraphe 2 : on y utilise uniquement les défi-



— 90 —

nitions de Z (V; t), l'énoncé (mais non la démonstration) du théorème 2,

et le corollaire 1 de ce théorème 2 (on y utilise également les résultats des

chapitres 5 et 6).

§ 1. Definitions, propriétés élémentaires.

1.1. Soit V un ensemble algébrique (affine ou projectif) défini sur k, et
soit M l'ensemble des cycles de dimension 0, premiers rationnels sur k, et
portés par V (voir [15], chap. I, §§ 9.2 et 9.3); rappelons qu'un tel cycle m
est une combinaison linéaire formelle xx + + xw de points de V
(algébriques sur k) satisfaisant aux deux conditions suivantes :

(i) k(xj) k (xm) km;

(ii) les Xy (1 <y < m) sont permutés transitivement par le groupe de

Galois de kjk\
l'entier m s'appelle degré de m, on le note deg (m) ; l'entier gdeg(m) card (km)

est noté Nm; cela étant:

Définition 1. — On appelle fonction zêta « minuscule ») de V la fonction
d'une variable complexe s définie par

(1.1.1) UVis) n 1/(1
rrteM

(On verra plus loin que ce produit infini converge quand la partie réelle de s

est suffisamment grande.)
Si V est une k-variété affine, il existe une bijection canonique de M sur

l'ensemble des idéaux maximaux de l'anneau de coordonnées A k [V]
(conséquence facile du théorème des zéros de Hilbert); faisons l'identification

correspondante; si alors m g M, A/m est isomorphe à km, avec m

deg (m), et on a Nm card (A/m); la définition (1.1.1) de Ç (V; s)

à partir de A k [V] et de l'ensemble M des idéaux maximaux de A est

dans ce cas entièrement analogue à celle de la fonction (K; s) d'un corps de

nombres K à partir de l'anneau A — 0K des entiers de K et de l'ensemble des

idéaux maximaux de A. (Ces deux définitions sont en fait des cas
particuliers de la notion générale de fonction zêta d'un schéma de type fini sur Z:
voir [16], pp. 82-86).

1.2. La relation Nm gdeg(m> incite à faire le changement de variable

t q~s et à poser une seconde définition:
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Définition 2. — On appelle fonction zêta « majuscule ») de V lafonction
d'une variable complexe t définie par

(1.2.1) Z(V;t)n l/(l-lde8(m))-
rrteM

(On verra que ce produit infini converge quand | t1 est suffisamment petit.)
On a alors évidemment

(1.2.2) UV;s) Z(V;q-s).

1.3. On va transformer la définition (1.2.1) de Z(V;t). Pour tout

j > 1, soit dj le nombre de cycles m e M tels que deg (m) — y: le nombre

de points xeV tels que [fc(x):/c] j est évidemment égal à jdj. Soit

maintenant m un entier > 1 ; le nombre de points x e V rationnels sur km

(c'est-à-dire tels que A: (x) cz km, donc que [fc(x):/:] divise m : chap. 1,

prop. 4) est alors donné par

(1.3.1) Nm£ jdj.
j'lm

D'autre part, l'égalité (1.2.1) peut s'écrire

(1.3.2) Z(F;0 El 1/(1

Considérons provisoirement t comme une indéterminée; dans l'anneau de

séries formelles Q [[t]], le produit infini figurant au second membre de

(1.3.2) est évidemment convergent, et il est de la forme 1 + tG (t), avec
G (t) e Z [[*]]. Si Dj désigne le nombre de cycles positifs de dimension 0

et de degré d rationnels sur k (mais non nécessairement premiers) et portés

par V, un calcul facile (analogue à celui qui permet de transformer en série

de Dirichlet la fonction zêta de Riemann, supposée définie comme produit
« eulérien » infini) montre d'ailleurs qu'on a de façon précise

(1.3.3) Z(V;t)1 + X Dmtm.
m 1

Prenons alors, dans Q [[t]], les logarithmes des deux membres de (1.3.2);
il vient

logZ(V;t) X Z djtnj/n

soit, en multipliant par j le numérateur et le dénominateur du terme général,
en posant m nj, et en tenant compte de (1.3.1),
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logZ(F;0 £ Nmtmlrn
m^l

Ainsi:

Proposition 1. — Considérons Z (V; t) comme élément de Q [M]- Alors

(i) Z (F; f) appartient à 1 + fZ [[*]], ef e//<? donnée explicitement par
la formule (\33).
(ii) Si Nm désigne le nombre de points de V rationnels sur km, on a

(1.3.4) Z(V;t)exp( £ Nmtmlrn).
m^l

La formule (1.3.4) est plus maniable que la formule (1.2.1), et c'est elle

qu'on prend généralement comme définition de Z (V; t); (V; s) est alors

définie par la formule (1.2.2).

1.4. Considérons à nouveau t comme une variable complexe, et

Z (V; t) comme une fonction de variable complexe. Si on suppose V affine,

plongé dans A„, l'entier Nm est majoré par le nombre de points de A„
rationnels sur km \ on a donc Nm < (qn)m (qn)m, et la série entière Nmtmjrn

m^l
admet pour majorante la série entière £ (qnt)mjm log 1/(1— #"0, ffi-û

m^l
est holomorphe dans le disque | 11 < q~n; ainsi, Z (F; t) est holomorphe
(au moins) dans le disque | 11 < q~n. Même raisonnement et même conclusion

si V est projectif, plongé dans P„; on a alors Nm

+ qm +1, et la série £ Nmtmlm admet pour majorante la fonction log 1/

— qui est holomorphe dans | 11 < q~n. Compte
tenu de (1.2.2), on peut donc énoncer:

Proposition 2. — Si V désigne un ensemble algébrique défini sur k et

plongé dans l'espace affine ou projectif de dimension n sur k, la fonction

Z(V\t) (supposée définie par (\3A)) est holomorphe (au moins) dans le

disque | 11 < q~n ; la fonction (V; s) est holomorphe (au moins) dans le

demi-plan Re (s) > n.

On laisse au lecteur le soin de vérifier, en passant par l'intermédiaire de la

formule (1.3.3), que le produit infini (1.2.1) converge pour | 11 < q~n (au

moins) et que le produit infini (1.1.1) converge alors pour Re (s) > n (au

moins). Notons d'autre part que les majorantes introduites ci-dessus ne sont

autres que les logarithmes des fonctions zêta de A„ et P„ ; ainsi
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Proposition 3. — Considérons An et P„ comme variétés définies sur k ;
alors

(1.4.1) Z (A„; t) 1/(1-«"0;

(1.4.2) Z(P„; t) 1/(1 —0 (1 —qt) (1 —qnt) -

Si F est une variété, le théorème 4 du chapitre 8 permet d'en dire plus:

Théorème 1. — Soit V une variété (affine ou projective) de dimension r,

définie sur k. Alors

(i) Z (V;t) est holomorphe dans le disque | 11 < q~r.

(ii) Elle se prolonge analytiquement en une fonction méromorphe dans le

disque \ 11 < q~r+(-1/2).

(iii) Ainsi prolongée, elle n \admet aucun zéro, et elle a pour seule singularité

un pôle simple en t q~r.

Démonstration. — D'après le chapitre 8 (sect. 4.1, th. 1, pour le cas

projectif; sect. 4.3, pour le cas affine), on peut, pour tout m > 1, écrire

(1.4.3) JVm (qmY+-Bm(«mr(1/2),

et la suite Bm (m=1, 2,...) est alors bornée ; posons

H (h) £ Bmumlrn;

H (u) est holomorphe dans le disque | u | < 1, et (1.4.3), joint à (1.3.4),

permet d'écrire

(1.4.4) Z(V;t) exp (H (qr~a/2)t))l(l ~qrt) ;

le numérateur et le dénominateur du membre de droite sont holomorphes
dans le disque | 11 < q~r+(1/2\ et le numérateur ne s'y annule évidemment

pas; comme par ailleurs le dénominateur ne s'annule dans ce disque qu'en
t q~r, qui est un zéro simple, le théorème 1 se trouve établi.

Les assertions (i) et (ii) du théorème 1 restent vraies pour un ensemble

algébrique V quelconque (en ce qui concerne (ii), on a déjà annoncé, et on
démontrera au paragraphe 2, que Z (V; t) est une fraction rationnelle: elle
se prolonge donc analytiquement à C tout entier ; tel n'est plus le cas pour
l'assertion (iii): par exemple, si q 3 (mod 4), la k-variété projective définie
dans P2 (rapporté à un système de trois coordonnées homogènes x, y, z)

par l'équation X2 + Y2 0, et qui est formée de deux droites définies sur



— 94 —

k2 et conjuguées sur k, a pour fonction zêta 1/(1 — r) (1 — ^r) (1 -h qt), fraction
rationnelle qui admet, dans le disque | t1 < q~1/2, les deux pôles t q'1
et t — q~\

§ 2. Rationalité des fonctions zêta.

2.1. Théorème 2 (théorème de Dwork). — Quel que soit V, ensemble

algébrique défini sur k, Z (V; t) est une fraction rationnelle en t.

Démonstration. — Soient Qp la clôture algébrique du corps /?-adique

Qp, Q le complété /?-adique de Qp, ord : Q* -> Q, la valuation ^-adique de Q,

normalisée par ord (p) 1, et | \p: Q -» R, la valeur absolue /?-adique de

Q, normalisée par \p\p p~1 ; Q est un corps algébriquement clos, complet

pour | |p: c'est l'analogue j^-adique de C. Soit maintenant R un nombre
réel positif (ou + oo), et soit D le « disque » de Q défini par | 11

p < R.

Une fonction (définie dans une partie de Q, à valeurs dans Q u { oo }) sera

dite holomorphe dans D si elle est représentable dans ce disque comme
somme d'une série entière convergente; elle sera dite méromorphe dans D
si elle est égale dans ce disque au quotient de deux fonctions holomorphes.
Cela étant, la démonstration du théorème 2 repose essentiellement sur le

résultat suivant:

Proposition 1. — Z (V; t) est méromorphe dans Q tout entier.

Indiquons le principe de la démonstration (d'après Dwork (1960), et

Serre (1959)). La formule (1.3.4) montre que si V1 et V2 sont deux sous-
ensembles algébriques d'un même ensemble algébrique, et si on pose
V3 — V1 kj V2, V1 nV2, les fonctions zêta de ces quatre ensembles

algébriques sont liées par Z (V1 ; t) Z (V2 ; t) Z (V3 ; t) Z (V4; t) (remarquer

qu'on a, avec des notations évidentes, N1>m + 7V2 m 7V3 m + N4ftn).

Un argument combinatoire simple prouve alors qu'on peut se ramener au

cas où V est une hypersurface affine d'équation F(X1, Xn) £ auXn
ueU

0 (notation analogue à celle du chapitre 7, section 2.2), et qu'on ne

modifie pas le problème en remplaçant Z(V;t) par Z*(V;t)
exp J] N*tmlm), TV* désignant le nombre de points x (xu xn)

m^l
e V, rationnels sur km et tels que x1x2 xn ^ 0. Soit ßm un caractère additif
non trivial de km, à valeurs dans Q (*) ; un calcul semblable à celui fait au

chapitre 5, section 1.3, montre qu'on a

*) C'est-à-dire un homomorphisme non trivial km + H*.
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(2.1.1) qmN* (qm-lT+ ^ ßm(x0F (xl
X

la sommation étant étendue à tous les x (x0, xn) e (k*)n+
On va transformer le second membre de (2.1.1). Soit une racine

primitive p-ième de l'unité dans Q, notons Trm la trace dans l'extension km/¥p,

et prenons pour ßm (comme d'habitude) le caractère défini par

ß _ çTrm(y) _ ^y + yP +... +ypfm~1

(yekm). Ce caractère peut se «factoriser» grâce au résultat suivant:

Lemme 1. — II existe une fonction Bit) holomorphe dans le disque ord (/)
> — l/(/7— 1) de Q, et possédant les deux propriétés ci-dessous :

(i) Si b0 -h bxt + + bmtm + est le développement en série entière de

B (t) dans ce disque, on a b0 1, et ord (bm) > mj{p— 1) pour tout m.

(ii) Si on identifie le corps résiduel de Q à k, et si, pour tout yek*, on

désigne par y l'unique racine (qm-l)-ième de l'unité contenue dans Q et

ayant y comme image résiduelle dans km cz k, on a

(2.1.2) ßjy) =B(y)B(y")...B

Une telle fonction B(t) peut se construire directement (voir Serre (1959),

pp. 4-5, ou Dwork (1960), pp. 634-636); on peut aussi la définir à partir de

l'exponentielle d'Artin-Hasse (voir Dwork (1960), p. 636; pour les

propriétés de l'exponentielle d'Artin-Hasse, voir par exemple Yamamoto
(1959)) ou même à partir de l'exponentielle 77-adique ordinaire: en fait, si

71 e Q est tel que tzp — p, on peut prendre B (t) exp (nt — 7itp).

Cela étant, (2.1.1) peut s'écrire successivement

qmN* 0 qm-l)n+ Z n
x ue U

(pour la notation Xu\ voir chap. 7, sect. 2.2), puis, compte tenu de (2.1.2),

fm- 1

(2.1.3) qmNt (qm-lf +Z n n B(aS-u'pi)
x ue U j 0

(x signifie évidemment (x0,...,x„);si a„ 0, âu vaut par définition 0;
enfin, la sommation est étendue à tous les xe(^)"+1). Ici, faisons un
changement de notation: pour tout yek*, écrivons y au lieu de y (ce qui
revient à identifier les éléments y de k* avec leurs « représentants multi-
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plicatifs » j^dans Q); notons par ailleurs Tm le groupe des racines (qm— 1)-
ièmes de l'unité dans Q. La relation (2.1.3) devient

fm- 1

(2.1.4) qmN* {qm — 1)" + £ ïl B (aux^J)
xeT"m+1 ue U j 0

f-1
Posons alors C (t) ]^[i?(?pl) (si on a pris B (t) exp (jit — ntp), on

i 0

a tout simplement C (t) exp (nt — 7itq)); on vérifie immédiatement (à
l'aide de la partie (i) du lemme 1) que C (t) est elle-même holomorphe dans
le disque ord (t) > — lj(p—l) de Q, et que son développement en série

entière c0 + c{t + + cmtm + dans ce disque satisfait à

(2.1.5) c0 1 ; ord (cm) >ra/(/?—1) pour tout m ;

comme auq au pour tout ne U (le polynôme F est à coefficients dans

k k±), la relation (2.1.4) peut s'écrire

m — 1

(2.1.6) qmN*=(qm-l)"+ X [1 11 C(a^).
xe r"+ *

ue U j 0
m

Introduisons alors la série formelle h n + 1 variables

Gff) EI C(«u^u') X <7v*v
uet/

(v parcourant Nn+1). La relation (2.1.6) devient

(2.1.7) qmNt («"-I)" + S G (x) G (x*) G (x^m ~*)
Tn +1xe m

et (2.1.5) permet d'autre part de vérifier que G (X) possède la propriété
suivante :

(2.1.8) Il existe un nombre réel M > 0 tel que pour tout v (v09 vn),

on ait ord (gv) > M(v0 +...+vn).

Soit alors E l'anneau de séries formelles à n + 1 variables Q [[X]~],
considéré comme espace vectoriel sur Q, et définissons de la façon suivante
deux endomorphismes # et W de E: si H (X) YKX^ est un élément

quelconque de E, on a $ (H) YKX\ e* ?(ff) $(<?#); pour
m > 1, soit également Wm le m-ième itéré de T. Alors

Lemme 2. — (i) La série qui donne la trace Tr *Fm) de la matrice (infinie)
de Wm par rapport aux Xy (vgN" + *) est convergente dans Q et on a
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(2.1.9) (qm-l)n+1 TrÇ¥m) £ G(x) G(x«) G(x«m *).
^«+1xe m

(ii) Le déterminant caractéristique de ÎP ei? donné par

(2.1.10) dét(l-fY) exp(- £ (Tm) ?m/m).

(iii) Enfin, A (t) dét (1 -?'L) est une fonction holomorphe dans Q tout

entier.

Pour une démonstration de ce lemme, voir Serre (1959), pp. 7-9 (la

démonstration utilise essentiellement la propriété (2.1.8) des coefficients de

G (X); la partie (i) du lemme est presque immédiate; la partie (ii) généralise

une formule bien connue en dimension finie).
Démontrons alors la proposition L Les relations (2.1.7) et (2.1.9)

donnent

qmNt (qm - 1)" + (qm -l)n + 1 Tr (Ym) ;

si on développe (qm-l)n et (<qm-l)n+1 par la formule du binôme et si on
utilise la définition de Z* (V; t) et la formule (2.1.10) (voir le lemme 2, (ii)
et (iii)), on trouve

(2.1.11) Z*(V;t) K^K^t),
avec

Kfit) n (i
i 0

K2(t) nY[A(pn-ity-1)i+1(n+i
i=0

Kt (t) est une fraction rationnelle; comme A (t) est holomorphe dans Q

tout entier (lemme 2, (iii)), K2 (t) est évidemment méromorphe dans Q tout
entier; (2.1.11) montre alors que Z* (V;t) est elle-même méromorphe dans

Q tout entier, et la proposition 1 est établie.

La démonstration du théorème 2 utilise également le résultat suivant:

Proposition 2 (critère de rationalité de Dwork). — Soit F (t) une série

formelle en t à coefficients entiers rationnels, et supposons qu 'il existe deux
nombres réels positifs R et Rp tels que (i) F(t) soit méromorphe dans le

disque | t \ < R de C; (ii) F (t) soit méromorphe dans le disque | t \p < Rp
de Q ; (iii) RRp > 1. Alors F (t) est une fraction rationnelle.

L'Enseignement mathém., t. XIX, fasc. 1-2. 7
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On peut supposer Rp > 1. Si Rp 1 (et par conséquent R > 1), on
retombe sur le classique critère de Borel (voir Borel (1894)). Il suffit donc
d'examiner le cas où Rp > 1. Si alors F{t) a0 + axt + + amtm 4-

et si on pose pour tout h > 1

Dm,h dét (am + i + j)o^i,j<h 9

le principe de la démonstration consiste à déduire de (i), (ii) et (iii) l'existence

d'un entier h tel que | Dm h
| | Dmh |p < 1 pour tout m suffisamment

grand; comme Dm h est un entier, ceci n'est possible que si Dm h 0 pour
m suffisamment grand, donc si, à partir d'un certain rang, les am satisfont
à une relation de récurrence linéaire de longueur h : mais ceci équivaut à dire

que F(t) est une fraction rationnelle. Pour les détails de la démonstration,
voir par exemple Serre (1959), pp. 2-4.

Cela étant, le théorème 2 est immédiat: d'après la section 1.4, il existe un
entier n tel que Z(V;t) soit holomorphe dans le disque | t \ < q~n de C;
posons R q~n et (par exemple) Rp qn+1; on a RRp q > 1, et

Z(V;t) est évidemment méromorphe dans le disque \t\p < Rp de Q

(prop. 1); la proposition 2 est donc applicable à Z(V;t), qui est
effectivement une fraction rationnelle, C.Q.F.D.

2.2. On sait (voir Fatou (1906)) que si F(t) est une fraction rationnelle

en t à coefficients dans Q, si F (0) 1, et si le développement en série entière
de F{t) a tous ses coefficients entiers, alors les zéros et les pôles de F(t)
sont des inverses d'entiers algébriques. Ceci s'applique à Z (V; t) et montre
qu'on peut écrire

(2.2.1) Z(V;t) ft (1-0,0/11(1-/^),
i=i j= i

les af et les ßj étant des entiers algébriques (respectivement les inverses des

zéros et des pôles de Z (F; t)). Prenant les logarithmes des deux membres et

utilisant la formule (1.3.4), on arrive alors au résultat suivant:

Corollaire 1. — Il existe deux familles (oq)^^,. et (ßj)i^j^s d'entiers

algébriques telles que pour tout m > 1, on ait

(2.2.2) Nm ßf1 + + ßsm - aim - - arM.

Remarquons qu'inversement, si V est un ensemble algébrique défini sur

k et si (oq)l£Éi^r, (ßj)i^j^s sont deux familles d'entiers algébriques telles
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qu'on ait (2.2.2) pour tout m > 1, alors la fonction zêta de V est donnée par

(2.2.1): on utilisera cette remarque à plusieurs reprises aux paragraphes 3,

4 et 5.

§ 3. Fonction zêta d'une courbe projective non singulière.

3.1. Si V est une courbe projective non singulière définie sur k, la

fonction Z(V;t) est décrite avec précision par le théorème suivant, dû à

Weil (1940, 1948) (voir aussi [19], chap. VII, p. 130):

Théorème 3. — Si V est une courbe projective non singulière de genre g
définie sur k, on a

(3.1.1) Z(V;t) P(0/(1-0(1-40,
P étant un polynôme à coejficients entiers rationnels vérifiant les propriétés

suivantes :

(i) Le degré de P est égal à 2g ; son coefficient dominant est égal à q9 et

son terme constant à 1.

(ii) P satisfait à l'équation fonctionnelle

(3.1.2) P (1/qt) q~9t~2gP{t)

(iii) Les zéros de P (qui sont des inverses d'entiers algébriques, d'après (i)J,
ont tous pour module q~1/2.

Démonstration. — On utilise essentiellement le théorème 3 du chapitre 8

et le résultat suivant:

Proposition 3. — Mêmes hypothèses que dans le théorème 3 ; la fonction
zêta de V satisfait à l'équation fonctionnelle

(3.1.3) Z(F; 1/qt) q1~9t2~2dZ{V\ t)

Prouvons cette proposition (et convenons, pour simplifier, d'écrire Z (t)
au lieu de Z(V; t), et de dire systématiquement diviseur au lieu de diviseur
rationnel sur k). La formule (1.3.1) montre que Z (t) Dmtm, Dm

désignant ici (puisque V est une courbe) le nombre de diviseurs positifs de

degré m sur V. Mais V possède un diviseur rrt0 (non nécessairement positif)
de degré 1 (chap. 8, th. 3, cor. 2); d'autre part, les diviseurs positifs de

degré g sur V forment un ensemble fini, et l'équivalence linéaire entre divi-
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seurs partage cet ensemble en classes d'équivalence: on peut donc trouver
une famille mu mh de diviseurs positifs de degré g sur V telle que tout
diviseur positif m de degré g sur V soit linéairement équivalent à un rrtj
(1 <J < h) et un seul ; et ceci reste d'ailleurs vrai même si on ne suppose pas
m positif (en effet, si deg (m) g, le théorème de Riemann-Roch donne

/(m) ^ 1, de sorte que tout diviseur m de degré g sur V est linéairement
équivalent à un diviseur positif de degré g sur V).

Pour tout m > 0 et tout j (1 <7 < h), posons alors

(3.1.4) m;>m m7 + (m - g) m0.

Il est clair que, quel que soit le diviseur positif m sur V, il existe un couple
(y, m) et un seul tel que rrt ~ mj>m (m étant d'ailleurs égal à deg (m)).
Calculons maintenant Dm\ si Dj m est le nombre de diviseurs positifs sur V
linéairement équivalents à m/Vw, il résulte de ce qui précède que

par ailleurs, on sait que les diviseurs positifs sur V qui sont linéairement

équivalents à un diviseur donné n forment un espace projectif de dimension

/ (n) — 1 sur k (c'est la série linéaire complète | n | associée à n); on a donc

(1.3.1), (3.1.5) et (3.1.6) donnent ainsi, après multiplication par q — 1:

h

(3.1.5) Dm I Dhm ;

(3.1.6) DJ m card (|my>m|) -l)l(q-l)

(3.1.7) =£ X
m^O j= 1

Posons alors

20-2 h

(3.1.8) F(0 X Z
m=0j=l

20-2 h

(3.1.9) R(t) YJtm+h-1 Y 1) ;

m — 0 1 j= 1

on a évidemment

(3.1.10) (q-l)Z(t) + ;

mais le théorème de Riemann-Roch montre que pour deg (m) m >
— 1, on a / (m) m — g + 1 ; ceci permet, dans R (t), de remplacer chaque



somme £ _ j) t»> par jr
1 _ i) et donne après somma-

j= 1

tion de deux séries géométriques

(3.1.11) R(t) — 1/(1 -0 + «'t2'-1/(l -«0 •

Un calcul direct prouve alors que

(3.1.12) Ä(l/«0 «1_'t2"2'Ä(0-

D'autre part, si m est un diviseur canonique sur F, le théorème de Riemann-

Roch donne

l (j,m) m ~ 0 + 1 + 1 fa ;

en outre, pour toute valeur de m telle que 0 < m < 2g — 2, il est clair

que les h nombres / (ro-rn^J (1 < j < A) sont les mêmes, à l'ordre près,

que les h nombres l (mj>2g-2-m) <J < h) 1 ^ résulte de ces deux remarques
(et de la définition (3.1.8) de F (t)) que

(3.1.13) F(llqt)

Le rapprochement de (3.1.10), (3.1.12) et (3.1.13) donne immédiatement

l'équation fonctionnelle (3.1.3), et la proposition 3 se trouve établie.

Démontrons alors le théorème 3. Posons par définition

P(0 (1-0 (l-qt)Z(t);

l'équation fonctionnelle (3.1.3) pour Z(t) (prop. 3) implique l'équation
fonctionnelle (3.1.2) pour P(t), ce qui prouve (ii). Les formules (3.1.10),

(3.1.8) et (3.1.11) (voir la démonstration de la prop. 3) montrent que P(t)
est un polynôme à coefficients entiers: (i) résulte alors de (ii), en ce qui
concerne le degré de P et la valeur de son coefficient dominant; et du fait
que P (0) Z (0) 1, en ce qui concerne son terme constant.

Reste à démontrer (iii). On a

log P(0 logZ(t) -log(1-0 (l-qt) £ (jV,„-l-qm)tm/m ;

le théorème 3 du chapitre 8 montre que la série entière de droite admet

pour majorante la série £ 2qm/2tm, qui est holomorphe dans le disque
m^O

|*| < tf~1/2 de C; log P(t) est donc holomorphe dans ce disque, de sorte

que P (;t) n'admet aucun zéro dans le disque | 11 < q~1/2 ; comme la
transformation t b> l/qt échange l'intérieur et l'extérieur de ce disque, (ii) montre
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que P (t) n'admet également aucun zéro dans le domaine | t1 > q~1/2 :

tous les zéros de P (t) sont donc sur le cercle 1t1 q~1/2, ce qui prouve (iii)
et achève la démonstration du théorème 3.

Corollaire 1. — Tom les zéros de la fonction £ (V; s) sont sur la droite
Re(s) 1/2.

Démonstration. — On a en effet £ (V; s) Z (V; q~s), et le changement
de variable t q~s transforme les t de module q~1/2 en les s de partie
réelle 1/2.

3.2. Ce corollaire 1 constitue l'analogue géométrique de l'hypothèse
de Riemann, et résulte directement du théorème 3 du chapitre 8.

Inversement, ce corollaire 1 (ou, ce qui revient au même, la partie (iii) du théorème

3 ci-dessus) implique le théorème 3 du chapitre 8: écrivons en effet

Z (V; t) P (0/(1 — t) 0 -qt), et soient oq (1 < i < 2g) les inverses des

2g zéros de P(t); on a alors Z{V\ t) (1 — a^)... (1 — (x2gt)/(l ~~0(1
donc (voir sect. 2.2), Nm qm + 1 — a1m — — a2; pour m 1, ceci

permet d'écrire | q + 1 — Nx | < | ol1 | + + | <x2g | ; si maintenant on

suppose que les 2g zéros de P ont pour module #~1/2, on a | oq | q112

pour i 1, 2g, et la dernière inégalité se réduit (puisque N Nj) à

\q +1 -N\<2
on retrouve bien l'inégalité (3.1.1) du chapitre 8.

3.3. Remarquons pour terminer que dans la démonstration du théorème

3 ci-dessus, la rationalité de Z (V; t) a été établie directement (à l'aide
du théorème de Riemann-Roch), indépendamment du théorème 2. Signalons
d'autre part que l'entier h qui s'est introduit au cours de la démonstration
de la proposition 3 est égal au nombre de classes de diviseurs de degré 0 du

corps de fonctions algébriques k (V)/k, et qu'on a P (1) h \ ainsi, dans le

cas géométrique comme dans le cas arithmétique, il y a un rapport étroit
entre nombre de classes et comportement de la fonction £ au point s 1

(à ce sujet, voir par exemple [19], chap. VII).

§ 4. Conjectures de Weil.

4.1. Soit maintenant V une variété projective non singulière de type
(in, d, r) (voir chap. 8, § 4) définie sur k. Une description de Z(V; t),
généralisant le théorème 3 (qui correspond h r 1), est donnée par les énoncés

suivants, dits «conjectures de Weil» (voir Weil (1949), p. 507):
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(CW1) (Théorème de Lefschetz). — Il existe 2 + 1 familles d'entiers

algébriques fajdi.7,-b;, 0 < i < 2r, telles qu'en posant, pour chaque i,
Bi

Pi (0 Il (1-aji0> on ait
j=i

p1(t)p3(t)...(0

de plus, P0 (0 1 — t et P2r (0 — 1 ~
2 r

(CW2) (Equation fonctionnelle). — on pose %— £ — 1)1^é> ^
i 0

(4.1.2) Z(F;l/4r0 ±^rX/2PZ(F;0.

(CW3) (« Hypothèse de Riemann »). —Pour tout couple d'indices j, z, on a

(4.1.3) I | îi/2

(CW4) (Rationalité des « polynômes de Weil » Pt). — Chacun des

polynômes Pt est à coefficients entiers rationnels, de terme constant égal à 1.

(CW5) (Interprétation des entiers Bt comme nombres de Betti). — Si V
se relève en caractéristique 0 (autrement dit, s'il existe un anneau de valuation
discrète £>, contenu dans C, et dont le corps résiduel s'identifie à k, et une

variété projective non singulière V0, définie sur £), et dont la variété réduite
modulo l'idéal maximal de £) s'identifie à V), alors les Bt sont égaux aux
nombres de Betti de V0, considérée comme variété topologique complexe

compacte de dimension complexe r, donc de dimension réelle 2r. (L'exposant
X, dans l'équation fonctionnelle (4.1.2), est alors la caractéristique d'Euler-
Poincaré de V0).

On remarquera que, compte tenu de la définition des Pu (4.1.1) équivaut
(voir th. 2, cor. 1 et remarque) à la collection d'égalités

Nm I(-ly«7, (m 1, 2, ;
i, J

de même, (4.1.2) équivaut à l'assertion suivante: quel que soit i (0 < z < 2 r),
les deux familles et sont identiques (à une
permutation près).

4.2. L'ensemble de ces conjectures a été démontré par Weil lui-même
lorsque V est une courbe (th. 3), et lorsque V est une variété abélienne (voir
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par exemple [9], notamment p. 140). Le cas où F est une hypersurface (c'est-
à-dire où r n — 1) a été traité par Dwork (1962, 1964; 1966, a) qui a

montré, en perfectionnant les méthodes />-adiques de son article de 1960,

qu'on a alors

(4.2.1) Z(V; t) P(0(-1}7(1 - 0 (1 ~q0 (1 *0

P(t) étant un polynôme de degré d~1 ((d—1)"+1 + (—1)"+1 (J—1)): ceci

prouve (CW1), (CW2) et (CW5) pour les hypersurfaces.

4.3. Les conjectures (CW1), (CW2) et (CW5) ont été démontrées en
toute généralité par Artin et Grothendieck (voir Grothendieck (1964, a; b))
et, de deux manières différentes, par Lubkin (1967, 1968). Le principe de ces

démonstrations est la construction, pour les variétés algébriques (ou plus
précisément les schémas), d'une cohomologie à coefficients dans un corps K
de caractéristique 0 (« cohomologie de Weil »), consistant en la donnée, pour
tout i > 0, d'un foncteur H1 de la catégorie des schémas projectifs non
singuliers dans la catégorie des espaces vectoriels de dimension finie sur K,
cette famille de foncteurs possédant (entre autres) les propriétés suivantes:

(4.3.1) Si dim (F) r alors H1 (F) 0 pour i > 2r.

(4.3.2) (Formule « des traces », ou « des points fixes », de Lefschetz). —
Sif est un morphisme F -> F, et si fi H1 (/) est Vendomorphisme
correspondant dans H1 (V), alors le nombre d'intersection i (F • A) du graphe F
de f avec la diagonale A de V x V est donné par

i(r-A)yc-1yrrCQ.
i 0

(4.3.3) (Formule de dualité). — L'espace vectoriel H2r (V) est isomorphe
à K (r désignant toujours la dimension de V), et il existe pour tout i tel que
0 < i < 2r une application bilinéaire H1 (V) x Hlr~l (V) -> Hlr (F) ~ K
mettant H1 (F) et Hlr~l (F) en dualité.

(4.3.4) Si V se relève en caractéristique 0 selon une variété complexe F0,

la « cohomologie de Weil » de V s'identifie à la cohomologie ordinaire de V0

(à coefficients dans K).

La « cohomologie de Weil » d'Artin-Grothendieck est -la cohomologie
/-adique étale, pour laquelle K Qh l désignant n'importe quel nombre

premier différent de la caractéristique p du corps de base k ; les « coho-

mologies de Weil » de Lubkin utilisent respectivement comme corps de
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coefficients K Qh lïp (Lubkin (1967)) et K Qp (Lubkin (1968)).

A titre d'exemple, montrons comment la formule (4.1.1) peut se déduire de

la formule des traces de Lefschetz: k et F étant fixés, soit/l'endomorphisme
de F défini par/(x) x(«} (x e F; voir chap. 8, § 2) et soit F le graphe de/
dans Fx F; on peut montrer que tous les points du cycle intersection

r • A ont pour multiplicité 1 ; comme ces points correspondent bijectivement

aux points de F invariants par /, donc rationnels sur k, la formule de

Lefschetz donne

Ni E(-iyTr(/);
i 0

appliquant le même raisonnement au corps de base km et à l'endomorphisme

/m, on trouve plus généralement, pour tout m > 1,

Z(-iyrr(//),
i 0

et par conséquent

(4.3.5) logZ (F ; /) I(-l)' £ Triff) tm/m.
1 0 m^l

Mais A.' étant de caractéristique 0, on a, dans K [[/]],

(4.3.6) dét (1 - tfd exp - I Tr (/fm) tm/m)
m^l

(c'est un résultat qui a déjà été mentionné au § 2, et qu'on peut prouver en

triangularisant/ sur la clôture algébrique Kde K); si alors on pose P/ (0
dét (1 — tfi), (4.3.5) et (4.3.6) donnent

(4 3 7) 2 (V.).
ceci prouve (CW1), moins le caractère algébrique des a/f; mais il suffit de

mettre le second membre de (4.3.7) sous forme irréductible, de noter P/(t)
« ce qui reste » de après cette simplification, et d'utiliser le théorème

2 et son corollaire 1, pour démontrer la totalité de (CW1).
Les conjectures (CW2) et (CW5) se démontrent de même à partir de

(4.3.3) et (4.3.4). A l'heure actuelle, en revanche, les conjectures (CW3)
et (CW4) ne semblent pas avoir été démontrées en toute généralité. Notons
qu'il résulte de (CW3) que les polynômes de Weil Pt ne dépendent que de k
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et V, et non du procédé, cohomologique ou autre, utilisé pour établir la
formule (4.1.1).

§ 5. Calcul explicite de certaines fonctions zêta.

5.1. Ce dernier paragraphe donne, à titre d'illustration de ce qui
précède, le calcul explicite des fonctions zêta de certaines variétés algébriques
(courbes ou hypersurfaces) définies par des équations diagonales. On utilise
essentiellement les résultats du chapitre 5, du chapitre 6 (§ 3), et le théorème

suivant, dû à Davenport et Hasse (1934), qui permet de comparer les

sommes de Gauss relatives à k et celles relatives à km (m > 1):

Théorème 4 (Davenport-Hasse). — Soient ß et % un caractère additifet un

caractère multiplicatif non triviaux de k ; pour m > 1, soient d'autre part
T(m) et iV(m) la trace et la norme dans l'extension kjk, et posons /?(m)

ß o T{m\ £(m) x o Alors

(i) ß{m) est un caractère additif non trivial de km; x(m} est un caractère

multiplicatif non trivial de kmy et %(m) a même ordre que %.

(ii) Si on désigne par x et r(m) les sommes de Gauss x (x | ß) et x (^(m) | ß(m))

relatives à k et km respectivement, on a

Démonstration. — (i) Il suffit de noter que T(m) : k* -» k+, et iV(m):

km - k*9 sont des homomorphismes surjectifs (chap. 1, prop. 9 et 10).

(ii) (D'après Weil (1949), pp. 503-505). Pour tout polynôme unitaire P (U)
Uh + a1t/Ä"1 + + ah appartenant à k[U] (resp. à km[U]), posons

<p(P) ß(ai)x(aj)(resp.<p(m) (P) jß(m) x(m) <p et cp(m) sont
évidemment des caractères multiplicatifs sur les anneaux principaux k [t/]
et km [U], et on peut leur associer, « à la Dirichlet », les « séries L »

suivantes :

(5.1.1) T<m> =(-!)'im—1 xm

ut)\ x (p> n i/(i -<?(p)ideg(p>)
p

unit.
P unit,
irréd.

Lm(t) x <p(m>(P)tde8(p> n i/(i-9(m)(p)tdeg(p)),
p

unit.
P unit,
irréd.

(P étant supposé appartenir à k [U] et km [U] respectivement, bien entendu.)
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Lemme 1. — On a L(t) 1 + tt, Lm (0 1 + ^(m) t.

Vérifions par exemple la première égalité. On a L(t) — 1 + cxt +
+ chth + avec ch £<p(P), cette somme étant étendue à tous les

Pek[U\ unitaires et de degré h, donc de la forme Uh + a^U11'1 +
+ an, les atek; pour h 1, on trouve ainsi ß (aj x(ai) T

a\ek
(noter que % (0) 0); pour Ä >2 au contraire, on trouve

ch<ih~2 I ß(aE* 0/.)) '
a\ek ahek

donc ch 0, chacune des deux sommes étant nulle (chap. 5, prop. 2 et 5).

Lemme 2. — Si œ désigne une racine primitive m-ième de l 'unité dans C,

on a
m— 1

(5.1.2) Lm(0 [I L(coJt).
j=o

Pour chaque P e k [U], irréductible et unitaire, considérons le produit fini

Lm,P(n n
Q

Q parcourant seulement l'ensemble des facteurs irréductibles et unitaires
de P dans km[U]; on a évidemment

(5.1.3) Lm(r)n
P unit,
irréd.

Transformons maintenant Lm P (tm), étant supposé fixé. Posons
h deg(P), et soit ç une racine de P dans on a [A: (ç): k] h, et bien
entendu [km:k] m; si alors d {h, m), le p.p.c.m. de et est égal à

hmjd, et on a (chap. 1, prop. 4, cor. 1) [km (ç)'.k] — donc [kjç): km]
hfd. Il en résulte que la décomposition de P en facteurs irréductibles et

unitaires de P dans km [£/] est de la forme

/An r«J\ ^ öd 'rcti/â- Q
{Jchacundes facteurs g; étant de degré r

hjd.Soit alors g celui des Q{ dont ç est
racine, et calculons (p(m> (g). Notons al et
la trace et la norme de — £ dans l'extension
k(Ç)/k, et et br la trace et la norme de

•fl/tV -£ dans l'extension km (Ç)/km; on a P (U)

^ Uh + a1+ + ah et g (17) Ur
+ b1Ur~1+ + br, et par conséquent

A
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(5.1.4) cp(P) ßiaJxian),<p(m)(ô) ß(ra)(&i)X(m)(M •

L'utilisation de la transitivité de la trace et de la norme dans le diagramme de

corps ci-dessus donne d'autre part

(5.1.5) (mld)at a^d.

(5.1.4), (5.1.5) et la définition de <p{m) permettent alors d'écrire

(5.1.6) <pC>(Q) ß((m/d)aß)x

Les d facteurs irréductibles Qt de P dans km [U] donnent donc la même valeur
à cp(m\ d'où

(5.1.7) LnhP(tm) 1/(1 -(p(P)m/dtmh/d)d

Mais, quel que soit a g C, on a

m- 1

(5.1.8) (1 -amldtmh/d)d (l-oc(œjt)h);
j=o

les deux membres sont en effet des polynômes unitaires en t, à coefficients

complexes, de même degré mh, et ayant les mêmes racines (toutes multiples
d'ordre d). Dans (5.1.8), faisons a cp (P), et portons dans (5.1.7); comme

m- 1

h deg(P), il vient Lm P(tm) — J^[ 1/1(—<p(P) (coJt)deg (p)), ce qui, compte
j=o

tenu de (5.1.3) et de la définition de L(t), donne (5.1.2) et prouve le lemme 2.

Démontrons alors le théorème 4. Les lemmes 1 et 2 permettent d'écrire

m— 1

1 + T0»)f* Yl (1 +tcjojt);
j= 0

la comparaison des termes de plus haut degré en t donne donc

m— 1

T<w> Yl (-1 )m_1Tm,
i=0

C.Q.F.D.

Corollaire 1. — Soient x et \j/ deux caractères multiplicatifs non triviaux
de k, et supposons également xnon trivial. Alors, si %(m) x° N(m) ^
^(M) =\jfO N(m\ on a

(5.1.9) 7i{x{m\^m)) « {-ir-'nix^T
Démonstration. — Il suffit d'appliquer le théorème 4 et la proposition 9,

(ii) du chapitre 5.
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5.2. Appliquons alors le théorème 4 et son corollaire 1 au calcul des

fonctions zêta des courbes de genre 1 étudiées au chapitre 6, sections 3.3

à 3.5 (dont on conserve les notations).

(1) La courbe V1 d'équation Y2 1 — X3 (p # 2, 3).

Supposons d'abord q 1 (mod 6); la formule (3.3.1) (chap. 6) appliquée

au corps de base km donne Nx% — qm + ti (cp(m\ x(m)) + ^(<P(m)5 X(m))

étant évidemment le nombre de points de V± « à distance finie » et

rationnels sur km ; posons a — 7i(cp, /), utilisons le corollaire 1 du théorème

4, et remarquons que V1 admet exactement un point à l'infini, rationnel

sur k; il vient alors N1>m qm + 1 - am - âm, d'où finalement (th. 2,

cor. 1):

(5.2.1) Z(F1;0 (1-af)(l-äO/(l -t){l-qt),
ce qui est évidemment conforme au théorème 3.

Supposons maintenant q — 1 (mod 6) (donc p — 1 (mod 6) et /
impair). On aura besoin du lemme suivant:

Lemme 1. — Soit p — 1 (mod 6), et soient cp2 et %2 deux caractères

multiplicatifs de K ~Fp2, respectivement d'ordre 2 et d'ordre 3 (noter que
p2 1 (mod 6)). Alors n(cp2, Xi) P•

Démonstration. — Comme K contient six racines 6-ièmes de l'unité, il
est facile de voir que le nombre N de solutions dans K2 de l'équation Y2

1 — Xs satisfait à N 5 (mod 6) (comparer avec le chap. 6, sect. A.l,
exemple 2). Posons n n((p2, Xi) \ on a N — P2 + 71 + k (chap. 6, (3.3.1)),
et la congruence relative à N donne

(5.2.2) n + îi 4 (mod 6)

Mais 7i, 7Ï e Z [p] (p=e2ltl/3), nn p2 (chap. 5, prop. 9, cor. 1), et p est

inerte dans Z [p] ; ainsi, n sp, n ëp, e étant une racine 6-ième de

l'unité. (5.2.2) donne alors (s+ë)p 4 (mod 6), puis s + ë —4 2

(mod 6), ce qui implique s 1 (examiner les six valeurs possibles de s).

Finalement, n ep p, C.Q.F.D.
Calculons alors Si m est impair, on a qm — 1 (mod 3), donc

Nffm (T- Supposons maintenant m pair, m 2m', et soient cp et % deux
caractères multiplicatifs de k2, respectivement d'ordre 2 et d'ordre 3; le
lemme 1 et le corollaire 1 du théorème 4 (appliqué à k2jYp2) donnent d'abord
7i(cp,x) (-I/"1/ Ie corollaire 1 du théorème 4, appliqué à

kjk2, donne d'autre part n x{m {—\)m ~1qm' — — q)m\



— 110 —

donc (chap. 6, (3.3.1)) qm — 2 — q)m/2: Posons alors a iqi/2;
les calculs précédents montrent que, quelle que soit la parité de m, on a

Ni? ~ qm — am — âm, donc N1>nt qm + 1 — am — äm; finalement, on
trouve encore

(5.2.3) Z(Fi; t) ** (1 -at) (1 -50/(1 -0 (1 -qt) ;

compte tenu de la valeur explicite a iq1/2, on a même, dans ce cas,

(5.2.4) Z(V1; t) (1 +qt2)l(l-t)(l-qt).
(2) La courbe V2 d'équation Y2 — 1 — X4 (p¥=2).

Supposons d'abord q 1 (mod 4); la formule (3.3.2) (chap. 6) appliquée
au corps de base kmy combinée au corollaire 1 du théorème 4, donne, comme
en (1), 7V2?m qm — l — ocm — äm, avec a — n (<p, ij/); d'autre part, V2

admet à l'infini un point double rationnel sur k: comptons-le pour deux

(ce qui revient à remplacer V2 par sa normalisée V2* : voir d'ailleurs chap. 8,

sect. 2.4); on trouve ainsi N2*m qm + 1 — oem — âm, donc

(5.2.5) Z(V2*; t) (1-«0(1-«0/(1-0(1-«0,
ce qui est toujours conforme au théorème 3. Remarquer que la fonction zêta

de V2 non normalisée est Z(V2; t) (1— at) (1 — ât)/(l — qt).
Si on suppose au contraire q — 1 (mod 4), un calcul analogue à celui

fait en (1) (pour q ~ 1 (mod 6)) donnerait encore

(5.2.6) Z(F2*;0 (l+^2)/(l —0(1 —«0-

(3) La courbe V3 d'équation Y3 1 — X3 (/?#3).

On laisse au lecteur le soin de vérifier que les formules (5.2.5) et (5.2.6)
restent valides pour la normalisée F3* de V3, respectivement pour q 1

(mod 3) (et avec a — n (x, %): voir chap. 6, (3.3.3)), d'une part; et pour
q — 1 (mod 3), d'autre part.

(4) La courbe V4 d'équation Y2 X — X3 (pour q 1 (mod 4)).

Il résulte des calculs faits au chapitre 6 (sect. 3.4) que

(5.2.7) Z(V4;t) Z(V2*;t).

(En fait, V4 est un modèle projectif non singulier de V29 de sorte qu'on peut
choisir pour F2* la courbe V4.) L'égalité (5.2.7) reste d'ailleurs vraie pour
q — 1 (mod 4).
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5.3. Terminons par deux exemples simples d'hypersurfaces (dans P3).

(5) La quadrique d'équation homogène X2 + Y2 + Z2 + T2 0 {p^X).

Le nombre Nmc de points rationnels sur km du cône défini dans A4 par

l'équation ci-dessus est donné (chap. 6, th. 1) par

Nmc q3m +q-m(qm-l)ï((pim))\

cp désignant le caractère de Legendre de k\ mais t (<p(m))2 #m<p(m)( — 1),

et (qm-1) Nm + 1 Nmc (Nm étant le nombre de points de la quadrique
rationnels sur km); d'où immédiatement Nm — q2m + 2qm + 1, et (th. 2,

cor. 1)

(5.3.1) Z(V5;t) m-t)(l-qt)2(l-q2t),
V5 désignant la quadrique étudiée. (On aurait pu calculer Nmc à l'aide des

formules du chap. 6, prop. 2). Ce résultat est évidemment conforme à

(4.2.1) (sect. 4.2), c'est-à-dire au théorème de Dwork pour les hypersurfaces :

on aP (t) 1 - qt, de degré 1, et (- l)w (-1)3 — 1, ce qui « envoie »

P (t) au dénominateur.

(6) La surface cubique d'équation homogène X3 + Y3 4- Z3 + T3 0

(P^3).

On se limitera pour simplifier au cas où q 1 (mod 3). On pourrait
procéder comme en (5), et utiliser le théorème 1 du chapitre 6. Il est plus
commode de remarquer que (avec des notations évidentes) Nm —

+ iV^f; Nest le nombre de solutions rationnelles sur km de l'équation
X3 + Y3 + Z3 — 1 ; si x est un caractère multiplicatif d'ordre 3 de k,
le théorème 2 du chapitre 6, la proposition 10 du chapitre 5 et le théorème 4

ci-dessus donnent

(5.3.2) Nf=q2m+( -7z,)"1+ -^)m + 3 3 n2m

avec 7tin (j, x) -n(x, X, X) (chap. 5, prop. 10, (i)) et (x, x, £);
quant à N{, c'est le nombre de points rationnels sur km de la cubique
d'équation projective X3 +Y3 + Z3 0; d'où

(5.3.3) N'm«T + 1 -(--(-7
(chap. 6, (3.3.3); tenir compte des trois points à l'infini !): au total,

(5.3.4) Nm q2m + qm+ 1 + 3 7r2m + 3 7t2m

et (th. 2, cor. 1, une dernière fois)
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(5.3.5) Z(F6; t)1/(1 -0 (1 -qt)(1-q2t)(1-n(1-S2f)3

V6 désignant la surface cubique étudiée. Ce résultat est conforme aux conjectures

de Weil: on aP0(() 1 - t, PtP3 1, PA 1 — q2t,
et P2 (0 (1 —qt) (1 —n2t)3 (1 — 7i2t)3',l'hypothèse de Riemann se réduit à

| *2 | | S2 | 17t (x, x, X)| q (chap. 5, prop. 10, cor. 1, (ii>) ; la
« caractéristique d'Euler-Poincaré » est égale à 1 + 7 + 1 9, et l'équation
fonctionnelle s'écrit Z(V6; 1 /q2t) - q9t9Z(V6; t).

Notes sur le chapitre 9

§ 1-2-3-4: l'idée d'étudier arithmétiquement un corps de fonctions
algébriques d'une variable sur un corps fini semble apparaître nettement pour
la première fois chez Dedekind (1857). Mais c'est dans la thèse d'Artin
(1924), puis dans les travaux de Schmidt (1931) et Hasse (1933, 1934, 1936),

qu'est définie la notion de fonction zêta (« Kongruenzzetafunktion ») et

formulée 1'« hypothèse de Riemann » en caractéristique p (Artin, Schmidt,
Hasse utilisent le langage des corps de fonctions algébriques d'une variable,
et non celui des courbes : mais ces deux langages sont équivalents, ou plutôt,
le sont devenus depuis les «Foundations» de Weil; voir d'ailleurs Weil
(1949), Introduction). L'équation fonctionnelle pour £ (V; s) (c'est-à-dire,
aux notations près, la proposition 3) est due à Schmidt (1931); la démonstration

de l'hypothèse de Riemann pour g 1 est due à Hasse (1933, 1934),

et, pour g quelconque, à Weil (1940; 1948, a). Les diverses définitions de

Z (V; t) données au paragraphe 1 figurent, pour une courbe, dans Weil
(1948, a), et, pour une variété projective non singulière de dimension

quelconque, dans Weil (1949); cet article contient également l'énoncé (et, pour
des cas particuliers, la vérification) des « conjectures de Weil ». L'existence
d'une « formule de Lefschetz » en géométrie algébrique est conjecturée dans

Weil (1954) (p. 556): d'où la notion de « cohomologie de Weil» — cette

terminologie étant d'ailleurs considérée par Weil lui-même comme « tout
à fait inadéquate » (iwholly unsuitable). Au sujet du lien formel entre
théories cohomologiques des variétés algébriques et propriétés des fonctions
zêta, voir Demazure (1969), notamment §§7 et 9. Au sujet du lien entre
méthodes />-adiques et méthodes cohomologiques, voir Katz (1972) (cet

exposé contient une abondante bibliographie).
Signalons qu'à côté des fonctions zêta, on peut (comme en arithmétique)

construire, pour les variétés algébriques, des « séries L »; pour une définition
générale (en langage des schémas, et englobant d'ailleurs les séries L de la

théorie des nombres), voir [16], pp. 86-91. La rationalité des séries L des



— 113 —

variétés algébriques a été établie par Grothendieck (1964, b); voir également

Dwork (1966, b). Pour l'application de ce résultat à l'étude des sommes

exponentielles, voir notamment Bombieri (1966).

§ 5: les exemples de ce paragraphe sont empruntés essentiellement à

Davenport-Hasse (1934) et à Weil (1949). Signalons que le lemme 1 (sect. 5.2)

peut aussi se démontrer à l'aide de la proposition 9, (ii) (chap. 5), et du

résultat suivant, dû à Stickelberger (1890): si x es^ un caractère multiplicatif

de ¥p2, et si 6 est un élément primitif de Fp2/Fp, on a x (x \ ß) — X (ß) P>

si p ^ 2, et x (x | ß) p si p =2; pour une démonstration de ce dernier

énoncé, voir aussi Carlitz (1956, a).

Pour V V1 et q — 1 (mod 6), ou V — V2* et q — 1 (mod 4),

ou V F3* et q — 1 (mod 3), on a trouvé la même expression

Z(V;t) (l+qt2)/(l-

ceci résulte (1) du fait que, dans les trois cas, ona^ q + 1, et (2) de la

relation Z{V;t) (1 + (A^-q-1) t + qt2)/(l -1) (1 —qt), valable pour
toute courbe V (projective, non singulière) de genre 1, définie sur k et

ayant points rationnels sur k (cette relation se déduit facilement du
théorème 3 et du théorème 2, corollaire 1 et remarque). En fait, si deux
courbes de genre 1, définies sur k, ont même nombre N1 de points rationnels
sur k, alors, elles ont le même nombre Nm de points rationnels sur km pour
tout m, puisqu'elles ont même fonction zêta (appliquer la formule ci-
dessus !): on peut prouver que ceci se produit si et seulement si les deux
courbes sont isogènes sur k (voir [4], p. 242, pour la partie « si », et Täte
(1966), pour la partie « seulement si ».)
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