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voir Igusa (1949) et Roquette (1953) (voir aussi [S], chap. V, §§ 1-5); dans
tous les cas, le point essentiel est I'inégalité o (£&') > 0 (inégalité (23),
p. 292, dans [5], par exemple); pour un commentaire sur cette inégalité
(dite « de Castelnuovo »), voir Weil (1954), p. 553. Pour une application
aux « sommes exponentielles », voir Weil (1948, b).

§ 4: la constante A, (n, d, r) (lemme 1) peut étre prise €gale a 2d)" (en
fait, elle ne dépend donc pas de n); en revanche, la constante 4, (n,d. r)
(lemme 2) et par conséquent la constante 4 (1, d, r) (th. 4) dépendent de n;
on ne sait d’ailleurs pas en général les majorer explicitement, faute de rensei-
gnements précis sur le degré e (n, d, r) de ’ensemble algébrique E.

Pour d’autres remarques sur les résultats ci-dessus, voir également le
chapitre 9.

CHAPITRE 9

FONCTIONS ZETA

Dans ce dernier chapitre, on se donne comme toujours un corps fini £
a g = p’ éléments, de cldture algébrique k; pour tout entier m >1, k,,
désigne I'unique extension de degré m de k contenue dans k (chap. 1, § 1).
A tout ensemble algébrique V défini sur &, on peut alors associer la série
formelle Z (V; £) = exp ( ), N,t"/m), ou N,, désigne le nombre de points

m>1
de V rationnels sur k,, et ou t est une indéterminée. Il se trouve que cette
série formelle est en fait une fraction rationnelle en ¢, et que, moyennant
des hypothéses convenables sur V, cette fraction rationnelle peut étre décrite
avec précision. Le paragraphe 1 de ce chapitre énonce diverses définitions
équivalentes de Z (V; t), et justifie le nom de « fonction z€ta de V» qui lui
est attribué. Le paragraphe 2 donne une esquisse de la démonstration de la
rationalité de Z (V; t). Le paragraphe 3 montre comment le théoréme de
Riemann-Roch et le théoréme 3 du chapitre 8 permettent d’obtenir une
description trés compléte de Z (V;t) quand ¥ est une courbe projective
non singulieére. Le paragraphe 4 indique sans démonstration diverses généra-
lisations des résultats du paragraphe 3. Enfin, le paragraphe 5 donne des
exemples de calcul explicite de fonctions z€ta; ce paragraphe peut d’ailleurs
étre lu directement apres le paragraphe 2: on y utilise uniquement les défi-
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nitions de Z (V; t), ’énoncé (mais non la démonstration) du théoréme 2,
et le corollaire 1 de ce théoréme 2 (on y utilise également les résultats des
chapitres 5 et 6).

§ 1. Definitions, propriétés élémentaires.

1.1. Soit ¥ un ensemble algébrique (affine ou projectif) défini sur k, et
soit M I’ensemble des cycles de dimension 0, premiers rationnels sur k, et
portés par V (voir [15], chap. I, §§ 9.2 et 9.3); rappelons qu’un tel cycle m
est une combinaison linéaire formelle x; + ... + x,, de points de V (algé-
briques sur k) satisfaisant aux deux conditions suivantes:

(D) k(xy) = ... = k(X = kpy;

(i) les x; (1 <j <<m) sont permutés transitivement par le groupe de
Galois de k,/k;

I’entier m s’appelle degré de m, on le note deg (m); entier g*#M = card (k,,)
est noté¢ Nm; cela étant:

DEFINITION 1. — On appelle fonction zéta (« minuscule ») de V la fonction
d’une variable complexe s définie par

(1.1.1) ((V;s) = J] 1/ —=Nm™%).

meM
(On verra plus loin que ce produit infini converge quand la partie réelle de s
est suffisamment grande.)

Si V est une k-variété affine, il existe une bijection canonique de M sur
Iensemble des idéaux maximaux de I'anneau de coordonnées 4 = k [V]
(conséquence facile du théoréme des zéros de Hilbert); faisons 1’'identifica-
tion correspondante; si alors me M, A4/m est isomorphe a k,, avec m
= deg (m), et on a Nm = card (4/m); la définition (1.1.1) de {(V; s)
a partir de 4 = k [V'] et de ’ensemble M des idéaux maximaux de A est
dans ce cas entiérement analogue a celle de la fonction { (K; s) d’un corps de
nombres K a partir de ’anneau A = Oy des entiers de K et de I’ensemble des
idéaux maximaux de A. (Ces deux définitions sont en fait des cas parti-
culiers de la notion générale de fonction z€ta d’un schéma de type fini sur Z:
voir [16], pp. 82-86).

1.2. La relation Nm = ¢ incite a faire le changement de variable
t = g~ ° et a poser une seconde définition:
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DEFINITION 2. — On appelle fonction zéta (« majuscule ») de V la fonction
d’une variable complexe t définie par

(1.2.1) O Z;H = J] 11—y,
mMeM

(On verra que ce produit infini converge quand | t | est suffisamment petit.)
On a alors évidemment

(1.2.2) ((V;s) =Z(V;q7).

1.3. On va transformer la définition (1.2.1) de Z (V;t). Pour tout
j >1, soit d; le nombre de cycles m e M tels que deg (m) = j: le nombre
de points x € V tels que [k (x): k] = j est évidlemment égal a jd;. Soit
maintenant m un entier > 1; le nombre de points x € V rationnels sur k,,
(c’est-a-dire tels que k (x) < k,,, donc que [k (x): k] divise m: chap. 1,
prop. 4) est alors donné par

(1.3.1) N, = Y jd;.

D’autre part, I’égalité (1.2.1) peut s’écrire

(1.3.2) Z(V;n = [l 1A —v)i.

j=1

Considérons provisoirement ¢ comme une indéterminée; dans ’anneau de
séries formelles Q [[t]], le produit infini figurant au second membre de
(1.3.2) est évidemment convergent, et il est de la forme 1 + tG (1), avec
G()eZ [[t]]. Si D; désigne le nombre de cycles positifs de dimension 0
et de degré d rationnels sur k (mais non nécessairement premiers) et portés
par V, un calcul facile (analogue a celui qui permet de transformer en série
de Dirichlet la fonction z€ta de Riemann, supposée définie comme produit
« eulérien » infini) montre d’ailleurs qu’on a de fagon précise

(1.3.3) Z(V;t) =1+ ) D™.

m>1

Prenons alors, dans Q [[t]], les logarithmes des deux membres de (1.3.2);
il vient

logZ(V;t) = > > d;i"n,

Jj=1 n>1

soit, en multipliant par j le numérateur et le dénominateur du terme général,
en posant m = nj, et en tenant compte de (1.3.1),
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logZ(V;t) = > N,t"[m.
m>1
Ainsi:
PRroOPOSITION 1. — Considérons Z (V; t) comme élément de Q [[t]]. Alors

(i) Z(V;?t) appartient a 1 + tZ[[t]], et elle est donnée explicitement par
la formule (1.3.3).

(1) Si N,, désigne le nombre de points de V rationnels sur k,,, on a
(1.3.4) Z(V;t) =exp( ), Nyt"/m).
m>.1

La formule (1.3.4) est plus maniable que la formule (1.2.1), et c’est elle
qu’on prend généralement comme définition de Z (V;t); { (V;s) est alors
définie par la formule (1.2.2).

1.4. Considérons a nouveau ¢ comme une variable complexe, et
Z (V;t) comme une fonction de variable complexe. Si on suppose V affine,
plongé dans A,, ’entier N,, est majoré par le nombre de points de A, ra-
tionnels sur k,,; on a donc N,, <(¢")" = (¢")", et la série entiére » N, t"/m

m>1

admet pour majorante la série entiére Y (¢"t)"/m = log 1/(1—¢"t), qui

m>1
est holomorphe dans le disque | 7| < ¢™"; ainsi, Z (V; t) est holomorphe
(au moins) dans le disque | t | < g~ ". Méme raisonnement et méme conclu-
sion si V est projectif, plongé dans P,; on a alors N,, < (¢")" + ("~ )™ + ...
+ g™ + 1, et la série Y. N, t"/m admet pour majorante la fonction log 1/

m>.1
(1—1)(1—g?) ... (1—¢"t), qui est holomorphe dans |7| < ¢~". Compte
tenu de (1.2.2), on peut donc énoncer:

PROPOSITION 2. — Si V désigne un ensemble algébrique défini sur k et
plongé dans [’espace affine ou projectif de dimension n sur k, la fonction
Z (V;t) (supposée définie par (1.3.4)) est holomorphe (au moins) dans le
disque l tl < g~ ", la fonction { (V;s) est holomorphe (au moins) dans le
demi-plan Re (s) > n.

On laisse au lecteur le soin de vérifier, en passant par 'intermédiaire de la
formule (1.3.3), que le produit infini (1.2.1) converge pour | ¢| < ¢™" (au
moins) et que le produit infini (1.1.1) converge alors pour Re (s) > n (au
moins). Notons d’autre part que les majorantes introduites ci-dessus ne sont
autres que les logarithmes des fonctions z€ta de A, et P,; ainsi
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PROPOSITION 3. — Considérons A, et P, comme variétés définies sur k ;
alors
(1.4.1) ZA;H = 1/(1-4");
(1.4.2) ZP,;t) = 1/(1-1)(1—qt)...(1—4").

Si ¥ est une variété, le théoréme 4 du chapitre 8 permet d’en dire plus:

THEOREME 1. — Soit V une variété (affine ou projective) de dimension r,
définie sur k. Alors

G) Z (V;t) est holomorphe dans le disque | t | <q "
(ii) Elle se prolonge analytiquement en une fonction méromorphe dans le
disque | t| < g~ "" /2,

(iii) Ainsi prolongée, elle n’admet aucun zéro, et elle a pour seule singularité

r

un pole simple en t = q ™ ".

Démonstration. — D’aprés le chapitre 8 (sect. 4.1, th. 1, pour le cas
projectif; sect. 4.3, pour le cas affine), on peut, pour tout m > 1, écrire
(1.4.3) Nn = (@™ + Bu (g™~ 42,

et la suite B, (m=1, 2, ...) est alors bornée; posons

H(w) = 3 Buu"m; |
m>1
H (u) est holomorphe dans le disque Iul < 1, et (1.4.3), joint a (1.3.4),
permet d’écrire

(1.4.4) Z(V;1) =exp(H (@~ Y201 —-q");

le numérateur et le dénominateur du membre de droite sont holomorphes

dans le disque | 7| < ¢7"* 1/, et le numérateur ne s’y annule évidemment

pas; comme par ailleurs le dénominateur ne s’annule dans ce disque qu’en
= ¢~ ", qui est un zéro simple, le théoréme 1 se trouve établi.

Les assertions (i) et (ii) du théoréme 1 restent vraies pour un ensemble
algébrique V quelconque (en ce qui concerne (ii), on a déja annoncé, et on
démontrera au paragraphe 2, que Z (V; t) est une fraction rationnelle: elle
se prolonge donc analytiquement a C tout entier !); tel n’est plus le cas pour
’assertion (iii): par exemple, si ¢ = 3 (mod 4), la k-variété projective définie
dans P, (rapporté & un systeme de frois coordonnées homogenes x, y, z)
par I’équation X?* + Y2 = 0, et qui est formée de deux droites définies sur
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k, et conjuguées sur k, a pour fonction z&€ta 1/(1 —1¢) (1 —gqt) (1+ qt), fraction
rationnelle qui admet, dans le disque | 7| < ¢~ '/?, les deux poles t = ¢~ *
ett = —qg L

§ 2. Rationalité des fonctions zéta.

2.1. THEOREME 2 (théoréme de Dwork). — Quel que soit V, ensemble
algébrique défini sur k, Z (V'; t) est une fraction rationnelle en t.

Démonstration. — Soient 61, la cloture algébrique du corps p-adique
Q,, Q le complété p-adique de 6,,, ord: Q* — Q, la valuation p-adique de £,
normalisée par ord (p) = 1, et |.|,: @ - R, la valeur absolue p-adique de
Q, normalisée par | D ] , = p_'; Qestun corps algébriquement clos, complet
pour [ . |, c’est 'analogue p-adique de C. Soit maintenant R un nombre
réel positif (ou + c0), et soit D le « disque» de @ défini par | 7|, < R.
Une fonction (définie dans une partie de Q, a valeurs dans Q U { o }) sera
dite holomorphe dans D si elle est représentable dans ce disque comme
somme d’une série entiere convergente; elle sera dite méromorphe dans D
si elle est égale dans ce disque au quotient de deux fonctions holomorphes.

Cela étant, la démonstration du théoréme 2 repose essentiellement sur le
résultat suivant:

PrOPOSITION 1. — Z (V; t) est méromorphe dans Q tout entier.

Indiquons le principe de la démonstration (d’aprés Dwork (1960), et
Serre (1959)). La formule (1.3.4) montre que si V', et V, sont deux sous-
ensembles algébriques d’un méme ensemble algébrique, et si on pose
Va=V, vV, V, =V, 0V, les fonctions z€ta de ces quatre ensembles
algébriques sont liées par Z (V;t) Z(Vyit) = Z(V5;t) Z(V,; t) (remar-
quer qu’'on a, avec des notations évidentes, Ny ,, + Ny, = N3, + Ny )
Un argument combinatoire simple prouve alors qu’on peut se ramener au
cas ol V est une hypersurface affine d’équation F (X4, ..., X,) = ), a, X"

ueU

= 0 (notation analogue a celle du chapitre 7, section 2.2), et qu’on ne
modifie pas le probléme en remplagant Z(V;t) par Z*(V;t) =
= exp ( ), Nnt™/m), N, désignant le nombre de points x = (xy, ..., X,)

m>1
e V, rationnels sur k,, et tels que x,x, ... x, # 0. Soit f§,, un caractére additif
non trivial de k,, a valeurs dans Q (*); un calcul semblable a celui fait au
chapitre 5, section 1.3, montre qu'on a

*) C’est-a-dire un homomorphisme non trivial k,,* - Q%
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(211) qu:: = (qm_l)n + Zﬁm(xOF(xla "°9xn))a

la sommation étant étendue 2 tous les X = (Xo, ..., X,) € (km)" " .

On va transformer le second membre de (2.1.1). Soit { une racine pri-
mitive p-iéme de I'unité dans Q, notons 7¥,, la trace dans I'extension k,,/F,
et prenons pour fB,, (comme d’habitude) le caractére défini par

ﬁ (y) = CTrm(y) == C}"*'J’P+...+ypfm—1
m

(y e k,). Ce caractére peut se « factoriser » grace au résultat suivant:

LeMME 1. — 1l existe une fonction B (t) holomorphe dans le disque ord (1)
> — 1/(p—1) de Q, et possédant les deux propriétés ci-dessous :

(1) Sibg+ byt + ... + bt™ + ... est le développement en série entiére de
B (t) dans ce disque, on a by = 1, et ord (b,,) > m/(p—1) pour tout m.

() Si on identifie le corps résiduel de Q a k, et si, pour tout y € ky,, on
désigne par y 1’unique racine (q™—1)-iéme de I’unité contenue dans Q et
ayant y comme image résiduelle dans k,, < k, on a

(2.1.2) B.(») = BG)BGP) ...BP™ Y.

Une telle fonction B (¢) peut se construire directement (voir Serre (1959),
pp. 4-5, ou Dwork (1960), pp. 634-636); on peut aussi la définir a partir de
I’exponentielle d’Artin-Hasse (voir Dwork (1960), p. 636; pour les pro-
priétés de l’exponentielle d’Artin-Hasse, voir par exemple Yamamoto
(1959)) ou méme a partir de 'exponentielle p-adique ordinaire: en fait, si
n € Q est tel que n? = — p, on peut prendre B (¢) = exp (nt—ntP).

Cela étant, (2.1.1) peut s’écrire successivement

q"Nm = (@"=1" + Y [] Bulax")

x ueU

(pour la notation X*, voir chap. 7, sect. 2.2), puis, compte tenu de (2.1.2),

Jm—1

(2.1.3) q"Nm = (q"=1" + ¥ TI T B(ax"?)

x ueU j=0

(x signifie évidemment (x,, ..., X,); si a, = 0, a, vaut par définition O;
enfin, la sommation est étendue a tous les x e (k;5)"*1). Ici, faisons un
changement de notation: pour tout y € k,, écrivons y au lieu de y (ce qui

revient a identifier les éléments y de k, avec leurs « représentants multi-
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plicatifs » ydans Q); notons par ailleurs 7, le groupe des racines (g™ — 1)-
iemes de I'unité dans Q. La relation (2.1.3) devient

fm—1 .
214  ¢"NE=@ -1+ ¥ II I1BG@x"™).
xeT':n+1 ueU j=0

S-1 )
Posons alors C(t) = [[ B(¢*") (si on a pris B(t) = exp (nt—mnt?), on
i=0

a tout simplement C () = exp (nt—nt?)); on vérifie immédiatement (a
l’aide de la partie (i) du lemme 1) que C (¢) est elle-méme holomorphe dans
le disque ord (¢) > — 1/(p—1) de Q, et que son développement en série
entiére ¢, + ¢4t + ... + ¢,t™ + ... dans ce disque satisfait &

(2.1.5) co =1; ord(c,) >m/(p—1) pour tout m ;

comme aq,? = g, pour tout ue U (le polyndme F est a coefficients dans
k = k), la relation (2.1.4) peut s’écrire

(2.1.6) g"NE =(@"-1"+ ¥ 1] f]C(aux"'qf).

xeT%+1uer=0
Introduisons alors la série formelle 4 n + 1 variables

G(X) = HUC(aUX"’) =Y g, X"

(v parcourant N”*1). La relation (2.1.6) devient

2.1.7) ¢"Nf =@"-1)"+ Y GX®GKE)..GEx"T,

xeT%+1

et (2.1.5) permet d’autre part de vérifier que G (X) posséde la propriété
suivante:

(2.1.8) 1l existe un nombre réel M > 0 tel que pour tout v = (vg, ..., V,),
on ait ord (g,) > M (vo+...+v,).

Soit alors E I’anneau de séries formelles & n + 1 variables @ [[X 1],
considéré comme espace vectoriel sur Q, et définissons de la fagon suivante
deux endomorphismes @ et ¥ de E: si H(X) = > h,X" est un élément
quelconque de E, on a & (H) = thvX V. et Y(H) = & (GH); pour
m > 1, soit également Y™ le m-iéme itéré de V. Alors

LEMME 2. — (i) La série qui donne la trace Tr (V™) de la matrice (infinie)
de W™ par rapport aux X' (ve N"*1) est convergente dans Q et on a
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(2.1.9) (¢"—-1yTr(¥m = Y G(x)G(x)..Gx"T).

n+1
xXe Tm

(ii) Le déterminant caractéristique de ¥ est donné par

(2.1.10) dét (1 —1¥) = exp(— Y, Tr(¥™t"/m).

m>1
(iii) Enfin, 4 (t) = dét (1—t¥) est une fonction holomorphe dans 2 tout
entier.

Pour une démonstration de ce lemme, voir Serre (1959), pp. 7-9 (la
démonstration utilise essentiellement la propriété (2.1.8) des coefficients de
G (X); la partie (i) du lemme est presque immédiate; la partie (ii) généralise
une formule bien connue en dimension finie).

Démontrons alors la proposition 1. Les relations (2.1.7) et (2.1.9)
donnent

q"Nm = (@" ="+ (¢"—1D)""" Tr(¥™);

si on développe (g"—1)" et (¢"—1)"*! par la formule du bindme et si on
utilise la définition de Z* (V; t) et la formule (2.1.10) (voir le lemme 2, (ii)
et (iil)), on trouve

(2.1.11) Z*(V;t) = K; (1) K, (1),

avec

Kl(t) — I_-‘L(l __pn—i—lt)(—l)i+1(i) ,

n+1 nt1

Ky(t) = [[ 4@ o0
i=0

K, (¢) est une fraction rationnelle; comme 4 (¢) est holomorphe dans @
tout entier (lemme 2, (iii)), K, (¢) est évidemment méromorphe dans Q tout
entier; (2.1.11) montre alors que Z* (V; t) est elle-méme méromorphe dans
€2 tout entier, et la proposition 1 est établie.

La démonstration du théoréme 2 utilise également le résultat suivant:

ProrosiTION 2 (critére de rationalité de Dwork). — Soit F(t) une série
formelle en t a coefficients entiers rationnels, et supposons qu’il existe deux
nombres réels positifs R et R, tels que (1) F(t) soit méromorphe dans le
disque | t| < R de C; (ii) F (¢) soit méromorphe dans le disque | t|, < R,
de Q; (ii)) RR, > 1. Alors F(t) est une fraction rationnelle.

L’Enseignement mathém., t. XIX, fasc. 1-2. 7
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On peut supposer R, >1. Si R, = 1 (et par conséquent R > 1), on
retombe sur le classique critére de Borel (voir Borel (1894)). 1l suffit donc
d’examiner le cas ou R, > 1. Si alors F(f) = ay + ayt + ... + a,t™ + ...,
et si on pose pour tout & > 1

Dy = dét (am+i+j)Oéi,j<h >

le principe de la démonstration consiste & déduire de (1), (i) et (iii) I’exis-
tence d’un entier 4 tel que | D,, ;| | Dy |, < 1 pour tout m suffisamment
grand; comme D,, , est un entier, ceci n’est possible que si D, , = 0 pour
m suffisamment grand, donc si, & partir d’'un certain rang, les a,, satisfont
a une relation de récurrence linéaire de longueur 4: mais ceci équivaut a dire
que F (t) est une fraction rationnelle. Pour les détails de la démonstration,
voir par exemple Serre (1959), pp. 2-4.

Cela étant, le théoréme 2 est immédiat: d’apres la section 1.4, il existe un
entier n tel que Z (V;t) soit holomorphe dans le disque | t | < g " de C;
posons R = ¢~ " et (par exemple) R, = ¢""'; on a RR, =g > 1, et
Z (V;t) est évidlemment méromorphe dans le disque | t | » <R, de Q
(prop. 1); la proposition 2 est donc applicable a Z (V;t), qui est effecti-
vement une fraction rationnelle, C.Q.F.D.

n

2.2. On sait (voir Fatou (1906)) que si F(¢) est une fraction rationnelle
en t & coefficients dans Q, si F (0) = 1, et si le développement en série entiére
de F(t) a tous ses coefficients entiers, alors les zéros et les pdles de F(?)
sont des inverses d’entiers algébriques. Ceci s’applique a Z (V'; t) et montre
qu’on peut écrire

r S

(2.2.1) ZWi = [[A-a)/ [TA-80,

i=1 j=1

les «; et les f; étant des entiers algébriques (respectivement les inverses des
zéros et des poOles de Z (V; t)). Prenant les logarithmes des deux membres et
utilisant la formule (1.3.4), on arrive alors au résultat suivant:

COROLLAIRE 1. — 1] existe deux familles (¢.;)1 —; —, et (B;)1 =, d entiers
algébriques telles que pour tout m > 1, on ait

(2.2.2) N, ="+ ..+B" —ay" — ... —a,".

Remarquons qu’inversement, si V" est un ensemble algébrique défini sur
ket si (0;); =iz (B;)1—j=s sont deux familles d’entiers algébriques telles
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qu’on ait (2.2.2) pour tout m > 1, alors la fonction zéta de V est donnée par

(2.2.1): on utilisera cette remarque & plusieurs reprises aux paragraphes 3,
4 et 5.

§ 3. Fonction zéta d’une courbe projective non singuliére.

3.1. Si V est une courbe projective non singuliére définie sur k, la
fonction Z (V;t) est décrite avec précision par le théoréme suivant, di a
Weil (1940, 1948) (voir aussi [19], chap. VII, p. 130):

THEOREME 3. — Si V est une courbe projective non singuliere de genre g
définie sur k, on a
(3.1.1) ZW;n =P@OA-1)A—q1)),

P étant un polynéme a coefficients entiers rationnels vérifiant les propriétés
suivantes :

(i) Le degré de P est égal a 2g; son coefficient dominant est égal a q° et
son terme constant a 1.

(ii) P satisfait a l’équation fonctionnelle

(3.1.2) P(1/qt) = q % *9P (1).

(iii) Les zéros de P (qui sont des inverses d’entiers algébriques, d’aprés (1)),
ont tous pour module g~ /2

Démonstration. — On utilise essentiellement le théoréme 3 du chapitre 8
et le résultat suivant:

PROPOSITION 3. — Mémes hypothéses que dans le théoréme 3 ; la fonction
zéta de V satisfait a 1’équation fonctionnelle

(3.1.3) Z(V;1jqt) = q* 7% Z(V;1).

Prouvons cette proposition (et convenons, pour simplifier, d’écrire Z (¢)
au lieu de Z (V; t), et de dire systématiquement diviseur au lieu de diviseur
rationnel sur k). La formule (1.3.1) montre que Z(¢t) = ) D,t™, D,

m>.0

désignant ici (puisque V est une courbe) le nombre de diviseurs positifs de
degré m sur V. Mais V posséde un diviseur m, (non nécessairement positif)
de degré 1 (chap. 8, th. 3, cor. 2); d’autre part, les diviseurs positifs de
degré g sur V forment un ensemble fini, et I’équivalence linéaire entre divi-
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seurs partage cet ensemble en classes d’équivalence: on peut donc trouver
une famille my, ..., m, de diviseurs positifs de degré g sur V telle que tout
diviseur positif m de degré g sur V soit linéairement équivalent & un m;
(1 <j < h)etun seul; et ceci reste d’ailleurs vrai méme si on ne suppose pas
m positif (en effet, si deg (m) = g, le théoréme de Riemann-Roch donne
[ (m) > 1, de sorte que tout diviseur m de degré g sur V est linéairement
équivalent a un diviseur positif de degré g sur V).
Pour tout m >0 et tout j (1 < j < h), posons alors

(3.1.4) m;, =m; +(m—g)mg,.

Il est clair que, quel que soit le diviseur positif m sur V, il existe un couple
(j, m) et un seul tel que m ~ m; , (m étant d’ailleurs égal a deg (m)). Cal-
culons maintenant D,; si D; , est le nombre de diviseurs positifs sur V
linéairement équivalents & m; ,, il résulte de ce qui précede que

h
(3.1.5) D, =j;Dj,m;

par ailleurs, on sait que les diviseurs positifs sur ¥ qui sont linéairement
équivalents a un diviseur donné n forment un espace projectif de dimension
I(n) — 1 sur k (c’est la série lindaire compléte | n | associée & n); on a donc
(316) Dj,m = Card (Imj,ml) = (ql(mj’m) - 1)/(q - 1) .

(1.3.1), (3.1.5) et (3.1.6) donnent ainsi, aprés multiplication par g — 1:

(3.1.7) | (q—DZ@® = > Y (¢"Mrm™ —1)¢.

m=0 j=1

Posons alors

29g—2 h
(3.1.8) F() = Z Z g!Mpmigm -
m=0 j=1
2g-2 h
(3.1.9) R@® = — Y t"+ht > > (¢tMim 1),
m=0 m>2g—1 j=1
on a évidemment
(3.1.10) (gq—1D)Z((t) = F(t) + hR(¥);

mais le théoréme de Riemann-Roch montre que pour deg (m) = m > 2g
— l,onal(m) = m — g + 1; ceci permet, dans R (¢), de remplacer chaque
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n
somme Y. (¢"Mim) — 1) ¢™ par h(¢" 9" ' —1)¢", et donne aprés somma-
i=1

tion de deux séries géométriques

(3.1.11) R() = — 1/(1 =16 + ¢’ (1 —q1) .
Un calcul direct prouve alors que

(3.1.12) R(1/qt) = q* 7> %9R (1) .

D’autre part, si w est un diviseur canonique sur ¥, le théoréme de Riemann-
Roch donne

Imj,,) =m—-—g+1+ I(w—m;,,);

en outre, pour toute valeur de m telle que 0 <m <<2g — 2, il est clair
que les A nombres / (w—m; ,) (1 <j < h) sont les mémes, a 'ordre pres,
que les Anombres [ (M 5,-5-,,) (1 <j < h); il résulte de ces deux remarques
(et de la définition (3.1.8) de F (¢)) que

(3.1.13) F(l/qt) = ¢ ™92 2F ().

Le rapprochement de (3.1.10), (3.1.12) et (3.1.13) donne immédiatement
I’équation fonctionnelle (3.1.3), et la proposition 3 se trouve établie.
Démontrons alors le théoréme 3. Posons par définition

Pty =(1-0(1—q)Z();

’équation fonctionnelle (3.1.3) pour Z(¢) (prop. 3) implique I’équation
fonctionnelle (3.1.2) pour P(¢), ce qui prouve (i1). Les formules (3.1.10),
(3.1.8) et (3.1.11) (voir la démonstration de la prop. 3) montrent que P (t)
est un polyndme a coefficients entiers: (i) résulte alors de (ii), en ce qui
concerne le degré de P et la valeur de son coefficient dominant; et du fait

que P(0) = Z(0) = 1, en ce qui concerne son terme constant.
Reste a démontrer (ii1). On a

logP(f) =logZ(t) —log(1—1)(1—qt) = » (N, —1—g™t"/m;
m>0
‘ le théoreme 3 du chapitre 8 montre que la série entiére de droite admet
- pour majorante la série Y. 2¢™/?t™, qui est holomorphe dans le disque

m>..0
| 1| < g~ '/% de C; log P(¢) est donc holomorphe dans ce disque, de sorte
que P (¢) n’admet aucun zéro dans le disque | 7| < ¢~ */?; comme la trans-
formation ¢ > 1/gf échange I'intérieur et Pextérieur de ce disque, (i) montre
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que P (¢) n’admet également aucun zéro dans le domaine || > g~'/2:
tous les zéros de P (¢) sont donc sur le cercle | 7| = ¢~ /2, ce qui prouve (ii)
et achéve la démonstration du théoréme 3.

COROLLAIRE 1. — Tous les zéros de la fonction { (V; s) sont sur la droite
Re (s) = 1)2.

Démonstration. — On aen effet { (V;5) = Z (V; ¢~ %), et le changement

de variable t = ¢~ transforme les ¢ de module ¢~ !/% en les s de partie
réelle 1/2. |

3.2. Ce corollaire 1 constitue ’analogue géométrique de I’hypothése
de Riemann, et résulte directement du théoréme 3 du chapitre 8. Inver-
sement, ce corollaire 1 (ou, ce qui revient au méme, la partie (iii) du théo-
réme 3 ci-dessus) implique le théoréme 3 du chapitre 8: écrivons en effet
ZV;t) =P@)/(1—t) (1—gqt), et soient «; (1 <i << 2g) les inverses des
2g zéros de P(¢); on a alors Z(V;t) = (1—oyt) ... (1 —oy,t)/(1—2)(1—qt),

donc (voir sect. 2.2), N,, = ¢" + 1 —a;™ — ... — a,; pour m = 1, ceci
permet d’écrire | g + 1 — Ny | <|oy | + ... + | oz, |; si maintenant on
suppose que les 2¢ zéros de P ont pour module ¢~/ on a |a;| = ¢'/?

pour i = 1, ..., 2g, et la derniére inégalité se réduit (puisque N = N,) a
lg +1 —N|<29q'?:

on retrouve bien I'inégalité¢ (3.1.1) du chapitre 8.

3.3. Remarquons pour terminer que dans la démonstration du théo-
réme 3 ci-dessus, la rationalité de Z (V; ¢) a été établie directement (a I’aide
du théoréme de Riemann-Roch), indépendamment du théoréme 2. Signalons
d’autre part que ’entier 4 qui s’est introduit au cours de la démonstration
de la proposition 3 est égal au nombre de classes de diviseurs de degré 0 du
corps de fonctions algébriques k (V)/k, et qu’on a P (1) = h; ainsi, dans le
cas géométrique comme dans le cas arithmétique, il y a un rapport étroit
entre nombre de classes et comportement de la fonction { au point s = 1
(& ce sujet, voir par exemple [19], chap. VII).

§ 4. Conjectures de Weill.

4.1. Soit maintenant ¥ une variété projective non singulicre de type
(n, d, r) (voir chap. 8, § 4) définie sur k. Une description de Z (V;t), géné-
ralisant le théoréme 3 (qui correspond a r = 1), est donnée par les énoncés
suivants, dits « conjectures de Weil » (voir Weil (1949), p. 507):
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(CW1) (Théoréme de Lefschetz). — Il existe 2r + 1 familles d’entiers
algébriques (0;;)1 —j—p;» 0 <i <2r, telles qu’en posant, pour chaque i,

Pi (1) = 1—1 (l—‘ijit), on aqit
j=1
Pi(t) P3(D) ... Py, -1 (1)
Po(t) Py(8) ... P2, (1)
de plus, Po(t) = 1 —tet P, () =1 -4t

(4.1.1) Z(V;1) =

2r

(CW2) (Equation fonctionnelle). — Si on pose x = Y (—1)'B; on a
i=0

(4.1.2) Z(V;1]qt) = + q™***Z(V;1).
(CW3) (« Hypothése de Riemann »). — Pour tout couple d’indices j, i, on a
(4.1.3) I aji I = qilz .

(CW4) (Rationalité des « polyndmes de Weil » P;). — Chacun des poly-
noémes P; est a coefficients entiers rationnels, de terme constant égal a 1.

(CW5) (Interprétation des entiers B; comme nombres de Betti). — Si V
se reléve en caractéristique O (autrement dit, s’il existe un anneau de valuation
discréte O, contenu dans C, et dont le corps résiduel s’identifie a k, et une
variété projective non singuliére V., définie sur O, et dont la variété réduite
modulo 1’idéal maximal de O s’identifie @ V), alors les B; sont égaux aux
nombres de Betti de V,, considérée comme variété topologique complexe
compacte de dimension complexe r, donc de dimension réelle 2r. (L ’exposant
X, dans [’équation fonctionnelle (4.1.2), est alors la caractéristique d’Euler-
Poincaré de V).

On remarquera que, compte tenu de la définition des P;, (4.1.1) équivaut
(voir th. 2, cor. 1 et remarque) a la collection d’égalités

Np = (=Dl (m=1,2,..);
3 J

de méme, (4.1.2) équivaut a I’assertion suivante: quel que soit i (0 < i < 2r),
les deux familles (;;);_j_gp, -, €t (q'oc"j,-l)1 —;—p sont identiques (2 une
permutation pres).

4.2. L’ensemble de ces conjectures a été démontré par Weil lui-méme
lorsque ¥ est une courbe (th. 3), et lorsque V est une variété abélienne (voir
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par exemple [9], notamment p. 140). Le cas out V est une hAypersurface (c’est-
a-dire ou r = n — 1) a été traité par Dwork (1962, 1964; 1966, a) qui a
montré, en perfectionnant les méthodes p-adiques de son article de 1960,
qu’on a alors |

(4.2.1)  Z(V;0) = PO (1 —t) (1—qt)...(1 —g"" 1),

P (7) étant un polyndme de degré d ™' ((d—1)"*" + (—1)"* " (d—1)): ceci
prouve (CW1), (CW2) et (CWS5) pour les hypersurfaces.

4.3. Les conjectures (CW1), (CW2) et (CW5) ont été démontrées en
toute généralité par Artin et Grothendieck (voir Grothendieck (1964, a; b))
et, de deux maniéres différentes, par Lubkin (1967, 1968). Le principe de ces
démonstrations est la construction, pour les variétés algébriques (ou plus
précisément les schémas), d’'une cohomologie & coefficients dans un corps K
de caractéristique 0 (« cohomologie de Weil »), consistant en la donnée, pour
tout i >0, d’'un foncteur H' de la catégorie des schémas projectifs non
singuliers dans la catégorie des espaces vectoriels de dimension finie sur K,
cette famille de foncteurs possédant (entre autres) les propriétés suivantes:

(4.3.1) Sidim (V) = r. alors H' (V) = 0 pour i > 2r.

(4.3.2) (Formule « des traces », ou « des points fixes », de Lefschetz). —
Si f est un morphisme V — V, et si f; = H' (f) est l’endomorphisme corres-
pondant dans H* (V), alors le nombre d’intersection i (I' - A) du graphe T
de f avec la diagonale A de V' x V est donné par

2r
i(Id) = 3 (=1 Tr(f).

(4.3.3) (Formule de dualité). — L ’espace vectoriel H*" (V') est isomorphe
a K (r désignant toujours la dimension de V), et il existe pour tout i tel que
0 < i < 2r une application bilinéaire H' (V) x H*'"'(V) - H*' (V) ~ K
mettant H' (V) et H*"~* (V) en dualité.

(4.3.4) Si V se reléve en caractéristique O selon une variété complexe V),

la « cohomologie de Weil » de V s’identifie a la cohomologie ordinaire de V,,
(a coefficients dans K).

La « cohomologie de Weil » d’Artin-Grothendieck est la cohomologie
[-adique étale, pour laquelle K = Q,, / désignant n’importe quel nombre
premier différent de la caractéristique p du corps de base k; les « coho-
mologies de Weil » de Lubkin utilisent respectivement comme corps de
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coefficients K = Q,, / # p (Lubkin (1967)) et K = Q, (Lubkin (1968)).
A titre d’exemple, moutrons comment la formule (4.1.1) peut se déduire de
la formule des traces de Lefschetz: k et V étant fixés, soit f1’endomorphisme
de V défini par f(x) = x@ (x € V; voir chap. 8, § 2) et soit I le graphe de f
dans ¥ x V; on peut montrer que tous les points du cycle intersection
I - A ont pour multiplicité 1; comme ces points correspondent bijectivement
aux points de V invariants par f, donc rationnels sur k, la formule de Lef-
schetz donne

Ni= Y (=D Tr(f);

appliquant le méme raisonnement au corps de base k,, et a ’endomorphisme
f™, on trouve plus généralement, pour tout m > 1,

N = T (=D TrOm,

et par conséquent

2r
(4.3.5) logZ(V;) = Y (=D ) Tr(f™mt"/m.
i=0 m=1
Mais K étant de caractéristique 0, on a, dans K [[¢]],
(4.3.6) dét (1—1f) =exp(— Y Tr(fi"t"/m)
m>1

(c’est un résultat qui a déja été mentionné au § 2, et qu’on peut prouver en
triangularisant f; sur la cldture algébrique K de K); si alors on pose P;* ()
= dét (1—1f)), (4.3.5) et (4.3.6) donnent

Py*(H) Py*(1) ... Py, 24 () .

(337 VS0 = B s P . P ()

ceci prouve (CW1), moins le caractére algébrique des o;;; mais il suffit de
mettre le second membre de (4.3.7) sous forme irréductible, de noter P, (z)
«ce qui reste » de P;* (¢) aprés cette simplification, et d’utiliser le théo-
réme 2 et son corollaire 1, pour démontrer la totalité de (CW1).

Les conjectures (CW2) et (CW5) se démontrent de méme & partir de
(4.3.3) et (4.3.4). A TI’heure actuelle, en revanche, les conjectures (CW3)
et (CW4) ne semblent pas avoir été démontrées en toute généralité. Notons

qu’il résulte de (CW3) que les polyndmes de Weil P; ne dépendent que de k
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et V, et non du procédé, cohomologique ou autre, utilisé pour établir la
formule (4.1.1).

§ 5. Calcul explicite de certaines fonctions zéta.

5.1. Ce dernier paragraphe donne, a titre d’illustration de ce qui pré-
cede, le calcul explicite des fonctions z€ta de certaines variétés algébriques
(courbes ou hypersurfaces) définies par des équations diagonales. On utilise
essentiellement les résultats du chapitre 5, du chapitre 6 (§ 3), et le théoréme
suivant, dii a Davenport et Hasse (1934), qui permet de comparer les
sommes de Gauss relatives a k et celles relatives a k,, (m > 1):

THEOREME 4 (Davenport-Hasse). — Soient f§ et y un caractére additif et un
caractére multiplicatif non triviaux de k; pour m > 1, soient d’autre part
T™ et N™ la trace et la norme dans l’extension k,lk, et posons B™
=BoT™, y™ = yo N™. Alors

(i) B est un caractére additif non trivial de k,; x™ est un caractére
multiplicatif non trivial de k,,, et y'™ a méme ordre que y.

(i) Sion désigne par t et t™ les sommes de Gauss ©(x | B) et T (x™ | B)
relatives a k et k,, respectivement, on a

(5.1.1) M = (=) lgm,

Démonstration. — (i) Il suffit de noter que T™: k, — k*, et N™:
kX _ k* sont des homomorphismes surjectifs (chap. 1, prop. 9 et 10).

(i) (D’aprés Weil (1949), pp. 503-505). Pour tout polyndme unitaire P (U)
= U" + a,U" ' + ... + a, appartenant a k [U] (resp. & k,, [U]), posons
@ (P) = B(ay) x(ay (tesp. @™ (P) = ™ (ay) ™ (an); ¢ et o™ sont
évidemment des caractéres multiplicatifs sur les anneaux principaux k [U]
et k, [U], et on peut leur associer, « & la Dirichlet », les « séries L » sui-
vantes:

L) = Y, o) t*® = T[] 1/(1—q(P) D),

unit. irréd.

L, = Y, o™ @)t ® = [] 1/(1-™ (P)1*=®),

P P ynit.
unit. irréd.

(P étant supposé appartenir & k [U] et k,, [U] respectivement, bien entendu.)
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LEMME 1. — Ona L(t) =1 + 1t, L, (1) = 1 + 1™ t.

Vérifions par exemple la premiére égalité. On a L(f) = 1 + ¢4t + ...
+ ¢t* + ..., avec ¢, = ) ¢ (P), cette somme étant étendue a tous les
P ek [U] unitaires et de degré h, donc de la forme U* + a,U""' + ..

+ a,, les a;ek; pour A = 1, on trouve ainsi ¢; = Y, f(ay) x(a) =7
ayjek

(noter que j (0) = 0); pour # >>2 au contraire, on trouve

o =q"(2 Fla))( 2 x@),

aje ape

donc ¢, = 0, chacune des deux sommes étant nulle (chap. 5, prop. 2 et 5).

LEMME 2. — Si w désigne une racine primitive m-iéme de [’unité dans C,
on a
m—1
(5.1.2) L, = [] L(e9).
j=0

Pour chaque P € k [U], irréductible et unitaire, considérons le produit fini
L") = l;[ 1A -o™ (@)™,

Q parcourant seulement I’ensemble des facteurs irréductibles et unitaires
de P dans k,, [U]; on a évidemment
(513) Lm (tm) = H Lm,P (tm) .

P unit,
irréd.

Transformons maintenant L, p(t"), P étant supposé fixé. Posons
h = deg(P), et soit £ une racine de P dans k; on a [k (&):k] = h, et bien
entendu [k,,: k] = m; si alors d = (h,m), le p.p.c.m. de & et m est égal a
hm/d, et on a (chap. 1, prop. 4, cor. 1) [k,, (&): k] = hm/d, donc [k, (&): k,,]
= h/d. 1l en résulte que la décomposition de P en facteurs irréductibles et

unitaires de P dans k,, [U] est de la forme

P=0,0,..0,,

mﬂ ’gm (}') chacun des facteurs Q; étant de degré r
% (;) = h/d. Soit alors Q celui des Q; dont ¢ est
R racine, et calculons ¢ ™ (Q). Notons a, et g,
la trace et la norme de — ¢ dauns I’extension
% k (&)/k, et by et b, la trace et la norme de
ym. — ¢ dans Pextension k,, (¢)/k,,; on a P (U)
=U"+a,U" '+ .. 4+4a, et QU) = U"

+ b, U™ + ... + b,, et par conséquent

A

P
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(5.1.4) @) = Bla) x(ar), o™ (Q) = ™ B ™ (b))

L’utilisation de la transitivité de la trace et de la norme dans le diagramme de
corps ci-dessus donne d’autre part

(5.1.5) T (by) = (mld)a;, N™(b,) = ay".
(5.1.4), (5.1.5) et la définition de @™ permettent alors d’écrire

(5.1.6) 0" (Q) = B((m/d)ay) x(ay") = o (P)".

Les d facteurs irréductibles Q; de P dans k,, [U] donnent donc la méme valeur
a o™, dou |

(5.1.7) Ly p (™) = 1/(1—q P)y" "
Mais, quel que soit « € C, on a
m—1
(5.1.8) (1 —omm™? = TT (1 —oa (o’ 1)) ;
j=0

les deux membres sont en effet des polyndomes unitaires en ¢, & coefficients
complexes, de méme degré mh, et ayant les mémes racines (toutes multiples
d’ordre d). Dans (5.1.8), faisons & = ¢ (P), et portons dans (5.1.7); comme

m—1

h = deg (P), il vient L,, p (") = ] 1/1(—¢ (P) (w’t) *& ®), ce qui, compte
=0

tenu de (5.1.3) et de la définition de L(t), donne (5.1.2) et prouve le lemme 2.
Démontrons alors le théoréme 4. Les lemmes 1 et 2 permettent d’écrire

m—1
L4+ = ] (1+t0/);
j=o0

la comparaison des termes de plus haut degré en ¢t donne donc

m—1
(m — I_I Tl = nim-—1/2 m _ (—1)”1_11"",
j=0

C.Q.F.D.

COROLLAIRE 1. — Soient y et y deux caractéres multiplicatifs non triviaux
de k, et supposons également y\ non trivial. Alors, si ¥'™ = yo N™ et si
Y™ = o N™, ona

(5.1.9) n (™, ™) = (=" (oY)

Démonstration. — II suffit d’appliquer le théoréme 4 et la proposition 9,
(i1) du chapitre 5.
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5.2. Appliquons alors le théoréme 4 et son corollaire 1 au calcul des
fonctions zéta des courbes de genre 1 étudiées au chapitre 6, sections 3.3
a 3.5 (dont on conserve les notations).

(1) La courbe V| d’équation Y* =1 — X° (p # 2, 3).

Supposons d’abord ¢ = 1 (mod 6); la formule (3.3.1) (chap. 6) appli-
quée au corps de base k,, donne N*% = g™ + n (0™, x™) + (o™, 1)
N*E étant évidemment le nombre de points de V; « & distance finie » et
rationnels sur k,,; posons « = — n (¢, ¥), utilisons le corollaire 1 du théo-
réme 4, et remarquons que ¥, admet exactement un point a I'infini, rationnel
sur k; il vient alors Ny, =4" + 1 — o™ — &", d’ou finalement (th. 2,
cor. 1): ' ‘

(5.2.1) Z(Vt) = —at) (1—a)/(1—1) (1 —qt),
e qui est évidemment conforme au théoréme 3.
| Supposons maintenant ¢ = — 1 (mod 6) (donc p = — 1 (mod 6) et f

~ impair). On aura besoin du lemme suivant:

LEMME 1. — Soit p = — 1 (mod 6), et soient ¢, et x, deux caractéres
multiplicatifs de K = F 5, respectivement d’ordre 2 et d’ordre 3 (noter que
p? =1 (mod 6)). Alors n(¢,, x2) = p.

Démonstration. — Comme K contient six racines 6-iémes de 'unité, il
est facile de voir que le nombre N de solutions dans K? de I’équation Y2
= 1 — X satisfait & N = 5 (mod 6) (comparer avec le chap. 6, sect. A.1,
exemple 2). Posons © = m(¢,, y,);ona N = p* + n + 7 (chap. 6, (3.3.1)),
et la congruence relative a N donne

(5.2.2) n +7 =4 (mod 6).

Mais =, 7 e Z [p] (p =e*™/3), nt = p* (chap. 5, prop. 9, cor. 1), et p est
inerte dans Z [p]; ainsi, = = €p, T = Ep, & étant une racine 6-iéme de
Punité. (5.2.2) donne alors (e+&)p =4 (mod 6), puis e + 6 = — 4 =2
(mod 6), ce qui implique ¢ = 1 (examiner les six valeurs possibles de &).
Finalement, 7 = ¢p = p, C.Q.F.D.

Calculons alors le‘ff,,. Si m est impair, on a ¢" = — 1 (mod 3), donc
N lf‘f}; = ¢". Supposons maintenant m pair, m = 2m’, et soient ¢ et y deux
caractéres multiplicatifs de k,, respectivement d’ordre 2 et d’ordre 3; le
lemme 1 et le corollaire 1 du théoréme 4 (appliqué a k,/F ,») donnent d’abord
n(p, x) = (=1’ 7'p/ = ¢q; le corollaire 1 du théoréme 4, appliqué a
knlk,, donne dautre part 7 (™7, ")) = (=)™ " 1g" = — (=g,




— 110 —

donc (chap. 6, (3.3.1)) N;*T = g™ — 2 (—¢)™/%: Posons alors a = ig!/?;
les calculs précédents montrent que, quelle que soit la parité de m, on a
le‘if,, =q" —a" — &, donc Ny, = q" + 1 — o™ — &"; finalement, on
trouve encore

(5.2.3) Z(V) =0 —-at)(1—at)/(1—1) (1 —qi);
compte tenu de la valeur explicite « = ig’/%, on a méme, dans ce cas,
(5.2.4) Z(Vi;t) = (L+qgtd)/(1—1t) (1 —qb).

(2) La courbe V, d’équation Y? =1 — X* (p#2).

Supposons d’abord ¢ = 1 (mod 4); la formule (3.3.2) (chap. 6) appliquée
au corps de base k,,, combinée au corollaire 1 du théoréme 4, donne, comme
en (1), N,§ = g™ — 1 — o™ — &, avec & = — 7 (¢, ¥); d’autre part, V,
admet a I'infini un point double rationnel sur k: comptons-le pour deux
(ce qui revient & remplacer ¥, par sa normalisée ¥, ™ : voir d’ailleurs chap. 8,
sect. 2.4); on trouve ainsi Nz,*,,, =q4q"+1—o" — &, donc

(5.2.5) Z(*50) = 1—at) (1—an/(1 —1) (1 —q1),

ce qui est toujours conforme au théoréme 3. Remarquer que la fonction zéta
de V, non normalisée est Z (V,; t) = (1—at) (1—ar)/(1—qt).

Si on suppose au contraire ¢ = — 1 (mod 4), un calcul analogue a celui
fait en (1) (pour ¢ = — 1 (mod 6)) donnerait encore

(5.2.6) Z(V,*;0) = A +q)/(1—1t) (1 —qb).
(3) La courbe V, d’équation Y> =1 — X3 (p#3).

On laisse au lecteur le soin de vérifier que les formules (5.2.5) et (5.2.6)
restent valides pour la normalisée ¥,* de ¥V, respectivement pour g = 1
(mod 3) (et avec &« = — m (¥, x): voir chap. 6, (3.3.3)), d’une part; et pour

= — 1 (mod 3), d’autre part.

(4) La courbe V, d’équation Y* = X — X3 (pour ¢ = 1 (mod 4)).
Il résulte des calculs faits au chapitre 6 (sect. 3.4) que
(5.2.7) Z(Vyt) = Z(V,*;0).

(En fait, V, est un modéle projectif non singulier de V,, de sorte qu’on peut
choisir pour V,* la courbe V,.) L’égalité (5.2.7) reste d’ailleurs vraie pour
g = — 1 (mod 4).
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5.3. Terminons par deux exemples simples d’hypersurfaces (dans P3).
(5) La quadrique d’équation homogéne X* + Y* + Z* + T? = 0 (p#2).

Le nombre N, ° de points rationnels sur k,, du céne défini dans A, par
I’équation ci-dessus est donné (chap. 6, th. 1) par

N,° = q¢*™ + g ™ (@"—D1(p™)*,

@ désignant le caractére de Legendre de k; mais 7 (p™)* = ¢" @™ (=1),
et (¢"—1) N, + 1 = N,° (N,, étant le nombre de points de la quadrique
rationnels sur k,); d’otl immédiatement N,, = g°™ + 2¢™ + 1, et (th. 2,
cor. 1)

(5.3.1) Z(Vs;) = 11~ (1 —g0)* (1 —q*D),

Vs désignant la quadrique étudiée. (On aurait pu calculer N, a I'aide des
formules du chap. 6, prop. 2). Ce résultat est évidemment conforme a
(4.2.1) (sect. 4.2), c’est-a-dire au théoréme de Dwork pour les hypersurfaces:
onaP(t) =1—gt,dedegré 1,et (—1)" = (—=1)> = — 1, ce qui « envoie »
P (t) au dénominateur.

(6) La surface cubique d’équation homogéne X* + Y3 + 2> + T3 =0
(p#3).

On se limitera pour simplifier au cas ol ¢ = 1 (mod 3). On pourrait
procéder comme en (5), et utiliser le théoréme 1 du chapitre 6. Il est plus
commode de remarquer que (avec des notations évidentes) N, = N2f
+ Nof. N2 est e nombre de solutions rationnelles sur k,, de 1’équation
X?®+ Y? + Z> = — 1; si x est un caractére multiplicatif d’ordre 3 de k,
le théoréme 2 du chapitre 6, la proposition 10 du chapitre 5 et le théoréme 4
ci-dessus donnent

(5.3.2) N?nﬁ = q2m + (=)™ + (=)™ + 37, + 37,7,

avec 1y = 7 (x, x) = — n (X, X, x) (chap. 5, prop. 10, (1)) et 7, = 7 (¥, 1, X);
quant 3 Nt cest le nombre de points rationnels sur k,, de la cubique
d’équation projective X* + Y? + Z3 = 0; d’ou

(5.3.3) Nof =gq™ + 1 —(=n)" — (=7)"

(chap. 6, (3.3.3); tenir compte des trois points a I'infini !): au total,
(5.3.4) N,=¢"+q"+1+3n," + 3n,",

et (th. 2, cor. 1, une derniére fois)
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(5.3.5) Z(Vei) = 1(1—1) (1—qt) (1 —g%) (L =m0 (1 —2,0)°,

Ve désignant la surface cubique étudiée. Ce résultat est conforme aux conjec-
tures de Weil:ona Py(t) = 1 — t, P, (1) = P, (t) = 1, P, () = 1 — g*t,
et P, (1) = (1—qt) (1—n,1)* (1 —mn,1)%; Phypothése de Riemann se réduit a

InZI = |7_.C2] = ]77:(%, Xs Z)I =4 (Chap' 59 p1op. 103 COr. 1, (11))> la
« caractéristique d’Euler-Poincaré » est égaleal + 7 + 1 = 9, et ’équation
fonctionnelle s’écrit Z (V; 1/g*t) = — ¢°t°Z (Vs 0).

Notes sur le chapitre 9

§ 1-2-3-4: 'idée d’étudier arithmétiquement un corps de fonctions algé-
briques d’une variable sur un corps fini semble apparaitre nettement pour
la premiere fois chez Dedekind (1857). Mais c’est dans la thése d’Artin
(1924), puis dans les travaux de Schmidt (1931) et Hasse (1933, 1934, 1936),
qu’est définie la notion de fonction zé€ta (« Kongruenzzetafunktion ») et
formulée I'« hypothése de Riemann » en caractéristique p (Artin, Schmidt,
Hasse utilisent le langage des corps de fonctions algébriques d’une variable,
et non celui des courbes: mais ces deux langages sont équivalents, ou plutot,
le sont devenus depuis les « Foundations » de Weil; voir d’ailleurs Weil
(1949), Introduction). L’équation fonctionnelle pour { (V;s) (c’est-a-dire,
aux notations pres, la proposition 3) est due a Schmidt (1931); la démons-
tration de ’hypothése de Riemann pour g = 1 est due a Hasse (1933, 1934),
et, pour g quelconque, a Weil (1940; 1948, a). Les diverses définitions de
Z (V;t) données au paragraphe 1 figurent, pour une courbe, dans Weil
(1948, a), et, pour une variété projective non singuliére de dimension quel-
conque, dans Weil (1949); cet article contient également 1’énoncé (et, pour
des cas particuliers, la vérification) des « conjectures de Weil ». L’existence
d’une « formule de Lefschetz » en géométrie algébrique est conjecturée dans
Weil (1954) (p. 556): d’ou la notion de « cohomologie de Weil » — cette
terminologie étant d’ailleurs considérée par Weil lui-méme comme « tout
a fait inadéquate » (wholly unsuitable). Au sujet du lien formel entre
théories cohomologiques des variétés algébriques et propriétés des fonctions
zéta, voir Demazure (1969), notamment §§ 7 et 9. Au sujet du lien entre
méthodes p-adiques et méthodes cohomologiques, voir Katz (1972) (cet
exposé contient une abondante bibliographie).

Signalons qu’a cdté des fonctions z€ta, on peut (comme en arithmétique)
construire, pour les variétés algébriques, des « séries L »; pour une définition
générale (en langage des schémas, et englobant d’ailleurs les séries L de la
théorie des nombres), voir [16], pp. 86-91. La rationalité des séries L des
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variétés algébriques a été établie par Grothendieck (1964, b); voir également
Dwork (1966, b). Pour 'application de ce résultat a I’étude des sommes
exponentielles, voir notamment Bombieri (1966).

§ 5: les exemples de ce paragraphe sont empruntés essentiellement a
Davenport-Hasse (1934) et & Weil (1949). Signalons que le lemme 1 (sect. 5.2)
peut aussi se démontrer & P’aide de la proposition 9, (ii) (chap. 5), et du
résultat suivant, dii & Stickelberger (1890): si y est un caractére multipli-
catif de F o, et si 0 est un élément primitif de F 2/F,, ona t (y [ B) = x () p,
sip # 2,et T(y [ B) = p si p = 2; pour une démonstration de ce dernier
énoncé, voir aussi Carlitz (1956, a).

Pour V=V, etg= —1 (mod 6), ou V = V,* et ¢ = — 1 (mod 4),
ouV = V;* et g= — 1 (mod 3), on a trouvé la méme expression

Z(Vit) = (1+q)/(1 -0 (1—qt);

ceci résulte (1) du fait que, dans les trois cas,ona N; = g + l,et(2)dela
relation Z (V;t) = (1+ (N,—q—1) t+qt*)/(1—1) (1—gqt), valable pour
toute courbe ¥V (projective, non singuliére) de genre 1, définie sur k et
ayant N, points rationnels sur k (cette relation se déduit facilement du
théoréme 3 et du théoréme 2, corollaire 1 et remarque). En fait, si deux
courbes de genre 1, définies sur k&, ont méme nombre N, de points rationnels
sur k, alors, elles ont le méme nombre N, de points rationnels sur k,, pour
tout m, puisqu’elles ont méme fonction z€ta (appliquer la formule ci-
dessus !): on peut prouver que ceci se produit si et seulement si les deux
courbes sont isogeénes sur k (voir [4], p. 242, pour la partie « si », et Tate
(1966), pour la partie « seulement si ».)
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