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V < A, une variété affine de type (#, d, r); plongeons A, dans P, de maniére
que ’hyperplan « a linfini » H,, ait pour équation (par exemple) X, = 0;
adjoignons alors a V ses points « a 'infini » de la fagon habituelle, et notons
W la variété projective ainsi obtenue; elle est de type (n, d, r), et on a, avec
des notations évidentes, Ny = Ny — Ny y,; il suffit dans ces conditions
d’appliquer le théoréme 4 & Ny, et le lemme 1 & Ny, pour obtenir

(4.3.1) INy —q" | <B@) g~ + A" (n,d,r)q"" ",

avec A" (n,d,r) = A(n,d,r)+ A, (n,d, r) = une constante qui ne dépend
que de n, d et r.

Notes sur le chapitre 8

§2: le théoréme 2 est di & Schmidt (1931) (méthode analytique); ce
théoréme est un aspect d’un résultat général relatif aux espaces homogenes
principaux sur un corps de base fini (Lang (1956); voir aussi Serre, Groupes
algébriques et corps de classes, p. 119 (Hermann, 1959)). L’application
x > x@ utilisée dans la démonstration du théoréme 2 est souvent dite
« endomorphisme de Frobenius » (voir d’ailleurs chap. 1, prop. 8); le fait
que les points fixes de cet endomorphisme sont exactement les points
rationnels sur £k = F_ est un trait caractéristique de la « géométrie diophan-
tienne » sur un corps fini.

Un certain de nombre de cas particuliers du théoréme de Hasse avaient
déja été remarqués au cours du XIXe siécle; citons notamment la « derniére
inscription du journal de Gauss» («letzte Eintragung im Gauss’schen
Tagebuch », reproduite dans Deuring (1941), pp. 197-198), relative au
nombre de solutions de la congruence X2Y2 + X2 4+ Y2 — 1 = 0 (mod p),
pour p = 1 (mod 4) (a ce sujet, voir également [5], p. 307, et [4], p. 242,
note 3). Pour la démonstration originale du théoréme de Hasse, voir Hasse
(1933, 1934, 1936).

Les courbes (projectives, non singuliéres) de genre 1 sur un corps fini k&
ne sont autres (d’apres le théoréme de Schmidt) que les variétés abéliennes de
dimension 1 définies sur k; les variétés abéliennes de dimension quelconque
définies sur un corps fini ont été étudiées notamment par Honda, Milne,
Serre, Tate, Waterhouse: pour une bibliographie sur ce sujet, voir Water-
house (1969).

§ 3: le théoréme 3, annoncé par Weil en 1940, est démontré dans Weil
(1948) (= [20], 1¢ére partie) par voie « géométrique »: c’est cette démons-
tration qu’on a résumée ici; pour des démonstrations « arithmétiques »,
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voir Igusa (1949) et Roquette (1953) (voir aussi [S], chap. V, §§ 1-5); dans
tous les cas, le point essentiel est I'inégalité o (£&') > 0 (inégalité (23),
p. 292, dans [5], par exemple); pour un commentaire sur cette inégalité
(dite « de Castelnuovo »), voir Weil (1954), p. 553. Pour une application
aux « sommes exponentielles », voir Weil (1948, b).

§ 4: la constante A, (n, d, r) (lemme 1) peut étre prise €gale a 2d)" (en
fait, elle ne dépend donc pas de n); en revanche, la constante 4, (n,d. r)
(lemme 2) et par conséquent la constante 4 (1, d, r) (th. 4) dépendent de n;
on ne sait d’ailleurs pas en général les majorer explicitement, faute de rensei-
gnements précis sur le degré e (n, d, r) de ’ensemble algébrique E.

Pour d’autres remarques sur les résultats ci-dessus, voir également le
chapitre 9.

CHAPITRE 9

FONCTIONS ZETA

Dans ce dernier chapitre, on se donne comme toujours un corps fini £
a g = p’ éléments, de cldture algébrique k; pour tout entier m >1, k,,
désigne I'unique extension de degré m de k contenue dans k (chap. 1, § 1).
A tout ensemble algébrique V défini sur &, on peut alors associer la série
formelle Z (V; £) = exp ( ), N,t"/m), ou N,, désigne le nombre de points

m>1
de V rationnels sur k,, et ou t est une indéterminée. Il se trouve que cette
série formelle est en fait une fraction rationnelle en ¢, et que, moyennant
des hypothéses convenables sur V, cette fraction rationnelle peut étre décrite
avec précision. Le paragraphe 1 de ce chapitre énonce diverses définitions
équivalentes de Z (V; t), et justifie le nom de « fonction z€ta de V» qui lui
est attribué. Le paragraphe 2 donne une esquisse de la démonstration de la
rationalité de Z (V; t). Le paragraphe 3 montre comment le théoréme de
Riemann-Roch et le théoréme 3 du chapitre 8 permettent d’obtenir une
description trés compléte de Z (V;t) quand ¥ est une courbe projective
non singulieére. Le paragraphe 4 indique sans démonstration diverses généra-
lisations des résultats du paragraphe 3. Enfin, le paragraphe 5 donne des
exemples de calcul explicite de fonctions z€ta; ce paragraphe peut d’ailleurs
étre lu directement apres le paragraphe 2: on y utilise uniquement les défi-
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