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g — 3 + a; + ... + ag. Maintenant, la courbe étudiée, considérée comme
projective, est non-singuliére, de genre g = (4—1) (4—2)/2 = 3, par la
formule de Pliicker, et elle admet quatre points & Iinfini; ainsi,
N=gq—-3+4+a,+ ..+ ag, etona

g +1=N|<l|ay| + ... + |ag| = 6¢"% = 299"%,

ce qui vérifie directement le théoréme 3 dans ce cas particulier.

La méme vérification est possible plus généralement, grace a la propo-
sition 3 du chapitre 6, pour la courbe X% + Y% = 1, avec ¢ — 1 divisible
par d, et d,: on laisse au lecteur le soin de faire les calculs, et notamment de
montrer que le genre est égal a ((d;—1) (d,—1) — (d—1))/2, avec d =
= (dy, do).

3.4. Le théoréme 3 admet deux conséquences importantes:

COROLLAIRE 1. — Soit N,, le nombre de points de V rationnels sur k,,
= F,m. Alors, quand m tend vers linfini, N,, tend lui-meme vers [’infini ; en
particulier, pour tout m assez grand, N, > 1.

Démonstration. — En effet, le théoréme 3 appliqué au corps de base k,,

donne N, >q™ + 1 — 2gq™?, et le membre de droite tend vers Iinfini
avec m.

COROLLAIRE 2. — La courbe V posséde un diviseur de degré 1 rationnel
sur k.

Démonstration. — Le corollaire 1 montre qu’on peut trouver deux entiers
successifs m et m + 1 tels que V' admette un point rationnel sur k,, et un
point rationnel sur k,,, ;; ¥ admet donc un diviseur de degré m et un divi-
seur de degré m + 1 rationnels sur k, et il suffit de retrancher le premier du
second pour obtenir un diviseur de degré (m+1) — m = 1 rationnel sur k.

Pour g > 2, V ne possede généralement pas de point rationnel sur k: le
diviseur de degré 1 dont I’existence est affirmée par le corollaire 2 ne peut

donc généralement pas (sauf pour g = 0 ou 1: th. 1, cor. 1, et th. 2) étre
supposé positif.

§ 4. Variétés de dimension quelconque.

4.1. Soit V' une variété projective définie sur k, de dimension r, et
supposée plongée dans P,, espace projectif de dimension 7 sur k; rappelons
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quon appelle degré de V le nombre de points d’intersection de V" avec une
sous-variété linéaire de P, de dimension » — r « en position générique »
(voir [15], chap. I, § 8.4); une variété projective plongée dans P,, de degré d
et de dimension r sera dite « de type (n, d, r) ».

Cela étant, on a le théoréme suivant, dit a Lang et Weil (1954) (voir
aussi Nisnevich (1954): Nisnevich se limite au cas ou le corps de base k est
le corps premier F):

THEOREME 4. — Si V est une variété projective de type (n, d, r) définie
sur k, et si N = N, désigne le nombre de points de V rationnels sur k, on a

(4.1.0) IN = q"| <B@q™~ % + A, d,n)q"",

A (n,d, r) désignant une constante qui ne dépend que de n, d et r, et B(d)
désignant une constante qui ne dépend que de d (et qu’on peut prendre égale a

(d-1) (d-2)).

Démonstration. — On raisonne par double récurrence, d’abord sur n,
puissurr. Sin = 0,ona N < d, et le théoréme est évident; supposons donc
n > 1:si V est contenue dans un hyperplan de P, défini sur k, V peut €tre
considérée comme de type (n—1, d,r), et ’hypothése de récurrence sur n
permet d’écrire | N — ¢"| < B(d) ¢~ M'? + A(n—1,d,r)q""': le théo-
réme est également établi. Ainsi, on peut désormais supposer n fixé (> 1),
faire ’hypothése suivante:

(H) V n’est contenue dans aucun hyperplan de P, défini sur k,

et raisonner par récurrence sur r. Pour r = 0, on a N <d, et le théoréme
est évident. Supposons maintenant r = 1; J est alors une courbe projective,
éventuellement singuliére: soit V', une courbe projective non singuliére définie
sur k et birationnellement équivalente & V' sur k (via une équivalence biration-
nelle ¢: V; — V), et soit N, le nombre de points de V', rationnels sur k;
le théoréme 3 montre que | g + 1 — N, | <2gq'/?, g désignant le genre
de ¥, donc de V'; mais le genre de V' et le nombre de points singuliers de V'
sont tous deux majorés par (d—1) (d—2)/2 (projeter V sur un plan, ce qui ne
modifie ni g, ni d, et ne peut qu’augmenter le nombre de points singuliers;
puis appliquer la formule de Pliicker & cette projection); d’autre part, la
correspondance birationnelle ¢: V; — V est bijective en dehors des points
singuliers de V (et fait correspondre, a des points rationnels sur k, des points
rationnels sur k, puisqu’elle est définie sur k), et elle associe, & chaque point
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singulier de V, au plus d points de V; ainsi, | N — Ny | <d(d—1) (d—2)/
2, et finalement |N —gq| <B(d)q'? + A(n,d, 1), avec B(d) = 2g
<(d-1)(d-2) et A(n,d, 1) = d(d—1)(d—2)/2 + 1: le théoréme est
établi pour les variétés de type (n, d, 1).

Supposons alors r > 2, et le théoréme démontré jusqu’a la dimension
r — 1. Soit P, un second exemplaire de I’espace projectif P, sur k; a tout
point w = (w,, ..., w,) de P,, associons I’hyperplan H, de P, d’équation
woXy + ... + w,X, = 0; les hyperplans H, définis sur k correspondent
bijectivement aux points w de P, rationnels sur k, et il y en a exactement

0, = (@' =Dj@=1) = ¢" + .. +q +1.

Calculons de deux maniéres différentes le nombre C des couples (x, H,),
ol x est un point de ¥ rationnel sur k, et ot w est un point de P, rationnel sur
k et tel que x appartienne a H:

(1) V, contient par définition N points, et par chacun d’eux passent
Q,_ 1 hyperplans définis sur k: dou C = NQ,_;

(2) pour chaque hyperplan H, défini sur k, le cycle intersection V - H,
(voir [15], chap. II, § 6.1) est, en un sens évident, de type (n, d,r — 1), en
vertu de I’hypothése (H); notons N, le nombre de points de V' - H, (c’est-
a-dire de V' n H,,) rationnels sur k; on a alors évidemment C = ) N,, w

w
parcourant I’ensemble des Q, points de P, rationnels sur k.

Le rapprochement des résultats de ces deux calculs donne NQ,_, = > N,,

ou €ncore

(4.1.2) N=0,.%YN,+0,4 Y N,,
wel weR
I (resp. R) désignant I’ensemble des points we P, rationnels sur k et tels
que le cycle V' - H, soit (resp. ne soit pas) une variété. On posera N,
= card (I) et Ng = card (R); il est clair que N; + Ny = O,.
On a alors ces deux lemmes:

LEMME 1. — Il existe une constante A (n,d,r) ne dépendant que de n, d
et r et ayant la propriété suivante : quel que soit Z, cycle positif de type
(n, d, r) rationnel sur k, on a

(4.1.3) Nz, < 4;(n,d,r)q",

N, désignant le nombre de points de Z rationnels sur k (un point de Z est un
point de la réunion des composantes de 7).
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LEMME 2. — Il existe une constante A, (n,d,r) ne dépendant que de n, d |
et r et possédant la propriété suivante : quelle que soit V, variété de type
(n, d, r) définie sur k et vérifiant (H), le nombre Ny défini ci-dessus satisfait a

(4.1.9) Np<A,(n,d,r)q"'.

Le lemme 1 est élémentaire; il se démontre par récurrence sur r, en
coupant Z par les éléments rationnels sur & d’un faisceau d’hyperplans
convenablement choisi dans P,. Le lemme 2 est plus technique; on le déduit
du lemme 1 en construisant, grace a la théorie de la forme de Chow (a ce
sujet, voir par exemple [15], chap. I, § 9.4), un ensemble algébrique E défini
sur k, de type (n, e, n — 1), plongé dans P,, dont le degré e = e(n, d, r)
ne dépend que de n, d et r, et qui contient I’ensemble R; comme les points de
R sont tous rationnels sur k, on a donc Ng < Ny <A, (n,e,n — 1) ¢" "%,
et la constante du lemme 2 est donnée par

Ay(n,d,r) = A;(n,e(n,d,r),n—1).

(L’ensemble algébrique E dépend de V; pour une démonstration détaillée
de ces deux lemmes, voir Lang-Weil (1954), pp. 820-821).

Achevons alors la démonstration du théoréme 4. Dans le membre de
droite de (4.1.2), chaque terme N, de la premiére somme est le nombre de
points rationnels sur k de V - H_, qui est une variété de type (n,d, r — 1)
définie sur k, puisque w € I; par hypothése de récurrence (sur r), on a donc

INy, =g | <B@)q™® + AMm, d,r—1)g"" 2.

D’autre part, le nombre de termes de cette premiere somme est Q, — Ng;
les valeurs de Q,_, et Q, sont connues, et celle de N, est majorée par
A, (n, d, r) (lemme 2); un calcul facile montre alors que
(4.1.5) Q1 Y Ny —q" = B(dq ™ Y[ <A5(0n,d,1)q" 7",

wel
A, (n, d, r) étant une constante qui ne dépend que de n, d et r. Considérons
maintenant la seconde somme figurant dans le membre de droite de (4.1.2);
chacun des termes N, qui y apparaissent est le nombre de points rationnels
sur k d’un cycle, V - H,, positif, rationnel sur k, et de type (n, d, r — 1);
le lemme 1 donne donc N, < 4, (n,d,r — 1) ¢"~*; comme cette seconde
somme comporte N, termes, le lemme 2 montre qu’elle est majorée par
Ay (n,d r)q"t" "2, avec Ay (n,d,r) = A, (n,d,r — 1) A, (n,d, r) = une
constante qui ne dépend que de n, detr. Mais Q,_, = ¢" "' + ... + ¢ + 1;
ainsi, 0,_% < ¢'™", et on arrive & la majoration
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(4.1.6) 10 Y Ny | <Ay (n,d,r)g ™"

weR
1l suffit alors de porter les inégalités (4.1.5) et (4.1.6) dans la formule (4.1.2)
et de poser A (n,d,r) = A3 (n,d, r) + A4 (n, d, r) pour obtenir I'inégalite
(4.1.1). Le théoréme 4 se trouve ainsi établi.

4.2. Le théoréme 4 admet la conséquence suivante, qui généralise le
corollaire 1 du théoréme 3, et se démontre de la méme maniere:

COROLLAIRE 1. — Soit N, le nombre de points de V rationnels sur k,,
= F . Alors, quand m tend vers l'infini, N,, tend lui-méme vers [infini ; en
particulier, pour tout m assez grand, N,, > 1.

La propriété « N,, > 1 pour tout m assez grand », c’est-a-dire « V" admet
un point rationnel sur toute extension algébrique de k de degré assez grand »,
est évidemment fausse en général sur un corps de base quelconque. Ainsi,
’hyperquadrique projective X,% + ... + X,* = 0, définie sur le corps Q,
n’admet de point rationnel sur aucune extension de Q de degré impair m,
si grand que soit m; en effet, Q est un corps formellement réel ([10], chap. XI,
§ 2); si K/Q est de degré impair, K est alors lui-mé€me formellement réel
(ibid., prop. 2, (i), et une égalité x,*> + ... + x, avec xo, ..., X, € K n’est
possible que si x, = ... = x, = 0. Un argument de ramification montrerait
de méme que la variété X,"*! + pX,"*1 + ..+ p"X,"T! = 0, définie sur
le corps Q, des nombres rationnels p-adiques, n’admet de point rationnel sur
aucune extensionde Q, de degré m non divisible par n + 1, si grand que soit m.

Cette propriété « N,, > 1 pour tout m assez grand » est également fausse
en général, méme sur un corps de base fini, si on ne suppose pas V absolument
irréductible. Ainsi, considérons le polyndme P défini par (4.1.1) (chap. 4, § 4),
et supposons n >2; 1’équation P (X,, ..., X,_;) = 0 définit alors une
k-variété projective V' (de type (n—1, n, n—2)), mais cette k-variété n’est pas
absolument irréductible, donc n’est pas une variété (elle se décompose en n
hyperplans définis sur K = k, et conjugués sur k); et il est facile de vérifier
que si m est premier avec #, le nombre N,, de points de V rationnels sur k,,
est nul, si grand que soit m (noter que si (m, n) = 1, k,, et k, sont linéaire-
ment disjoints sur k (chap. 1, prop. 4, cor. 2); wy, ..., ®, est alors une base
de k,, sur k,, et on peut raisonner comme au chapitre 4, section 4.1, en
remplagant k par k,, et K = k, par k,,).

4.3. Remarquons enfin que le théoréme 4 reste vrai pour des variétés
affines, moyennant une modification de la constante 4 (n. d, r). Soit en effet
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V < A, une variété affine de type (#, d, r); plongeons A, dans P, de maniére
que ’hyperplan « a linfini » H,, ait pour équation (par exemple) X, = 0;
adjoignons alors a V ses points « a 'infini » de la fagon habituelle, et notons
W la variété projective ainsi obtenue; elle est de type (n, d, r), et on a, avec
des notations évidentes, Ny = Ny — Ny y,; il suffit dans ces conditions
d’appliquer le théoréme 4 & Ny, et le lemme 1 & Ny, pour obtenir

(4.3.1) INy —q" | <B@) g~ + A" (n,d,r)q"" ",

avec A" (n,d,r) = A(n,d,r)+ A, (n,d, r) = une constante qui ne dépend
que de n, d et r.

Notes sur le chapitre 8

§2: le théoréme 2 est di & Schmidt (1931) (méthode analytique); ce
théoréme est un aspect d’un résultat général relatif aux espaces homogenes
principaux sur un corps de base fini (Lang (1956); voir aussi Serre, Groupes
algébriques et corps de classes, p. 119 (Hermann, 1959)). L’application
x > x@ utilisée dans la démonstration du théoréme 2 est souvent dite
« endomorphisme de Frobenius » (voir d’ailleurs chap. 1, prop. 8); le fait
que les points fixes de cet endomorphisme sont exactement les points
rationnels sur £k = F_ est un trait caractéristique de la « géométrie diophan-
tienne » sur un corps fini.

Un certain de nombre de cas particuliers du théoréme de Hasse avaient
déja été remarqués au cours du XIXe siécle; citons notamment la « derniére
inscription du journal de Gauss» («letzte Eintragung im Gauss’schen
Tagebuch », reproduite dans Deuring (1941), pp. 197-198), relative au
nombre de solutions de la congruence X2Y2 + X2 4+ Y2 — 1 = 0 (mod p),
pour p = 1 (mod 4) (a ce sujet, voir également [5], p. 307, et [4], p. 242,
note 3). Pour la démonstration originale du théoréme de Hasse, voir Hasse
(1933, 1934, 1936).

Les courbes (projectives, non singuliéres) de genre 1 sur un corps fini k&
ne sont autres (d’apres le théoréme de Schmidt) que les variétés abéliennes de
dimension 1 définies sur k; les variétés abéliennes de dimension quelconque
définies sur un corps fini ont été étudiées notamment par Honda, Milne,
Serre, Tate, Waterhouse: pour une bibliographie sur ce sujet, voir Water-
house (1969).

§ 3: le théoréme 3, annoncé par Weil en 1940, est démontré dans Weil
(1948) (= [20], 1¢ére partie) par voie « géométrique »: c’est cette démons-
tration qu’on a résumée ici; pour des démonstrations « arithmétiques »,
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