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q -3 + «! + + a6. Maintenant, la courbe étudiée, considérée comme

projective, est non-singulière, de genre g (4—1) (4—2)/2 3, par la

formule de Pliicker, et elle admet quatre points à l'infini; ainsi,

N q— 3 + 4 + + + a6, et on a

| q +1 - IV | < | at | + + | a6 | 6

ce qui vérifie directement le théorème 3 dans ce cas particulier.
La même vérification est possible plus généralement, grâce à la proposition

3 du chapitre 6, pour la courbe Xdl + Yd2 1, avec q — 1 divisible

par d1 et d2 : on laisse au lecteur le soin de faire les calculs, et notamment de

montrer que le genre est égal à ((^ — 1) (d2 — 1) — {d—1))/2, avec d

(du d2).

3.4. Le théorème 3 admet deux conséquences importantes:

Corollaire 1. — Soit Nm le nombre de points de V rationnels sur km

Fçm. Alors, quand m tend vers l'infini, Nm tend lui-meme vers l'infini ; en

particulier, pour tout m assez grand, Nm > 1.

Démonstration. — En effet, le théorème 3 appliqué au corps de base km

donne Nm > qm -f 1 — 2gqm!2, et le membre de droite tend vers l'infini
avec m.

Corollaire 2. — La courbe V possède un diviseur de degré 1 rationnel
sur k.

\

Démonstration. — Le corollaire 1 montre qu'on peut trouver deux entiers
successifs m et m + 1 tels que V admette un point rationnel sur km et un
point rationnel sur fcm+ x ; V admet donc un diviseur de degré m et un diviseur

de degré m + 1 rationnels sur k, et il suffit de retrancher le premier du
second pour obtenir un diviseur de degré (m+ 1) — m 1 rationnel sur k.

Pour g > 2, V ne possède généralement pas de point rationnel sur k: le
diviseur de degré 1 dont l'existence est affirmée par le corollaire 2 ne peut
donc généralement pas (sauf pour g 0 ou 1: th. 1, cor. 1, et th. 2) être
supposé positif.

§ 4. Variétés de dimension quelconque.

4.1. Soit V une variété projective définie sur k, de dimension r, et
supposée plongée dans P„, espace projectif de dimension n sur k\ rappelons
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qu'on appelle degré de V le nombre de points d'intersection de V avec une
sous-variété linéaire de P„ de dimension n — r « en position générique »

(voir [15], chap. I, § 8.4); une variété projective plongée dans P„, de degré d
et de dimension r sera dite « de type (n, d, r) ».

Cela étant, on a le théorème suivant, dû à Lang et Weil (1954) (voir
aussi Nisnevich (1954): Nisnevich se limite au cas où le corps de base k est
le corps premier Fp):

Théorème 4. — Si V est une variété projective de type {n, d, r) définie

sur k, et si N Nv désigne le nombre de points de V rationnels sur k, on a

(4.1.1) \N - qr | <B(d)4r"(1/2) + Ain, d,r)qr~1

A{n,d,r) désignant une constante qui ne dépend que de n, d et r, et B(d)
désignant une constante qui ne dépend que de d (et qu *on peut prendre égale à

(d-l)(d-2)).

Démonstration. — On raisonne par double récurrence, d'abord sur n,

puis sur r. Si n 0, on a N < d, et le théorème est évident; supposons donc

n > 1 : si V est contenue dans un hyperplan de P„ défini sur k, V peut être

considérée comme de type {n— 1, d, r), et l'hypothèse de récurrence sur n

permet d'écrire | N — qr | < B (d) #r_(1/2) + A (n— 1, d, r) qr~1 : le théorème

est également établi. Ainsi, on peut désormais supposer n fixé (> 1),

faire l'hypothèse suivante:

(H) V n 'est contenue dans aucun hyperplan de Fn défini sur k,

et raisonner par récurrence sur r. Pour r 0, on a N < d, et le théorème

est évident. Supposons maintenant r — 1 ; V est alors une courbe projective,
éventuellement singulière: soit V± une courbe projective non singulière définie

sur k et birationnellement équivalente à V sur k (via une équivalence biration-
nelle <p:V1-+ V), et soit N± le nombre de points de V1 rationnels sur k;
le théorème 3 montre que | q + 1 — N1 | <2gqlf2, g désignant le genre
de Vl9 donc de V; mais le genre de V et le nombre de points singuliers de V
sont tous deux majorés par {d— 1) (d— 2)/2 (projeter V sur un plan, ce qui ne

modifie ni g, ni d, et ne peut qu'augmenter le nombre de points singuliers ;

puis appliquer la formule de Plücker à cette projection); d'autre part, la

correspondance birationnelle cp: Vx -» V est bijective en dehors des points
singuliers de V (et fait correspondre, à des points rationnels sur k, des points
rationnels sur k, puisqu'elle est définie sur k), et elle associe, à chaque point
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singulier de F, au plus d points de V1 ; ainsi, | N — Nx | < d {d— 1) (d— 2)/

2, et finalement | N - q \ <B(d) q1'2 + A(n, d, 1), avec B(d) 2g

<(J-l)(d-2) et A(n,d,l) d(d-l)(d-2)/2 + l: le théorème est

établi pour les variétés de type (n, d, l).
Supposons alors r > 2, et le théorème démontré jusqu'à la dimension

r — 1. Soit P^ un second exemplaire de l'espace projectif P„ sur k; à tout
point w (w0,w„) de P^, associons l'hyperplan Hw de PM d'équation
w0X0 + + wnXn 0; les hyperplans Hw définis sur k correspondent

bijectivement aux points w de P^ rationnels sur k, et il y en a exactement

Qn (qn+1-l)/(q~l) =qn + ...+q + 1.

Calculons de deux manières différentes le nombre C des couples (x, i/w),
où x est un point de V rationnel sur k, et où w est un point de P^ rationnel sur
k et tel que x appartienne à Hw:
(1) Vk contient par définition N points, et par chacun d'eux passent

Qn-1 hyperplans définis sur k: d'où C NQn^1;
(2) pour chaque hyperplan Hw défini sur k, le cycle intersection V • 7/w

(voir [15], chap. II, § 6.1) est, en un sens évident, de type {n, d, r — 1), en

vertu de l'hypothèse (H) ; notons 7VW le nombre de points de V • Hw (c'est-
à-dire de F n Hw) rationnels sur k\ on a alors évidemment C iVw, w

w

parcourant l'ensemble des Qn points de P^ rationnels sur k.
Le rapprochement des résultats de ces deux calculs donne NQn_l £ Nw,

w

ou encore

(4.1.2) N Q-_\£1VW + X Nw,
weI we R

I (resp. R) désignant l'ensemble des points weP^ rationnels sur k et tels

que le cycle F • Hw soit (resp. ne soit pas) une variété. On posera Nr
card (/) et NR card (R); il est clair que Nj + NR Qn.

On a alors ces deux lemmes :

Lemme 1. — Il existe une constante A1{n,d,r) ne dépendant que de n, d
et r et ayant la propriété suivante : quel que soit Z, cycle positif de type
(;n, d, r) rationnel sur k, on a

(4.1.3) Nz < A1 (n, d, r) qr,

Nz désignant le nombre de points de Z rationnels sur k (un point de Z est un
point de la réunion des composantes de Z).
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Lemme 2. — Il existe une constante A2(n,d,r) ne dépendant que de n, d
et r et possédant la propriété suivante : quelle que soit V, variété de type
(«, d, r) définie sur k et vérifiant (H), le nombre NR défini ci-dessus satisfait à

(4.1.4) NR<A2(n,d,r)qn~1

Le lemme 1 est élémentaire; il se démontre par récurrence sur r, en

coupant Z par les éléments rationnels sur k d'un faisceau d'hyperplans
convenablement choisi dans P„. Le lemme 2 est plus technique; on le déduit
du lemme 1 en construisant, grâce à la théorie de la forme de Chow (à ce

sujet, voir par exemple [15], chap. I, § 9.4), un ensemble algébrique E défini
sur k, de type (w, e, n — 1), plongé dans P^, dont le degré e ~ e(n, d, r)
ne dépend que de n, d et r, et qui contient l'ensemble R ; comme les points de

R sont tous rationnels sur k, on a donc NR < Ne < A1 (n, e, n — 1) qn

et la constante du lemme 2 est donnée par

A2 (n, d, r) At (n, e (n, d,r) ,n — 1)

(L'ensemble algébrique E dépend de V; pour une démonstration détaillée
de ces deux lemmes, voir Lang-Weil (1954), pp. 820-821).

Achevons alors la démonstration du théorème 4. Dans le membre de

droite de (4.1.2), chaque terme iVw de la première somme est le nombre de

points rationnels sur k de F* //w, qui est une variété de type («, d,r— 1)

définie sur L, puisque we/; par hypothèse de récurrence (sur r), on a donc

\NW - qr'1| <B(d)qr~(3,2) +

D'autre part, le nombre de termes de cette première somme est Qn — NR;
les valeurs de {?„_ 1 et Qn sont connues, et celle de NR est majorée par
A2(n, d9r) (lemme 2); un calcul facile montre alors que

(4.1.5) lôn-1 E N* -4r--B(d)<f~(1/2)| <A3(n,d
we/

A3 (n, d, r) étant une constante qui ne dépend que de n, d et r. Considérons

maintenant la seconde somme figurant dans le membre de droite de (4.1.2);
chacun des termes Aw qui y apparaissent est le nombre de points rationnels

sur k d'un cycle, V • i/w, positif, rationnel sur k, et de type («, d,r — 1);

le lemme 1 donne donc Aw < A1 (;n, J, r - 1) #r-1; comme cette seconde

somme comporte NR termes, le lemme 2 montre qu'elle est majorée par
A4 («, dy r) qn+r~2, avec v44 (/?, d,r) A1 (n, d, r - 1) (;n, d, r) une

constante qui ne dépend que de n, </et r. Mais ôn_! qn~x + + q + 1 ;

ainsi, Qnl\ <#1-n, et on arrive à la majoration
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(4.1.6) I Qn-\£ Nv\<A4(n,d,rL
we R

Il suffit alors de porter les inégalités (4.1.5) et (4.1.6) dans la formule (4.1.2)

et de poser A {n, d, r) A3 (n, d, r) + A4 {n, d, r) pour obtenir l'inégalité

(4.1.1). Le théorème 4 se trouve ainsi établi.

4.2. Le théorème 4 admet la conséquence suivante, qui généralise le

corollaire 1 du théorème 3, et se démontre de la même manière:

Corollaire 1. — Soit Nm le nombre de points de V rationnels sur km

F^m. Alors, quand m tend vers l'infini, Nm tend lui-même vers l'infini ; en

particulier, pour tout m assez grand, Nm > 1.

La propriété « Am > 1 pour tout m assez grand », c'est-à-dire « V admet

un point rationnel sur toute extension algébrique de k de degré assez grand »,

est évidemment fausse en général sur un corps de base quelconque. Ainsi,
l'hyperquadrique projective X02 + + Xn2 0, définie sur le corps Q,
n'admet de point rationnel sur aucune extension de Q de degré impair m,
si grand que soit m; en effet, Q est un corps formellement réel ([10], chap. XI,
§2); si KjQ est de degré impair, K est alors lui-même formellement réel

{ibid., prop. 2, (ii)), et une égalité x02 + + xn2 avec x0, xn eK n'est

possible que si x0 xn 0. Un argument de ramification montrerait
de même que la variété X0n+1 -f pX1n+1 -f + pnXnn+1 0, définie sur
le corps Qp des nombres rationnels /?-adiques, n'admet de point rationnel sur
aucune extension de Qp de degré m non divisible par n + 1, si grand que soit m.

Cette propriété « Nm > 1 pour tout m assez grand » est également fausse

en général, même sur un corps de base fini, si on ne suppose pas V absolument
irréductible. Ainsi, considérons le polynôme P défini par (4.1.1) (chap. 4, § 4),
et supposons n >2; l'équation P (X0, Xn_ fi 0 définit alors une
k-wariété projective V(de type (n— 1, n, n — 2)), mais cette k-variété n'est pas
absolument irréductible, donc n'est pas une variété (elle se décompose en n

hyperplans définis sur K kn et conjugués sur k); et il est facile de vérifier
que si m est premier avec n, le nombre Nm de points de V rationnels sur km

est nul, si grand que soit m (noter que si (m, n) 1, km et kn sont linéairement

disjoints sur k (chap. 1, prop. 4, cor. 2); œu con est alors une base
de kmn sur k„v et on peut raisonner comme au chapitre 4, section 4.1, en
remplaçant k par km et K kn par kmn).

4.3. Remarquons enfin que le théorème 4 reste vrai pour des variétés
affines, moyennant une modification de la constante A {n. d, r). Soit en effet
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V cz An une variété affine de type (n, d, r) ; plongeons An dans Pn de manière

que l'hyperplan « à l'infini » H0 ait pour équation (par exemple) X0 0 ;

adjoignons alors à V ses points « à l'infini » de la façon habituelle, et notons
Wla variété projective ainsi obtenue; elle est de type (n, d,r), et on a, avec
des notations évidentes, Nv Nw — Nw.Hq; il suffit dans ces conditions
d'appliquer le théorème 4 à et le lemme 1 à Nw.h0 pour obtenir

(4.3.1) | Nv - qr | <B(d)qr~(1/1) + A' (n, d, r) q1"1

avec A' (n, d,r) — X («, d, r) + ^ («, d, r) une constante qui ne dépend

que de n, d et r.

Notes sur le chapitre 8

§2: le théorème 2 est dû à Schmidt (1931) (méthode analytique); ce

théorème est un aspect d'un résultat général relatif aux espaces homogènes

principaux sur un corps de base fini (Lang (1956); voir aussi Serre, Groupes

algébriques et corps de classes, p. 119 (Hermann, 1959)). L'application
x f-> x(^} utilisée dans la démonstration du théorème 2 est souvent dite
« endomorphisme de Frobenius » (voir d'ailleurs chap. 1, prop. 8); le fait
que les points fixes de cet endomorphisme sont exactement les points
rationnels sur k Fq est un trait caractéristique de la « géométrie diophan-
tienne » sur un corps fini.

Un certain de nombre de cas particuliers du théorème de Hasse avaient

déjà été remarqués au cours du XIXe siècle ; citons notamment la « dernière

inscription du journal de Gauss » (« letzte Eintragung im Gauss'schen

Tagebuch», reproduite dans Deuring (1941), pp. 197-198), relative au
nombre de solutions de la congruence X2 Y2 + X2 + Y2 — 1 =0 (mod p),

pour p 1 (mod 4) (à ce sujet, voir également [5], p. 307, et [4], p. 242,

note 3). Pour la démonstration originale du théorème de Hasse, voir Hasse

(1933, 1934, 1936).

Les courbes (projectives, non singulières) de genre 1 sur un corps fini k
ne sont autres (d'après le théorème de Schmidt) que les variétés abéliennes de

dimension 1 définies sur k ; les variétés abéliennes de dimension quelconque
définies sur un corps fini ont été étudiées notamment par Honda, Milne,
Serre, Tate, Waterhouse: pour une bibliographie sur ce sujet, voir Water-
house (1969).

§ 3: le théorème 3, annoncé par Weil en 1940, est démontré dans Weil
(1948) [20], lère partie) par voie «géométrique»: c'est cette démonstration

qu'on a résumée ici ; pour des démonstrations « arithmétiques »,
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