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§ 3. Courbes de genre quelconque.

3.1. L'égalité N q + 1, pour une courbe de genre 0, et l'inégalité
| q + 1 — N | < 2q1/2, pour une courbe de genre 1 (th. 1, cor. 1, et th. 2,

cor. 1), sont des cas particuliers du résultat suivant, dû à Weil (1940, 1948):

Théorème 3 (« hypothèse de Riemann » pour F). — Si V est une courbe

projective non singulière de genre g définie sur k, et si N désigne le nombre de

points de V rationnels sur k, on a

(3.1.1) \q + 1 -N\ <2gq112.

Démonstration. — Soit W V x V la surface produit de F par elle-

même, c'est-à-dire le lieu sur k du point (x, y), où x et y sont deux points
génériques de F, indépendants sur k (voir [20], p. 29, ou Samuel (1967),
§ I et II). On appelle correspondance sur F ([20], p. 29) tout diviseur sur F,
donc tout cycle de dimension 1 sur F; si X est une correspondance sur F,

on appelle symétrique de X et on note X' la correspondance image de X
par la symétrie (x, y) b» (y, x) de W; si X et Y sont deux correspondances
sur F, on appelle somme de X et Y et on note X + Y leur somme en tant que
diviseurs sur F; on appelle produit (de composition: rien à voir avec le produit

d'intersection) de X et Y et on note X o Lia correspondance déduite de

X et Y par l'opération de composition des graphes dans le produit F x F
(pour une définition précise, voir [20], pp. 35-38); enfin, on écrit X Y
s'il existe deux diviseurs rrt et n sur la courbe V et une fonction rationnelle/
sur la surface W tels que

X - Y mxF) + (F x n) + (/),

(/) désignant le diviseur de la fonction /. On peut alors montrer ([20],

pp. 38-41) que la relation est une relation d'équivalence dans l'ensemble
des correspondances sur F, et qu'elle est compatible avec les opérations
somme et produit introduites ci-dessus: l'ensemble quotient par de

l'ensemble des correspondances sur F se trouve ainsi muni d'une structure
d'anneau; on le note A (F), et on l'appelle anneau des correspondances de F;
si £, r\ e A (F) sont les images de correspondances X et Y sur F, leur somme
Ç + rj et leur produit Çr\ sont par définition les images dans A (F) de X
+ Y et de X o Y; noter que la symétrie IbT est évidemment compatible
avec la relation ; elle définit donc par passage au quotient une involution
Ç K de A (F) qui est en fait un anti-automorphisme de A (F): si £,

r/eA(V), on a (Ç + rj)' + rj' et (Çrj)' rj't;'; noter aussi que si A
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désigne la diagonale de W, c'est-à-dire le lieu sur k du point (x, x), alors A

est birégulièrement équivalente à F sur k, et Ô, classe de la correspondance A

sur V', est l'élément neutre de A (V) pour la multiplication.
Pour toute correspondance X sur V, notons maintenant dx (X) et

d2 (X) les degrés des cycles prx (X) et pr2 (X), projections de X sur le

premier et sur le second facteur de W V x F; notons d'autre part i (X • A)

le nombre d'intersection de X et A sur W (qui est défini même si A est une

composante de X: voir par exemple Samuel (1967), p. 307), et posons

(3.1.2) S(X) d±(X) + d2(X) - i(XA)

S (X) est un entier rationnel, qui ne dépend que de la classe de la

correspondance X; si alors £ g A (V), et si X désigne n'importe quelle correspondance

d'image £ dans A (F), on peut définir un entier rationnel a (£), ne

dépendant que de £, par l'égalité a (£) S (X); g (£) est dit trace de Ç;

et on peut montrer ([20], pp. 41-54) que la trace possède les propriétés
suivantes :

Lemme 1. — Quels que soient Ç,rj e A (V), on a g (£ + rj) cr (£) + a (rj),

o(Çrj) (T(rjO, et o (£') <r (Ç).

Lemme 2. — S désignant toujours la classe de A, on a o (S) — 2g.

Lemme 3. — Quel que soit Ç # 0 dans A (F), on a a (££') > 0.

Le lemme 1 est immédiat; le lemme 2 résulte du fait que dx (A) d2 (A)

— 1, de la formule classique z (A - A) 2 — 2g (Samuel (1967), p. 307, (2)),
et de la définition (3.1.2) de o (<5) S (A). Le lemme 3 est la « clef de voûte »

de la démonstration: c'est de l'inégalité a (££') >0 convenablement appliquée

que va résulter l'inégalité (3.1.1). Soit en effet r le lieu sur k du point
z (x, x(q)) (la notation x(q) a été définie dans la sect. 2.1); F est une
correspondance sur F (« correspondance de Frobenius »), et sa symétrique

r' est le lieu sur k du point z' (xiq\ x); on a évidemment [k (x): k (x)]
1 et [k (x): k (x(4))] q, donc d± (F) 1 et d2 (F) q; on peut d'autre

part montrer que chacun des points du cycle intersection F • A a pour
multiplicité 1: comme les composantes de ce cycle sont exactement les

points (a, a) de Fx F avec a a(9), c'est-à-dire avec a rationnel sur k,
on voit que i (F • A) N; si alors y désigne la classe de la correspondance
F, la formule de définition (3.1.2) permet d'écrire

(3.1.3) g (y) q + 1 - iV

L'Enseignement mathém., t. XIX, fasc. 1-2. a
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On peut démontrer par ailleurs que yy' — qô; soit maintenant m un
entier rationnel et posons | y — mô; on a £' y' — mô, et

££' m2ô - m (y + y') + yy' ;

prenons les traces des deux membres, tenons compte de la valeur de yy' et
utilisons les lemmes 1 et 2; il vient:

<r(ÇÇ') 2gmz - cr(y + y') m + 2## ;

mais <7(y+y') 2<r(y) 2(q+\ — N) (lemme 1 et formule (3.1.3));
ainsi :

o (££') Igm1 - 2 (q + 1 -N) m + 2gq ;

le lemme 3 montre que le polynôme en m figurant dans le membre de droite
de cette dernière égalité est positif ; on a donc

(<2 + 1-IV)2 - 4g2q < 0

ce qui implique l'inégalité (3.1.1) et prouve le théorème 3.

3.2. On peut également démontrer le théorème 3 à l'aide de la théorie
des variétés abéliennes (structure de l'anneau des endomorphismes,
propriétés du polynôme caractéristique d'un endomorphisme, etc.; voir par
exemple [20], § VII à XI, ou [9], chap. 5) appliquée à la jacobienne de la
courbe V. Pour g — 1, cette seconde démonstration coïncide avec la démonstration

du « théorème de Hasse » donnée dans la section 2.2 (dans ce cas

en effet, F, admettant un point rationnel sur k par le théorème de Schmidt,
s'identifie à sa propre jacobienne); dans le cas général (g quelconque), cette
seconde démonstration n'est pas essentiellement différente de celle esquissée
dans la section 3.1, du fait que l'anneau des correspondances sur V est

isomorphe à l'anneau des endomorphismes de la jacobienne de V ([20],

pp. 161-163, th. 22 et cor. 2).

3.3. Revenons à l'inégalité (3.1.1). Considérons à titre d'exemple la
courbe plane X4 + Y4 1, et supposons q 1 (mod 4). Si i// est un caractère

d'ordre 4 de k*, la proposition 3 du chapitre 6 montre que le nombre de

points « à distance finie » sur cette courbe est égal à q + £ n x//32) ;

la somme comprend neuf termes, dont trois sont des sommes de Jacobi
triviales (pour j\ + j2 — 4) et valent — 1 (chap. 5, prop. 9, (i)), les six

autres (notons-les al9 oc6) étant des sommes de Jacobi non triviales,
de module qi/2: le nombre de points «à distance finie» est donc
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q -3 + «! + + a6. Maintenant, la courbe étudiée, considérée comme

projective, est non-singulière, de genre g (4—1) (4—2)/2 3, par la

formule de Pliicker, et elle admet quatre points à l'infini; ainsi,

N q— 3 + 4 + + + a6, et on a

| q +1 - IV | < | at | + + | a6 | 6

ce qui vérifie directement le théorème 3 dans ce cas particulier.
La même vérification est possible plus généralement, grâce à la proposition

3 du chapitre 6, pour la courbe Xdl + Yd2 1, avec q — 1 divisible

par d1 et d2 : on laisse au lecteur le soin de faire les calculs, et notamment de

montrer que le genre est égal à ((^ — 1) (d2 — 1) — {d—1))/2, avec d

(du d2).

3.4. Le théorème 3 admet deux conséquences importantes:

Corollaire 1. — Soit Nm le nombre de points de V rationnels sur km

Fçm. Alors, quand m tend vers l'infini, Nm tend lui-meme vers l'infini ; en

particulier, pour tout m assez grand, Nm > 1.

Démonstration. — En effet, le théorème 3 appliqué au corps de base km

donne Nm > qm -f 1 — 2gqm!2, et le membre de droite tend vers l'infini
avec m.

Corollaire 2. — La courbe V possède un diviseur de degré 1 rationnel
sur k.

\

Démonstration. — Le corollaire 1 montre qu'on peut trouver deux entiers
successifs m et m + 1 tels que V admette un point rationnel sur km et un
point rationnel sur fcm+ x ; V admet donc un diviseur de degré m et un diviseur

de degré m + 1 rationnels sur k, et il suffit de retrancher le premier du
second pour obtenir un diviseur de degré (m+ 1) — m 1 rationnel sur k.

Pour g > 2, V ne possède généralement pas de point rationnel sur k: le
diviseur de degré 1 dont l'existence est affirmée par le corollaire 2 ne peut
donc généralement pas (sauf pour g 0 ou 1: th. 1, cor. 1, et th. 2) être
supposé positif.

§ 4. Variétés de dimension quelconque.

4.1. Soit V une variété projective définie sur k, de dimension r, et
supposée plongée dans P„, espace projectif de dimension n sur k\ rappelons
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