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Démonstration. — Le théorème 1 permet de se limiter au cas où F A

(la droite projective); mais l'ensemble Ak des points de A rationnels sur k
comporte évidemment q éléments « à distance finie » (correspondant bijec-
tivement aux éléments de k), plus un élément « à l'infini » — soit au total
q + 1 éléments, C.Q.F.D.

§ 2. Courbes de genre 1.

Pour la géométrie des courbes de genre 1, voir [4], notamment pp. 209-

233.

2.1. Théorème 2 (théorème de Schmidt). — Si V est une courbe

projective non singulière de genre 1 définie sur k, F admet au moins un point
rationnel sur k.

Démonstration. — D'après un théorème de Châtelet (voir par exemple

[4], pp. 230-233), il existe une courbe projective non singulière G (la jaco-
bienne de F), définie sur k, ayant un point o rationnel sur k, et biréguliè-
rement équivalente à F sur k (ce qui permet d'identifier k (G) à k (V)).
G est évidemment de genre 1, comme F, et on peut la munir d'une loi de

groupe rationnelle, définie sur k, notée additivement, ayant o pour élément

neutre, et faisant de G une variété abélienne de dimension 1 sur k ([4],

pp. 210-211). De plus, l'identification k (G) — k(V) permet de munir F
d'une structure d'espace homogène principal sur G ([4], pp. 226-227),
c'est-à-dire de construire deux applications rationnelles jâ: V x G -> V,

et v: F x F-> G, définies sur k, et possédant les propriétés suivantes:

(i) quel que soit x e F, on a [i (x, o) o ;

(ii) quels que soient x e F et a, b e G, on a ^ (p (x, a), b) p (x, a + b);

(iii) quels que soient x, y e F, il existe un a e G et un seul tel que n (x, a)

y, et a est égal à u (y, x).

Concrètement, G opère sur F par translations : \i (x, a) est le transformé de

x par la translation a, et v (y, x) est la translation qui transforme x en

y; ainsi, il n'y a aucun risque de confusion à écrire x + a au lieu de ji (x, a)

et y — x au lieu de v (y, x); on adoptera cette écriture dans le reste de la

démonstration.
Convenons d'autre part, pour tout point x (x0, xu d'un espace

projectif de dimension quelconque sur k, de noter x(q) le point (x0q, xxq,

Il est clair que x est rationnel sur k si et seulement si x(g) x (chap. 1,

prop. 2 ou prop. 8). Il est clair également que si U est un ensemble algébrique
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défini sur k et si x g U9 alors x{q) e U (représenter U par un système d'équations

à coefficients dans k, et remarquer que l'élévation à la puissance

#-ième est un automorphisme de k qui laisse invariante lesdits coefficients).

Appliquons ceci à F et G. Soit x un élément quelconque de F, et posons
a x — x(<z). Considérons d'autre part l'application rationnelle z (-» z(q)

— z de G dans G; elle n'est certainement pas constante (sinon, on aurait
z(q) _ 2 o(<z) — 0 0, soit z(^ z, pour tout z e G; tout point de G

serait rationnel sur k, et G serait de dimension 0: absurde); comme G est

irréductible, projective (donc complète), non singulière et de dimension 1,

cette application est surjective. En particulier, il existe b e G tel que a
b(9) — b, donc, en revenant à la définition de a, tel que x + b xiq)

+ b(<z) (x + b)(g) (cette dernière égalité parce que l'application rationnelle

fi: V x G V, qui à (x, b) associe x -h b, est définie sur k); mais alors

x + b est un point de F rationnel sur k, C.Q.F.D.

2.2. Corollaire 1 (théorème de Hasse). — Si N désigne le nombre de

points de V rationnels sur k, on a l'inégalité

(2.2.1) \q + 1 - N\ <2q1/2

Démonstration. — Soit o un point de F rationnel sur k (th. 2), et munissons

F de sa structure de variété abélienne définie sur k et ayant o pour
élément neutre. Soit M l'anneau des endomorphismes de F, et, pour tout
A g M, soit deg (A) le degré de l'application rationnelle A ([4], pp. 215-216).
Soit enfin F l'endomorphisme x f-» x(<z) de F. Alors F — 1 (c'est-à-dire
l'endomorphisme x K xiq) — x de F) est un élément non nul de M
(raisonner comme dans la sect. 2.1), donc une isogénie de F ([4], pp. 215-216)
dont le noyau est exactement l'ensemble des points de F rationnels sur k
(voir sect. 2.1). On peut démontrer que cette isogénie est non ramifiée
([4], p. 217), donc que l'ordre du noyau de F — 1 est égal au degré de
F — 1 ; ainsi,

(2.2.2) N deg (F — 1)

On peut démontrer également que M est un Z-module libre de rang fini,
sans diviseurs de zéro, et qu'il est muni d'un anti-automorphisme A 1—> A'
tel que AAr deg (A) pour tout A g M (voir par exemple Deuring (1941));
il en résulte notamment que, quel que soit m g Z, on a

(2.2.3) deg(F — m.l) (F — m.l) (F — m.iy m2 — tm + q

avec t F + Fr g Z, et q FFr deg (F) (puisque F(x) x(q)). Etant
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donné sa définition, le polynôme m2 — tm + q est toujours positif, d'où
t2 — Aq < 0, ou encore

(2.2.4) 1t1 < 2q1'2

Mais faisons m 1 dans (2.2.3) et utilisons (2.2.2); il vient

(2.2.5) t q + 1 - N,
et il suffit de porter (2.2.5) dans (2.2.4) pour obtenir l'inégalité (2.2.1).

2.3. La démonstration esquissée ci-dessus est essentiellement la démonstration

originale de Hasse (voir Hasse (1933, 1934, 1936)). Manin en a donné

une version « élémentaire » dont voici le principe (Manin (1956); pour les

détails des calculs, voir [6], chap. 10, pp. 197-206). On suppose pour
simplifier p 2, 3 (mais cette restriction n'est pas essentielle). Comme V admet

un point rationnel sur k, on peut supposer V écrite sous forme normale de

Weierstrass

(2.3.1) Y2 X3 - aX - b,

a, bek, 4a3 — 21b2 ^ 0. Soit alors £ un élément transcendant sur L,
et soit W la courbe définie sur K — k (Ç) et ayant pour équation

X3 - aX -b
<2-3-2) 7 Ï3 7 IT'<T - aÇ - b

C'est une courbe de genre 1, dont on connaît (au moins) deux points
rationnels sur K: a0 (Çq, (avec r\ £3 — aÇ — b) et b (£, 1).

Munissons W de sa structure de variété abélienne définie sur K, ayant le

point à l'infini o pour élément neutre, et pour laquelle trois points ont une

somme nulle si, et seulement si, ils sont alignés ([4], pp. 211-214); pour tout
me Z, posons am a0 — m.b, puis définissons un entier dm de la façon
suivante: si am o, posons dm — 0; si au contraire am # o, donc si le point
am est « à distance finie », de coordonnées affines xm, ym9 avec xm Pm(Ç)/
Qm (£) et Pm9 Qm premiers entre eux, posons dm deg (Pm). On peut alors
démontrer (à l'aide des formules d'addition sur une cubique de Weierstrass :

voir [4], p. 214) les deux relations suivantes:

d-i — dQ N — q ; dm_ 1 + dm + 1 2dm + 2 ;

ces deux formules permettent de calculer dm:

(2.3.3) dm m2 — (q + 1 —N) m + q;
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comme par définition dm 0, le polynôme en m figurant au second membre

de (2.3.3) est positif; d'où

(q + 1 — TV)2 < 4q

ce qui implique bien l'inégalité (2.2.1).

La parenté entre ces deux démonstrations tient au fait que dm deg (F
—m. 1).

2.4. On a vu au chapitre 6 (sect. 3.3, (1) et 3.5) que la courbe affine
Y2 1 — X3 (qui est de genre 1 pour p ^ 2, 3) a un nombre de points
rationnels sur k égal à q si q — 1 (mod 6) et à # + a + ä (avec

a n((p, x)) si # 1 (mod 6). Si on remarque que cette courbe, considérée

maintenant comme projective, admet un point à l'infini rationnel sur k, on
voit que le nombre total TV de ses points rationnels sur k satisfait à | q + 1

— TV | 0 dans le premier cas, et à | # + 1 — TV | < | a | + | ä | 2#1/2

dans le second cas (voir chap. 5, prop. 9, cor. 1) : le théorème de Hasse se

trouve ainsi vérifié directement pour cette courbe.

Raisonnement analogue pour la courbe Y2 X — X3, qui admet un

point à l'infini rationnel sur k, et pour la courbe Y3 1 — X3, qui admet

un ou trois points à l'infini rationnels sur k selon que q est congru à — 1

ou à 1 (mod 3) (on suppose naturellement p ^ 3).

Considérons enfin la courbe affine Y2 — 1 — X4 (qui est de genre 1 pour
p 2) et dont le nombre de points rationnels sur k est égal à q + 1 si

q — 1 (mod 4) et à# — 1 + a + â (avec a n (cp, x): chap. 6, sect. 3.3,

(2), et 3.5) si q 1 (mod 4). Dans le premier cas, cette courbe, envisagée
maintenant comme projective, admet à l'infini un point double rationnel
sur k, mais ce point est « isolé » (par désingularisation, il donnerait deux

points conjugués sur k, mais non rationnels sur k) : ce point ne doit donc pas
être pris en considération; on a donc ici TV q + 1, ou | q + 1 — TV | =0.
Dans le second cas, la courbe admet encore un point double à l'infini,
rationnel sur k, mais « non isolé » (par désingularisation, il donnerait deux
points rationnels sur k) : ce point doit donc être compté deux fois, d'où
maintenant TV=<7+l + a+â, donc, comme précédemment, | q + 1 — TV |

< 2q1/2: le théorème de Hasse se trouve également vérifié directement pour
cette courbe *).

*) En fait, on a raisonné ici, non sur la courbe Y2 1 - X4, mais sur sa normalisée
(voir d'ailleurs chap. 9, sect. 5.2, (2) et (4)).
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