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Démonstration. — Le théoréme 1 permet de se limiter au cas ou V' = 4
(la droite projective); mais ’ensemble 4, des points de A4 rationnels sur k
comporte évidemment g éléments « & distance finie » (correspondant bijec-
tivement aux éléments de k), plus un élément « a I'infini » — soit au total
q + 1 éléments, C.Q.F.D. '

§ 2. Courbes de genre 1.

Pour la géométrie des courbes de genre 1, voir [4], notamment pp. 209-
233.

2.1. THEOREME 2 (théoréme de Schmidt). — Si V est une courbe pro-
Jective non singuliere de genre 1 définie sur k, V admet au moins un point
rationnel sur k.

Démonstration. — D’aprés un théoréme de Chatelet (voir par exemple
[4], pp. 230-233), il existe une courbe projective non singuliére G (la jaco-
bienne de V'), définie sur k, ayant un point o rationnel sur k, et birégulie-
rement équivalente & V sur k (ce qui permet d’identifier k (G) a k (V)).
G est évidemment de genre 1, comme ¥V, et on peut la munir d’une loi de
groupe rationnelle, définie sur k&, notée additivement, ayaunt o pour élément
neutre, et faisant de G une variété abélienne de dimension 1 sur k ([4],
pp. 210-211). De plus, 'identification k (G) = k (V) permet de munir V
d’une structure d’espace homogéne principal sur G ([4], pp. 226-227),
c’est-a-dire de construire deux applications rationnelles u: ¥V x G - V,
et v: V x V — G, définies sur k, et possédant les propriétés suivantes:

(i) quel que soit xe V, on a u(x,0) = o;
(i) quels que soient xe Vet a, be G, on a p(u(x, a),b) = u(x, a+b);

(iii) quels que soient x, y € V, il existe un a € G et un seul tel que u (x, a)
= vy, et a est égal a v (y, Xx).

Concrétement, G opére sur V par translations: u (X, a) est le transformé de
x par la translation a, et v (y, x) est la translation qui transforme x en
y; ainsi, il n’y a aucun risque de confusion a écrire X + a au lieu de u (x, a)
et y — x au lieu de v (y, x); on adoptera cette écriture dans le reste de la
démonstration.

Convenons d’autre part, pour tout point x = (x,, x4, ...) d’un espace
projectif de dimension quelconque sur k, de noter x? le point (x,%, x;% ...).
Il est clair que x est rationnel sur k si et seulement si x? = x (chap. I,
prop. 2 ou prop. 8). Il est clair également que si U est un ensemble algébrique
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défini sur k et si x € U, alors x¥ € U (représenter U par un systéme d’équa-
tions a4 coefficients dans k, et remarquer que I’élévation a la puissance
g-iéme est un automorphisme de k qui laisse invariante lesdits coefficients).

Appliquons ceci & V et G. Soit x un élément quelconque de V, et posons
a = x — x@, Considérons d’autre part I’application rationnelle z > z@
— z de G dans G; elle n’est certainement pas constante (sinon, on aurait
29 — 7 = 09 — 0 = o, soit z¥ = z, pour tout ze G; tout point de G
serait rationnel sur k, et G serait de dimension 0: absurde); comme G est
irréductible, projective (donc compléte), non singuliére et de dimension 1,
cette application est surjective. En particulier, il existe be G tel que a
= b@ — b, donc, en revenant a la définition de a, tel que x + b = x@
+ b = (x+b)? (cette derniére égalité parce que I’application rationnelle
u:Vx G-V, quia (x,b) associe x + b, est définie sur k); mais alors
X + b est un point de V rationnel sur k£, C.Q.F.D.

2.2. CoOROLLAIRE 1 (théoréme de Hasse). — Si N désigne le nombre de
points de V rationnels sur k, on a l’inégalité

(2.2.1) g +1—N| <242,

Démonstration. — Soit o un poinf de V rationnel sur k (th. 2), et munis-
sons V de sa structure de variété abélienne définie sur k et ayant o pour
€lément neutre. Soit M I'anneau des endomorphismes de ¥V, et, pour tout
A e M, soit deg (1) le degré de I’application rationnelle A ([4], pp. 215-216).
Soit enfin F I'endomorphisme x » x@ de V. Alors F — 1 (c’est-a-dire
’'endomorphisme x b x@ — x de V) est un élément non nul de M (rai-
sonner comme dans la sect. 2.1), donc une isogénie de V ([4], pp. 215-216)
dont le noyau est exactement ’ensemble des points de V rationnels sur k
(voir sect. 2.1). On peut démontrer que cette isogénie est non ramifide
([4], p. 217), donc que I'ordre du noyau de F — 1 est égal au degré de
F — 1; ainsi,

(2.2.2) N = deg(F—1).
On peut démontrer également que M est un Z-module libre de rang fini,

sans diviseurs de zéro, et qu’il est muni d’un anti-automorphisme A > 1’

- tel que 44" = deg (4) pour tout 1€ M (voir par exemple Deuring (1941));
il en résulte notamment que, quel que soit me Z, on a

(2.2.3) deg(F—m.l) = (F=m.0)(F—m.1Y = m> —tm + q,
cavec ! = F+ F'eZ, et ¢ = FF' = deg (F) (puisque F(x) = x). Etant
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donné sa définition, le polyndme m? — tm + g est toujours positif, d’ou
t? — 49 <0, ou encore

(2.2.4) ] < 2gM2.

Mais faisons m = 1 dans (2.2.3) et utilisons (2.2.2); il vient
(2.2.5) t=q+1—-N,
et 1l suffit de porter (2.2.5) dans (2.2.4) pour obtenir 'inégalité (2.2.1).

2.3. Ladémonstration esquissée ci-dessus est essentiellement la démons-
tration originale de Hasse (voir Hasse (1933, 1934, 1936)). Manin en a donné
une version « élémentaire » dont voici le principe (Manin (1956); pour les
détails des calculs, voir [6], chap. 10, pp. 197-206). On suppose pour sim-
plifier p # 2, 3 (mais cette restriction n’est pas essentielle). Comme 7 admet
un point rationnel sur k£, on peut supposer V écrite sous forme normale de
Weierstrass

(2.3.1) Y2 = X* —aX — b,
a, bek, 4a> — 27b% # 0. Soit alors ¢ un élément transcendant sur k,

et soit W la courbe définie sur K = k (£) et ayant pour équation

X3 —aX —b
& gl — b

(2.3.2) y? —

C’est une courbe de genre 1, dont on connait (au moins) deux points ra-
tionnels sur K: a, = (&9, n@"1/2) (avec n = &3 —aé — b) et b = (¢ 1).
Munissons W de sa structure de variété abélienne définie sur K, ayant le
point a I'infini o pour élément neutre, et pour laquelle trois points ont une
somme nulle si, et seulement si, ils sont alignés ([4], pp. 211-214); pour tout
m € Z, posons a, = a, — m.b, puis définissons un entier d,, de la fagon
suivante: si a,, = o, posons d,, = 0; si au contraire a,, # o, donc si le point |
a,, est « a distance finie », de coordonnées affines x,, y,,, avec x,, = P,, (£)/
0,, (&) et P,, Q,, premiers entre eux, posons d,, = deg (P,,). On peut alors
démontrer (a ’aide des formules d’addition sur une cubique de Weierstrass:
voir [4], p. 214) les deux relations suivantes:

d_y —do =N —q; dy_y +dpyy = 2d, +2;
ces deux formules permettent de calculer'dm:

(2.3.3) d, =m?> —-(@+1-N)m +q;
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comme par définition d,, > 0, le polyndme en m figurant au second membre
de (2.3.3) est positif; d’ou

(q+1—-N)*<4q,

ce qui implique bien P'inégalité (2.2.1).
La parenté entre ces deux démonstrations tient au fait que d,, = deg (F
—m.1).

2.4. On a vu au chapitre 6 (sect. 3.3, (1) et 3.5) que la courbe affine
Y2 =1 — X3 (qui est de genre 1 pour p # 2, 3) a un nombre de points
rationnels sur k égal & g si g= — 1 (mod 6) et & g + o + & (avec
« = (@, ¥)) sig = 1 (mod 6). Si on remarque que cette courbe, considérée
maintenant comme projective, admet un point a I'infini rationnel sur k£, on
voit que le nombre total N de ses points rationnels sur k satisfait a | g+ 1
— N| = 0dans le premier cas, eta |g + 1 — N| <|a| + |&] = 2¢'/
dans le second cas (voir chap. 5, prop. 9, cor. 1): le théoréme de Hasse se
trouve ainsi vérifié directement pour cette courbe.

Raisonnement analogue pour la courbe Y% = X — X3, qui admet un
point & 'infini rationnel sur k, et pour la courbe Y3 =1 — X3, qui admet
un ou trois points a I'infini rationnels sur k selon que g est congru a — 1
ou a 1 (mod 3) (on suppose naturellement p # 3).

Considérons enfin la courbe affine Y = 1 — X* (qui est de genre 1 pour
p # 2) et dont le nombre de points rationnels sur k est égal a g + 1 si
gq= —1(mod4)etaqg — 1 + o + & (avec « = 7 (¢, x): chap. 6, sect. 3.3,
(2), et 3.5) si g = 1 (mod 4). Dans le premier cas, cette courbe, envisagée
maintenant comme projective, admet a l'infini un point double rationnel
sur k, mais ce point est «isolé » (par désingularisation, il donnerait deux
points conjugués sur k, mais non rationnels sur k): ce point ne doit donc pas
étre pris en considération; on adoncici N = g + 1, ou | g+1—-N|=0.
Dans le second cas, la courbe admet encore un point double & I'infini,
rationnel sur k, mais « non isolé » (par désingularisation, il donnerait deux
points rationnels sur k): ce point doit donc étre compté deux fois, d’oll main-
tenant N = g + 1 + a 4+ &, donc, comme précédemment, |q +1—-N |

< 2¢'/?: le théoréme de Hasse se trouve également vérifié directement pour
cette courbe *).

*) En fait, on a raisonné ici, non sur la courbe Y2 = 1 — X4, mais sur sa normalisée
(voir d’ailleurs chap. 9, sect. 5.2, (2) et (4)).
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