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notamment que si ¥ est une variété de dimension > 1 et si X est un point
générique de V, x n’est pas considéré comme un élément de V': autrement dit,
on n’a pas le droit d’écrire x € V). Pratiquement, pour la terminologie et les
résultats de géométrie algébrique dont on aura effectivement besoin, le
lecteur pourra se reporter au livre de Lang [12] ou & celui de Samue] [15].

Dans ce chapitre, k désigne (comme toujours) un corps fini & g = p!
éléments, et k une cloture algébrique de k. A, et P, désignent respectivement
’espace affine et I’espace projectif de dimension # sur k. Enfin, si V" est un
ensemble algébrique défini sur k, [’ensemble des points de V rationnels sur k
est désormais noté V,.

§ 1. Courbes de genre 0 (*).

1.1. TaEOREME 1. — Si V est une courbe projective non singuliére de
genre 0 définie sur k, elle est biréguliérement équivalente (sur k) a la droite
projective définie sur k.

Démonstration. — D’apreés un théoréme classique de Poincaré (voir
[18], pp. 71-72), V, de genre O, est biréguliérement équivalente sur k soit a
une droite, soit a une conique (ceci, sans hypothése sur k; ce théoréme de
Poincaré peut d’ailleurs se déduire facilement du théoréme de Riemann-
Roch: voir par exemple [2], chap. XVI, th. 6). On peut donc se borner a
démontrer le théoréme 1 lorsque V est une conique définie dans le plan
projectif P, par une équation homogéne et de degré 2, F(X,, X, X,)
= 0, a coefficients dans k: le théoréme de Chevalley (chap. 3, th. 1, cor. 1)
montre alors que cette équation admet une solution (a,, a,, a,) non triviale
dans k3, donc que ¥ admet un point a rationnel sur k. Soit maintenant 4
une droite projective du plan P,, définie sur k et ne passant pas par a
(st par exemple a, # 0, on peut prendre pour 4 la droite d’équation X,
= 0); pour tout point y de 4, notons ¢ (y) le second point d’intersection de
V et de la droite joignant a a y; alors ’application y ~ ¢ (y) est évidemment
une équivalence biréguliere 4 — V' définie sur k, et le théoréme 1 est dé-
montré.

1.2. COROLLAIRE 1. — Si N désigne le nombre de points de V rationnels
sur k, on a exactement N = q + 1.

*) Pour un résumé rapide et élémentaire des propriétés des courbes algébriques
(genre, théoréme de Riemann-Roch), voir SAMUEL (1967).
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Démonstration. — Le théoréme 1 permet de se limiter au cas ou V' = 4
(la droite projective); mais ’ensemble 4, des points de A4 rationnels sur k
comporte évidemment g éléments « & distance finie » (correspondant bijec-
tivement aux éléments de k), plus un élément « a I'infini » — soit au total
q + 1 éléments, C.Q.F.D. '

§ 2. Courbes de genre 1.

Pour la géométrie des courbes de genre 1, voir [4], notamment pp. 209-
233.

2.1. THEOREME 2 (théoréme de Schmidt). — Si V est une courbe pro-
Jective non singuliere de genre 1 définie sur k, V admet au moins un point
rationnel sur k.

Démonstration. — D’aprés un théoréme de Chatelet (voir par exemple
[4], pp. 230-233), il existe une courbe projective non singuliére G (la jaco-
bienne de V'), définie sur k, ayant un point o rationnel sur k, et birégulie-
rement équivalente & V sur k (ce qui permet d’identifier k (G) a k (V)).
G est évidemment de genre 1, comme ¥V, et on peut la munir d’une loi de
groupe rationnelle, définie sur k&, notée additivement, ayaunt o pour élément
neutre, et faisant de G une variété abélienne de dimension 1 sur k ([4],
pp. 210-211). De plus, 'identification k (G) = k (V) permet de munir V
d’une structure d’espace homogéne principal sur G ([4], pp. 226-227),
c’est-a-dire de construire deux applications rationnelles u: ¥V x G - V,
et v: V x V — G, définies sur k, et possédant les propriétés suivantes:

(i) quel que soit xe V, on a u(x,0) = o;
(i) quels que soient xe Vet a, be G, on a p(u(x, a),b) = u(x, a+b);

(iii) quels que soient x, y € V, il existe un a € G et un seul tel que u (x, a)
= vy, et a est égal a v (y, Xx).

Concrétement, G opére sur V par translations: u (X, a) est le transformé de
x par la translation a, et v (y, x) est la translation qui transforme x en
y; ainsi, il n’y a aucun risque de confusion a écrire X + a au lieu de u (x, a)
et y — x au lieu de v (y, x); on adoptera cette écriture dans le reste de la
démonstration.

Convenons d’autre part, pour tout point x = (x,, x4, ...) d’un espace
projectif de dimension quelconque sur k, de noter x? le point (x,%, x;% ...).
Il est clair que x est rationnel sur k si et seulement si x? = x (chap. I,
prop. 2 ou prop. 8). Il est clair également que si U est un ensemble algébrique
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