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notamment que si F est une variété de dimension ^ 1 et si x est un point

générique de F, x n'est pas considéré comme un élément de F: autrement dit,

on n'a pas le droit d'écrire x e F). Pratiquement, pour la terminologie et les

résultats de géométrie algébrique dont on aura effectivement besoin, le

lecteur pourra se reporter au livre de Lang [12] ou à celui de Samuel [15].

Dans ce chapitre, k désigne (comme toujours) un corps fini à q pf
éléments, et k une clôture algébrique de k. An et P„ désignent respectivement

l'espace affine et l'espace projectif de dimension n sur k. Enfin, si F est un
ensemble algébrique défini sur k, / 'ensemble des points de V rationnels sur k
est désormais noté Vk.

§ 1. Courbes de genre 0 (*).

1.1. Théorème 1. — Si V est une courbe projective non singulière de

genre 0 définie sur k, elle est birégulièrement équivalente (sur k) à la droite

projective définie sur k.

Démonstration. — D'après un théorème classique de Poincaré (voir
[18], pp. 71-72), F, de genre 0, est birégulièrement équivalente sur k soit à

une droite, soit à une conique (ceci, sans hypothèse sur k; ce théorème de

Poincaré peut d'ailleurs se déduire facilement du théorème de Riemann-
Roch: voir par exemple [2], chap. XVI, th. 6). On peut donc se borner à

démontrer le théorème 1 lorsque F est une conique définie dans le plan
projectif P2 par une équation homogène et de degré 2, F (X0, Xu X2)

0, à coefficients dans k: le théorème de Chevalley (chap. 3, th. 1, cor. 1)

montre alors que cette équation admet une solution (a0, al9 a2) non triviale
dans k3, donc que F admet un point a rationnel sur k. Soit maintenant A

une droite projective du plan P2, définie sur k et ne passant pas par a
(si par exemple a0 #= 0, on peut prendre pour A la droite d'équation X0

0); pour tout point y de A, notons (p (y) le second point d'intersection de

F et de la droite joignant a à y; alors l'application y (-> <p (y) est évidemment
une équivalence birégulière A -> F définie sur k, et le théorème 1 est
démontré.

1.2. Corollaire 1. — Si N désigne le nombre de points de V rationnels
sur k, on a exactement N q + 1.

*) Pour un résumé rapide et élémentaire des propriétés des courbes algébriques
(genre, théorème de Riemann-Roch), voir Samuel (1967).
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Démonstration. — Le théorème 1 permet de se limiter au cas où F A

(la droite projective); mais l'ensemble Ak des points de A rationnels sur k
comporte évidemment q éléments « à distance finie » (correspondant bijec-
tivement aux éléments de k), plus un élément « à l'infini » — soit au total
q + 1 éléments, C.Q.F.D.

§ 2. Courbes de genre 1.

Pour la géométrie des courbes de genre 1, voir [4], notamment pp. 209-

233.

2.1. Théorème 2 (théorème de Schmidt). — Si V est une courbe

projective non singulière de genre 1 définie sur k, F admet au moins un point
rationnel sur k.

Démonstration. — D'après un théorème de Châtelet (voir par exemple

[4], pp. 230-233), il existe une courbe projective non singulière G (la jaco-
bienne de F), définie sur k, ayant un point o rationnel sur k, et biréguliè-
rement équivalente à F sur k (ce qui permet d'identifier k (G) à k (V)).
G est évidemment de genre 1, comme F, et on peut la munir d'une loi de

groupe rationnelle, définie sur k, notée additivement, ayant o pour élément

neutre, et faisant de G une variété abélienne de dimension 1 sur k ([4],

pp. 210-211). De plus, l'identification k (G) — k(V) permet de munir F
d'une structure d'espace homogène principal sur G ([4], pp. 226-227),
c'est-à-dire de construire deux applications rationnelles jâ: V x G -> V,

et v: F x F-> G, définies sur k, et possédant les propriétés suivantes:

(i) quel que soit x e F, on a [i (x, o) o ;

(ii) quels que soient x e F et a, b e G, on a ^ (p (x, a), b) p (x, a + b);

(iii) quels que soient x, y e F, il existe un a e G et un seul tel que n (x, a)

y, et a est égal à u (y, x).

Concrètement, G opère sur F par translations : \i (x, a) est le transformé de

x par la translation a, et v (y, x) est la translation qui transforme x en

y; ainsi, il n'y a aucun risque de confusion à écrire x + a au lieu de ji (x, a)

et y — x au lieu de v (y, x); on adoptera cette écriture dans le reste de la

démonstration.
Convenons d'autre part, pour tout point x (x0, xu d'un espace

projectif de dimension quelconque sur k, de noter x(q) le point (x0q, xxq,

Il est clair que x est rationnel sur k si et seulement si x(g) x (chap. 1,

prop. 2 ou prop. 8). Il est clair également que si U est un ensemble algébrique
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