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de la rationalité des fonctions z€ta des variétés algébriques] » (a ce sujet, voir
chap. 9, § 2). La démonstration du théoréme 3 donnée par Katz (1971) utilise
également (et directement) les méthodes analytiques p-adiques de Dwork.

CHAPITRE §

« HYPOTHESE DE RIEMANN »

Soient k£ un corps fini a g éléments, #» un entier > 1, F un polyndme
a n variables et & coefficients dans k, et N le nombre de solutions dans k"
de I’équation F = 0. On a remarqué aux chapitres 4 (sect. 4.2, th. 6, cor. 1)
et 6 (sect. 1.2, th. 1, cor. 1, 2, 3; sect. 2.1, th. 2, cor. 1, 2) que, lorsque F
est multilinéaire ou diagonal (et qu’il satisfait en outre a certaines hypothéses
qui équivalent a supposer qu’il est absolument irréductible), alors N est de
lordre de grandeur de ¢"~ !, I'exposant n — 1 s’interprétant d’ailleurs
comme dimension de 'hypersurface affine F = 0. Le but du présent cha-
pitre est d’étendre ce résultat a n’importe quel ensemble algébrique, affine
ou projectif, absolument irréductible, défini sur k — autrement dit, & n’im-
porte quelle variété définie sur k; si V est une telle variété, et si N désigne
maintenant le nombre de points de V rationnels sur &k, on a en fait (§ 4, th. 4)

N =q" +0(q~ %),

g étant considéré comme « infiniment grand », et la constante impliquée
par le symbole O ne dépendant que de r = dim (V'), du degré de V, et de la
dimension de I’espace affine ou projectif ou V se trouve plongée.

Le théoréme 4 (pour r quelconque) se déduit par récurrence sur r du
cas particulier ou » = 1, et ol V' est donc une courbe: ce cas est examiné en
détail aux paragraphes 1 (courbes de genre 0), 2 (courbes de genre 1) et 3
(courbes de genre quelconque). Le résultat central de ce chapitre est d’ailleurs
le théoréme 3 (§ 3), dit « hypothése de Riemann » pour la courbe V: on
verra en effet (chap. 9, sect. 3.2) que ce théoréme est équivalent au résultat
suivant: tous les zéros de la fonction { (V; s) ont une partie réelle égale a 1/2.

Le langage géométrique utilisé dans ce chapitre (et dans le suivant) est
essentiellement celui des Foundations de Welil, c’est-a-dire le langage
« classique » (& une différence prés: si V est un ensemble algébrique défini
sur k, on identifie V a [’ensemble de ses points algébriques sur k; il en résulte
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notamment que si ¥ est une variété de dimension > 1 et si X est un point
générique de V, x n’est pas considéré comme un élément de V': autrement dit,
on n’a pas le droit d’écrire x € V). Pratiquement, pour la terminologie et les
résultats de géométrie algébrique dont on aura effectivement besoin, le
lecteur pourra se reporter au livre de Lang [12] ou & celui de Samue] [15].

Dans ce chapitre, k désigne (comme toujours) un corps fini & g = p!
éléments, et k une cloture algébrique de k. A, et P, désignent respectivement
’espace affine et I’espace projectif de dimension # sur k. Enfin, si V" est un
ensemble algébrique défini sur k, [’ensemble des points de V rationnels sur k
est désormais noté V,.

§ 1. Courbes de genre 0 (*).

1.1. TaEOREME 1. — Si V est une courbe projective non singuliére de
genre 0 définie sur k, elle est biréguliérement équivalente (sur k) a la droite
projective définie sur k.

Démonstration. — D’apreés un théoréme classique de Poincaré (voir
[18], pp. 71-72), V, de genre O, est biréguliérement équivalente sur k soit a
une droite, soit a une conique (ceci, sans hypothése sur k; ce théoréme de
Poincaré peut d’ailleurs se déduire facilement du théoréme de Riemann-
Roch: voir par exemple [2], chap. XVI, th. 6). On peut donc se borner a
démontrer le théoréme 1 lorsque V est une conique définie dans le plan
projectif P, par une équation homogéne et de degré 2, F(X,, X, X,)
= 0, a coefficients dans k: le théoréme de Chevalley (chap. 3, th. 1, cor. 1)
montre alors que cette équation admet une solution (a,, a,, a,) non triviale
dans k3, donc que ¥ admet un point a rationnel sur k. Soit maintenant 4
une droite projective du plan P,, définie sur k et ne passant pas par a
(st par exemple a, # 0, on peut prendre pour 4 la droite d’équation X,
= 0); pour tout point y de 4, notons ¢ (y) le second point d’intersection de
V et de la droite joignant a a y; alors ’application y ~ ¢ (y) est évidemment
une équivalence biréguliere 4 — V' définie sur k, et le théoréme 1 est dé-
montré.

1.2. COROLLAIRE 1. — Si N désigne le nombre de points de V rationnels
sur k, on a exactement N = q + 1.

*) Pour un résumé rapide et élémentaire des propriétés des courbes algébriques
(genre, théoréme de Riemann-Roch), voir SAMUEL (1967).
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Démonstration. — Le théoréme 1 permet de se limiter au cas ou V' = 4
(la droite projective); mais ’ensemble 4, des points de A4 rationnels sur k
comporte évidemment g éléments « & distance finie » (correspondant bijec-
tivement aux éléments de k), plus un élément « a I'infini » — soit au total
q + 1 éléments, C.Q.F.D. '

§ 2. Courbes de genre 1.

Pour la géométrie des courbes de genre 1, voir [4], notamment pp. 209-
233.

2.1. THEOREME 2 (théoréme de Schmidt). — Si V est une courbe pro-
Jective non singuliere de genre 1 définie sur k, V admet au moins un point
rationnel sur k.

Démonstration. — D’aprés un théoréme de Chatelet (voir par exemple
[4], pp. 230-233), il existe une courbe projective non singuliére G (la jaco-
bienne de V'), définie sur k, ayant un point o rationnel sur k, et birégulie-
rement équivalente & V sur k (ce qui permet d’identifier k (G) a k (V)).
G est évidemment de genre 1, comme ¥V, et on peut la munir d’une loi de
groupe rationnelle, définie sur k&, notée additivement, ayaunt o pour élément
neutre, et faisant de G une variété abélienne de dimension 1 sur k ([4],
pp. 210-211). De plus, 'identification k (G) = k (V) permet de munir V
d’une structure d’espace homogéne principal sur G ([4], pp. 226-227),
c’est-a-dire de construire deux applications rationnelles u: ¥V x G - V,
et v: V x V — G, définies sur k, et possédant les propriétés suivantes:

(i) quel que soit xe V, on a u(x,0) = o;
(i) quels que soient xe Vet a, be G, on a p(u(x, a),b) = u(x, a+b);

(iii) quels que soient x, y € V, il existe un a € G et un seul tel que u (x, a)
= vy, et a est égal a v (y, Xx).

Concrétement, G opére sur V par translations: u (X, a) est le transformé de
x par la translation a, et v (y, x) est la translation qui transforme x en
y; ainsi, il n’y a aucun risque de confusion a écrire X + a au lieu de u (x, a)
et y — x au lieu de v (y, x); on adoptera cette écriture dans le reste de la
démonstration.

Convenons d’autre part, pour tout point x = (x,, x4, ...) d’un espace
projectif de dimension quelconque sur k, de noter x? le point (x,%, x;% ...).
Il est clair que x est rationnel sur k si et seulement si x? = x (chap. I,
prop. 2 ou prop. 8). Il est clair également que si U est un ensemble algébrique
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défini sur k et si x € U, alors x¥ € U (représenter U par un systéme d’équa-
tions a4 coefficients dans k, et remarquer que I’élévation a la puissance
g-iéme est un automorphisme de k qui laisse invariante lesdits coefficients).

Appliquons ceci & V et G. Soit x un élément quelconque de V, et posons
a = x — x@, Considérons d’autre part I’application rationnelle z > z@
— z de G dans G; elle n’est certainement pas constante (sinon, on aurait
29 — 7 = 09 — 0 = o, soit z¥ = z, pour tout ze G; tout point de G
serait rationnel sur k, et G serait de dimension 0: absurde); comme G est
irréductible, projective (donc compléte), non singuliére et de dimension 1,
cette application est surjective. En particulier, il existe be G tel que a
= b@ — b, donc, en revenant a la définition de a, tel que x + b = x@
+ b = (x+b)? (cette derniére égalité parce que I’application rationnelle
u:Vx G-V, quia (x,b) associe x + b, est définie sur k); mais alors
X + b est un point de V rationnel sur k£, C.Q.F.D.

2.2. CoOROLLAIRE 1 (théoréme de Hasse). — Si N désigne le nombre de
points de V rationnels sur k, on a l’inégalité

(2.2.1) g +1—N| <242,

Démonstration. — Soit o un poinf de V rationnel sur k (th. 2), et munis-
sons V de sa structure de variété abélienne définie sur k et ayant o pour
€lément neutre. Soit M I'anneau des endomorphismes de ¥V, et, pour tout
A e M, soit deg (1) le degré de I’application rationnelle A ([4], pp. 215-216).
Soit enfin F I'endomorphisme x » x@ de V. Alors F — 1 (c’est-a-dire
’'endomorphisme x b x@ — x de V) est un élément non nul de M (rai-
sonner comme dans la sect. 2.1), donc une isogénie de V ([4], pp. 215-216)
dont le noyau est exactement ’ensemble des points de V rationnels sur k
(voir sect. 2.1). On peut démontrer que cette isogénie est non ramifide
([4], p. 217), donc que I'ordre du noyau de F — 1 est égal au degré de
F — 1; ainsi,

(2.2.2) N = deg(F—1).
On peut démontrer également que M est un Z-module libre de rang fini,

sans diviseurs de zéro, et qu’il est muni d’un anti-automorphisme A > 1’

- tel que 44" = deg (4) pour tout 1€ M (voir par exemple Deuring (1941));
il en résulte notamment que, quel que soit me Z, on a

(2.2.3) deg(F—m.l) = (F=m.0)(F—m.1Y = m> —tm + q,
cavec ! = F+ F'eZ, et ¢ = FF' = deg (F) (puisque F(x) = x). Etant
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donné sa définition, le polyndme m? — tm + g est toujours positif, d’ou
t? — 49 <0, ou encore

(2.2.4) ] < 2gM2.

Mais faisons m = 1 dans (2.2.3) et utilisons (2.2.2); il vient
(2.2.5) t=q+1—-N,
et 1l suffit de porter (2.2.5) dans (2.2.4) pour obtenir 'inégalité (2.2.1).

2.3. Ladémonstration esquissée ci-dessus est essentiellement la démons-
tration originale de Hasse (voir Hasse (1933, 1934, 1936)). Manin en a donné
une version « élémentaire » dont voici le principe (Manin (1956); pour les
détails des calculs, voir [6], chap. 10, pp. 197-206). On suppose pour sim-
plifier p # 2, 3 (mais cette restriction n’est pas essentielle). Comme 7 admet
un point rationnel sur k£, on peut supposer V écrite sous forme normale de
Weierstrass

(2.3.1) Y2 = X* —aX — b,
a, bek, 4a> — 27b% # 0. Soit alors ¢ un élément transcendant sur k,

et soit W la courbe définie sur K = k (£) et ayant pour équation

X3 —aX —b
& gl — b

(2.3.2) y? —

C’est une courbe de genre 1, dont on connait (au moins) deux points ra-
tionnels sur K: a, = (&9, n@"1/2) (avec n = &3 —aé — b) et b = (¢ 1).
Munissons W de sa structure de variété abélienne définie sur K, ayant le
point a I'infini o pour élément neutre, et pour laquelle trois points ont une
somme nulle si, et seulement si, ils sont alignés ([4], pp. 211-214); pour tout
m € Z, posons a, = a, — m.b, puis définissons un entier d,, de la fagon
suivante: si a,, = o, posons d,, = 0; si au contraire a,, # o, donc si le point |
a,, est « a distance finie », de coordonnées affines x,, y,,, avec x,, = P,, (£)/
0,, (&) et P,, Q,, premiers entre eux, posons d,, = deg (P,,). On peut alors
démontrer (a ’aide des formules d’addition sur une cubique de Weierstrass:
voir [4], p. 214) les deux relations suivantes:

d_y —do =N —q; dy_y +dpyy = 2d, +2;
ces deux formules permettent de calculer'dm:

(2.3.3) d, =m?> —-(@+1-N)m +q;
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comme par définition d,, > 0, le polyndme en m figurant au second membre
de (2.3.3) est positif; d’ou

(q+1—-N)*<4q,

ce qui implique bien P'inégalité (2.2.1).
La parenté entre ces deux démonstrations tient au fait que d,, = deg (F
—m.1).

2.4. On a vu au chapitre 6 (sect. 3.3, (1) et 3.5) que la courbe affine
Y2 =1 — X3 (qui est de genre 1 pour p # 2, 3) a un nombre de points
rationnels sur k égal & g si g= — 1 (mod 6) et & g + o + & (avec
« = (@, ¥)) sig = 1 (mod 6). Si on remarque que cette courbe, considérée
maintenant comme projective, admet un point a I'infini rationnel sur k£, on
voit que le nombre total N de ses points rationnels sur k satisfait a | g+ 1
— N| = 0dans le premier cas, eta |g + 1 — N| <|a| + |&] = 2¢'/
dans le second cas (voir chap. 5, prop. 9, cor. 1): le théoréme de Hasse se
trouve ainsi vérifié directement pour cette courbe.

Raisonnement analogue pour la courbe Y% = X — X3, qui admet un
point & 'infini rationnel sur k, et pour la courbe Y3 =1 — X3, qui admet
un ou trois points a I'infini rationnels sur k selon que g est congru a — 1
ou a 1 (mod 3) (on suppose naturellement p # 3).

Considérons enfin la courbe affine Y = 1 — X* (qui est de genre 1 pour
p # 2) et dont le nombre de points rationnels sur k est égal a g + 1 si
gq= —1(mod4)etaqg — 1 + o + & (avec « = 7 (¢, x): chap. 6, sect. 3.3,
(2), et 3.5) si g = 1 (mod 4). Dans le premier cas, cette courbe, envisagée
maintenant comme projective, admet a l'infini un point double rationnel
sur k, mais ce point est «isolé » (par désingularisation, il donnerait deux
points conjugués sur k, mais non rationnels sur k): ce point ne doit donc pas
étre pris en considération; on adoncici N = g + 1, ou | g+1—-N|=0.
Dans le second cas, la courbe admet encore un point double & I'infini,
rationnel sur k, mais « non isolé » (par désingularisation, il donnerait deux
points rationnels sur k): ce point doit donc étre compté deux fois, d’oll main-
tenant N = g + 1 + a 4+ &, donc, comme précédemment, |q +1—-N |

< 2¢'/?: le théoréme de Hasse se trouve également vérifié directement pour
cette courbe *).

*) En fait, on a raisonné ici, non sur la courbe Y2 = 1 — X4, mais sur sa normalisée
(voir d’ailleurs chap. 9, sect. 5.2, (2) et (4)).
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§ 3. Courbes de genre quelconque.

3.1. D’égalit¢ N = g + 1, pour une courbe de genre 0, et I'inégalité
|q + 1 — N| <2¢"'?, pour une courbe de genre 1 (th. 1, cor. 1, et th. 2,
cor. 1), sont des cas particuliers du résultat suivant, di a Weil (1940, 1948):

THEOREME 3 (« hypothése de Riemann » pour V). — Si V est une courbe
projective non singuliére de genre g définie sur k, et si N désigne le nombre de
points de V rationnels sur k, on a

(3.1.1) g +1 — N|<2gq'?.

Démonstration. — Soit W = V x V la surface produit de V par elle-
méme, c’est-a-dire le lieu sur k& du point (X, y), ol X et y sont deux points
génériques de V, indépendants sur k (voir [20], p. 29, ou Samuel (1967),
§ I et II). On appelle correspondance sur V ([20], p. 29) tout diviseur sur V,
donc tout cycle de dimension 1 sur V; si X est une correspondance sur V,
on appelle symétrique de X et on note X’ la correspondance image de X |
par la symétrie (x, y) b (¥, x) de W; si X et Y sont deux correspondances
sur V, on appelle somme de X et Y et on note X + Y leur somme en tant que
diviseurs sur V’; on appelle produit (de composition: rien a voir avec le pro-
duit d’intersection) de X et Y et on note X o Y la correspondance déduite de
X et Y par 'opération de composition des graphes dans le produit V' x V
(pour une définition précise, voir [20], pp. 35-38); enfin, on écrit X = Y
s’il existe deux diviseurs m et n sur la courbe V et une fonction rationnelle f
sur la surface W tels que

X—-Y=mxV)+Vxn +(f),

(f) désignant le diviseur de la fonction f. On peut alors montrer ([20],
pp. 38-41) que la relation = est une relation d’équivalence dans ’ensemble
des correspondances sur V, et qu’elle est compatible avec les opérations
somme et produit introduites ci-dessus: ’ensemble quotient par = de
I’ensemble des correspondances sur ¥ se trouve ainsi muni d’une structure
d’anneau; on le note 4 (V), et on 'appelle anneau des correspondances de V;
si &, n e A (V) sont les images de correspondances X et ¥ sur V, leur somme
¢ + n et leur produit ¢y sont par définition les images dans A4 (V) de X
+ Y et de X o Y; noter que la symétrie X b X' est évidemment compatible
avec la relation = ; elle définit donc par passage au quotient une involution
&b & de A(V) qui est en fait un anti-automorphisme de A4 (V): si ¢,
neAdAlV), ona (E+n) =& +n' et (&n) = n’'f’; noter aussi que si 4
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désigne la diagonale de W, c’est-a-dire le lieu sur k du point (x, x), alors 4
est biréguliérement équivalente a ¥ sur k, et 6, classe de la correspondance 4
sur V, est ’élément neutre de A (V) pour la multiplication.

Pour toute correspondance X sur V, notons maintenant d; (X) et
d, (X) les degrés des cycles pr, (X) et pr, (X), projections de X sur le pre-
mier et sur le second facteur de W = V x V; notons d’autre part i (X - 4)
le nombre d’intersection de X et 4 sur W (qui est défini méme si 4 est une
composante de X: voir par exemple Samuel (1967), p. 307), et posons

(3.1.2) S(X) = dy(X) + dy(X) —i(X-4).

S (X) est un entier rationnel, qui ne dépend que de la classe de la corres-
pondance X; si alors £ e 4 (V), et si X désigne n’importe quelle correspon-
dance d’image ¢ dans A4 (V), on peut définir un entier rationnel g (&), ne
dépendant que de &, par I'égalité ¢ (&) = S (X); o () est dit trace de &;
et on peut montrer ([20], pp. 41-54) que la trace posséde les propri€tes
suivantes:

LEMME 1. — Quels que soient E,ne A (V),onaoc ((+n) = (&) + o (n),
o (&n) = o8, et o (<) = a (&)

LEMME 2. — § désignant toujours la classe de A, on a o (0) = 2g.

LEMME 3. — Quel que soit & # 0 dans A (V'), on a o ((C') > O.

Le lemme 1 est immédiat; le lemme 2 résulte du fait que d, (4) = d, (4)
= 1, de la formule classique i (4 - 4) = 2 — 2g (Samuel (1967), p. 307, (2)),
et de la définition (3.1.2) de o (6) = S (4). Le lemme 3 est la « clef de voiite »
de la démonstration: c¢’est de I'inégalité o (££") > 0 convenablement appli-
quée que va résulter I'inégalité (3.1.1). Soit en effet I" le lieu sur k du point
z = (x, x?9) (la notation x? a été définie dans la sect. 2.1); I' est une
correspondance sur V (« correspondance de Frobenius »), et sa symétrique
I'’" est le lieu sur k du point z’' = (x9, x); on a évidemment [k (x): k (x)]
= let[k(x): k(x?P)] = g,doncd, (I') = 1etd, (I') = g; on peut d’autre
part montrer que chacun des points du cycle intersection I' -4 a pour
multiplicité 1: comme les composantes de ce cycle sont exactement les
points (a, a) de V' x V avec a = a@, c’est-a-dire avec a rationnel sur k,
on voit que i (I' -+ 4) = N; si alors y désigne la classe de la correspondance
I', la formule de définition (3.1.2) permet d’écrire

(3.1.3) 6(y) =q+1~—N.

I’Enseignement mathém., t. XIX, fasc. 1-2. 6
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On peut démontrer par ailleurs que yy’ = ¢J; soit maintenant m un
entier rationnel et posons £ = y — md; ona &’ =y’ — mé, et

EE =m?6 —m@+y) + '

prenons les traces des deux membres, tenons compte de la valeur de yy’ et
utilisons les lemmes 1 et 2; il vient:

0(EE) = 2gm® —a(y+y)m + 29q ;

mais o (y+7y) = 20(y) = 2(q+1—N) (lemme 1 et formule (3.1.3));
ainsi:

0(EE) = 2gm? —2(q+1—N)m + 29q;

le lemme 3 montre que le polyndme en m figurant dans le membre de droite
de cette derniére égalité est positif; on a donc

(g+1—N)*> — 49%q <0,

ce qui implique I'inégalité (3.1.1) et prouve le théoréme 3.

3.2. On peut également démontrer le théoréme 3 a I’aide de la théorie
des variétés abéliennes (structure de I’anneau des endomorphismes, pro-
priétés du polyndme caractéristique d’un endomorphisme, etc.; voir par
exemple [20], § VII a XI, ou [9], chap. 5) appliquée a la jacobienne de la
courbe V. Pour g = 1, cette seconde démonstration coincide avec la démons-
tration du « théoréme de Hasse » donnée dans la section 2.2 (dans ce cas
en effet, V, admettant un point rationnel sur k par le théoréme de Schmidt,
s’identifie & sa propre jacobienne); dans le cas général (g quelconque), cette
seconde démonstration n’est pas essentiellement différente de celle esquissée
dans la section 3.1, du fait que 1’anneau des correspondances sur V est
isomorphe a I’anneau des endomorphismes de la jacobienne de V ([20],
pp. 161-163, th. 22 et cor. 2).

3.3. Revenons a l'inégalité (3.1.1). Considérons a titre d’exemple la
courbe plane X* + Y* = 1, et supposons ¢ = 1 (mod 4). Si  est un carac- |
tére d’ordre 4 de k*, la proposition 3 du chapitre 6 montre que le nombre de
points « a distance finie » sur cette courbe est égal a g + Y w (L, y’?);

1=j;=3
Ja somme comprend neuf termes, dont trois sont des sommes de Jacobi
triviales (pour j, + j, = 4) et valent — 1 (chap. 5, prop. 9, (1)), les six
autres (notons-les o, ..., %) étant des sommes de Jacobi non triviales,
de module ¢'/?: le nombre de points «a distance finie » est donc
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g — 3 + a; + ... + ag. Maintenant, la courbe étudiée, considérée comme
projective, est non-singuliére, de genre g = (4—1) (4—2)/2 = 3, par la
formule de Pliicker, et elle admet quatre points & Iinfini; ainsi,
N=gq—-3+4+a,+ ..+ ag, etona

g +1=N|<l|ay| + ... + |ag| = 6¢"% = 299"%,

ce qui vérifie directement le théoréme 3 dans ce cas particulier.

La méme vérification est possible plus généralement, grace a la propo-
sition 3 du chapitre 6, pour la courbe X% + Y% = 1, avec ¢ — 1 divisible
par d, et d,: on laisse au lecteur le soin de faire les calculs, et notamment de
montrer que le genre est égal a ((d;—1) (d,—1) — (d—1))/2, avec d =
= (dy, do).

3.4. Le théoréme 3 admet deux conséquences importantes:

COROLLAIRE 1. — Soit N,, le nombre de points de V rationnels sur k,,
= F,m. Alors, quand m tend vers linfini, N,, tend lui-meme vers [’infini ; en
particulier, pour tout m assez grand, N, > 1.

Démonstration. — En effet, le théoréme 3 appliqué au corps de base k,,

donne N, >q™ + 1 — 2gq™?, et le membre de droite tend vers Iinfini
avec m.

COROLLAIRE 2. — La courbe V posséde un diviseur de degré 1 rationnel
sur k.

Démonstration. — Le corollaire 1 montre qu’on peut trouver deux entiers
successifs m et m + 1 tels que V' admette un point rationnel sur k,, et un
point rationnel sur k,,, ;; ¥ admet donc un diviseur de degré m et un divi-
seur de degré m + 1 rationnels sur k, et il suffit de retrancher le premier du
second pour obtenir un diviseur de degré (m+1) — m = 1 rationnel sur k.

Pour g > 2, V ne possede généralement pas de point rationnel sur k: le
diviseur de degré 1 dont I’existence est affirmée par le corollaire 2 ne peut

donc généralement pas (sauf pour g = 0 ou 1: th. 1, cor. 1, et th. 2) étre
supposé positif.

§ 4. Variétés de dimension quelconque.

4.1. Soit V' une variété projective définie sur k, de dimension r, et
supposée plongée dans P,, espace projectif de dimension 7 sur k; rappelons
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quon appelle degré de V le nombre de points d’intersection de V" avec une
sous-variété linéaire de P, de dimension » — r « en position générique »
(voir [15], chap. I, § 8.4); une variété projective plongée dans P,, de degré d
et de dimension r sera dite « de type (n, d, r) ».

Cela étant, on a le théoréme suivant, dit a Lang et Weil (1954) (voir
aussi Nisnevich (1954): Nisnevich se limite au cas ou le corps de base k est
le corps premier F):

THEOREME 4. — Si V est une variété projective de type (n, d, r) définie
sur k, et si N = N, désigne le nombre de points de V rationnels sur k, on a

(4.1.0) IN = q"| <B@q™~ % + A, d,n)q"",

A (n,d, r) désignant une constante qui ne dépend que de n, d et r, et B(d)
désignant une constante qui ne dépend que de d (et qu’on peut prendre égale a

(d-1) (d-2)).

Démonstration. — On raisonne par double récurrence, d’abord sur n,
puissurr. Sin = 0,ona N < d, et le théoréme est évident; supposons donc
n > 1:si V est contenue dans un hyperplan de P, défini sur k, V peut €tre
considérée comme de type (n—1, d,r), et ’hypothése de récurrence sur n
permet d’écrire | N — ¢"| < B(d) ¢~ M'? + A(n—1,d,r)q""': le théo-
réme est également établi. Ainsi, on peut désormais supposer n fixé (> 1),
faire ’hypothése suivante:

(H) V n’est contenue dans aucun hyperplan de P, défini sur k,

et raisonner par récurrence sur r. Pour r = 0, on a N <d, et le théoréme
est évident. Supposons maintenant r = 1; J est alors une courbe projective,
éventuellement singuliére: soit V', une courbe projective non singuliére définie
sur k et birationnellement équivalente & V' sur k (via une équivalence biration-
nelle ¢: V; — V), et soit N, le nombre de points de V', rationnels sur k;
le théoréme 3 montre que | g + 1 — N, | <2gq'/?, g désignant le genre
de ¥, donc de V'; mais le genre de V' et le nombre de points singuliers de V'
sont tous deux majorés par (d—1) (d—2)/2 (projeter V sur un plan, ce qui ne
modifie ni g, ni d, et ne peut qu’augmenter le nombre de points singuliers;
puis appliquer la formule de Pliicker & cette projection); d’autre part, la
correspondance birationnelle ¢: V; — V est bijective en dehors des points
singuliers de V (et fait correspondre, a des points rationnels sur k, des points
rationnels sur k, puisqu’elle est définie sur k), et elle associe, & chaque point




— 85 —

singulier de V, au plus d points de V; ainsi, | N — Ny | <d(d—1) (d—2)/
2, et finalement |N —gq| <B(d)q'? + A(n,d, 1), avec B(d) = 2g
<(d-1)(d-2) et A(n,d, 1) = d(d—1)(d—2)/2 + 1: le théoréme est
établi pour les variétés de type (n, d, 1).

Supposons alors r > 2, et le théoréme démontré jusqu’a la dimension
r — 1. Soit P, un second exemplaire de I’espace projectif P, sur k; a tout
point w = (w,, ..., w,) de P,, associons I’hyperplan H, de P, d’équation
woXy + ... + w,X, = 0; les hyperplans H, définis sur k correspondent
bijectivement aux points w de P, rationnels sur k, et il y en a exactement

0, = (@' =Dj@=1) = ¢" + .. +q +1.

Calculons de deux maniéres différentes le nombre C des couples (x, H,),
ol x est un point de ¥ rationnel sur k, et ot w est un point de P, rationnel sur
k et tel que x appartienne a H:

(1) V, contient par définition N points, et par chacun d’eux passent
Q,_ 1 hyperplans définis sur k: dou C = NQ,_;

(2) pour chaque hyperplan H, défini sur k, le cycle intersection V - H,
(voir [15], chap. II, § 6.1) est, en un sens évident, de type (n, d,r — 1), en
vertu de I’hypothése (H); notons N, le nombre de points de V' - H, (c’est-
a-dire de V' n H,,) rationnels sur k; on a alors évidemment C = ) N,, w

w
parcourant I’ensemble des Q, points de P, rationnels sur k.

Le rapprochement des résultats de ces deux calculs donne NQ,_, = > N,,

ou €ncore

(4.1.2) N=0,.%YN,+0,4 Y N,,
wel weR
I (resp. R) désignant I’ensemble des points we P, rationnels sur k et tels
que le cycle V' - H, soit (resp. ne soit pas) une variété. On posera N,
= card (I) et Ng = card (R); il est clair que N; + Ny = O,.
On a alors ces deux lemmes:

LEMME 1. — Il existe une constante A (n,d,r) ne dépendant que de n, d
et r et ayant la propriété suivante : quel que soit Z, cycle positif de type
(n, d, r) rationnel sur k, on a

(4.1.3) Nz, < 4;(n,d,r)q",

N, désignant le nombre de points de Z rationnels sur k (un point de Z est un
point de la réunion des composantes de 7).
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LEMME 2. — Il existe une constante A, (n,d,r) ne dépendant que de n, d |
et r et possédant la propriété suivante : quelle que soit V, variété de type
(n, d, r) définie sur k et vérifiant (H), le nombre Ny défini ci-dessus satisfait a

(4.1.9) Np<A,(n,d,r)q"'.

Le lemme 1 est élémentaire; il se démontre par récurrence sur r, en
coupant Z par les éléments rationnels sur & d’un faisceau d’hyperplans
convenablement choisi dans P,. Le lemme 2 est plus technique; on le déduit
du lemme 1 en construisant, grace a la théorie de la forme de Chow (a ce
sujet, voir par exemple [15], chap. I, § 9.4), un ensemble algébrique E défini
sur k, de type (n, e, n — 1), plongé dans P,, dont le degré e = e(n, d, r)
ne dépend que de n, d et r, et qui contient I’ensemble R; comme les points de
R sont tous rationnels sur k, on a donc Ng < Ny <A, (n,e,n — 1) ¢" "%,
et la constante du lemme 2 est donnée par

Ay(n,d,r) = A;(n,e(n,d,r),n—1).

(L’ensemble algébrique E dépend de V; pour une démonstration détaillée
de ces deux lemmes, voir Lang-Weil (1954), pp. 820-821).

Achevons alors la démonstration du théoréme 4. Dans le membre de
droite de (4.1.2), chaque terme N, de la premiére somme est le nombre de
points rationnels sur k de V - H_, qui est une variété de type (n,d, r — 1)
définie sur k, puisque w € I; par hypothése de récurrence (sur r), on a donc

INy, =g | <B@)q™® + AMm, d,r—1)g"" 2.

D’autre part, le nombre de termes de cette premiere somme est Q, — Ng;
les valeurs de Q,_, et Q, sont connues, et celle de N, est majorée par
A, (n, d, r) (lemme 2); un calcul facile montre alors que
(4.1.5) Q1 Y Ny —q" = B(dq ™ Y[ <A5(0n,d,1)q" 7",

wel
A, (n, d, r) étant une constante qui ne dépend que de n, d et r. Considérons
maintenant la seconde somme figurant dans le membre de droite de (4.1.2);
chacun des termes N, qui y apparaissent est le nombre de points rationnels
sur k d’un cycle, V - H,, positif, rationnel sur k, et de type (n, d, r — 1);
le lemme 1 donne donc N, < 4, (n,d,r — 1) ¢"~*; comme cette seconde
somme comporte N, termes, le lemme 2 montre qu’elle est majorée par
Ay (n,d r)q"t" "2, avec Ay (n,d,r) = A, (n,d,r — 1) A, (n,d, r) = une
constante qui ne dépend que de n, detr. Mais Q,_, = ¢" "' + ... + ¢ + 1;
ainsi, 0,_% < ¢'™", et on arrive & la majoration
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(4.1.6) 10 Y Ny | <Ay (n,d,r)g ™"

weR
1l suffit alors de porter les inégalités (4.1.5) et (4.1.6) dans la formule (4.1.2)
et de poser A (n,d,r) = A3 (n,d, r) + A4 (n, d, r) pour obtenir I'inégalite
(4.1.1). Le théoréme 4 se trouve ainsi établi.

4.2. Le théoréme 4 admet la conséquence suivante, qui généralise le
corollaire 1 du théoréme 3, et se démontre de la méme maniere:

COROLLAIRE 1. — Soit N, le nombre de points de V rationnels sur k,,
= F . Alors, quand m tend vers l'infini, N,, tend lui-méme vers [infini ; en
particulier, pour tout m assez grand, N,, > 1.

La propriété « N,, > 1 pour tout m assez grand », c’est-a-dire « V" admet
un point rationnel sur toute extension algébrique de k de degré assez grand »,
est évidemment fausse en général sur un corps de base quelconque. Ainsi,
’hyperquadrique projective X,% + ... + X,* = 0, définie sur le corps Q,
n’admet de point rationnel sur aucune extension de Q de degré impair m,
si grand que soit m; en effet, Q est un corps formellement réel ([10], chap. XI,
§ 2); si K/Q est de degré impair, K est alors lui-mé€me formellement réel
(ibid., prop. 2, (i), et une égalité x,*> + ... + x, avec xo, ..., X, € K n’est
possible que si x, = ... = x, = 0. Un argument de ramification montrerait
de méme que la variété X,"*! + pX,"*1 + ..+ p"X,"T! = 0, définie sur
le corps Q, des nombres rationnels p-adiques, n’admet de point rationnel sur
aucune extensionde Q, de degré m non divisible par n + 1, si grand que soit m.

Cette propriété « N,, > 1 pour tout m assez grand » est également fausse
en général, méme sur un corps de base fini, si on ne suppose pas V absolument
irréductible. Ainsi, considérons le polyndme P défini par (4.1.1) (chap. 4, § 4),
et supposons n >2; 1’équation P (X,, ..., X,_;) = 0 définit alors une
k-variété projective V' (de type (n—1, n, n—2)), mais cette k-variété n’est pas
absolument irréductible, donc n’est pas une variété (elle se décompose en n
hyperplans définis sur K = k, et conjugués sur k); et il est facile de vérifier
que si m est premier avec #, le nombre N,, de points de V rationnels sur k,,
est nul, si grand que soit m (noter que si (m, n) = 1, k,, et k, sont linéaire-
ment disjoints sur k (chap. 1, prop. 4, cor. 2); wy, ..., ®, est alors une base
de k,, sur k,, et on peut raisonner comme au chapitre 4, section 4.1, en
remplagant k par k,, et K = k, par k,,).

4.3. Remarquons enfin que le théoréme 4 reste vrai pour des variétés
affines, moyennant une modification de la constante 4 (n. d, r). Soit en effet
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V < A, une variété affine de type (#, d, r); plongeons A, dans P, de maniére
que ’hyperplan « a linfini » H,, ait pour équation (par exemple) X, = 0;
adjoignons alors a V ses points « a 'infini » de la fagon habituelle, et notons
W la variété projective ainsi obtenue; elle est de type (n, d, r), et on a, avec
des notations évidentes, Ny = Ny — Ny y,; il suffit dans ces conditions
d’appliquer le théoréme 4 & Ny, et le lemme 1 & Ny, pour obtenir

(4.3.1) INy —q" | <B@) g~ + A" (n,d,r)q"" ",

avec A" (n,d,r) = A(n,d,r)+ A, (n,d, r) = une constante qui ne dépend
que de n, d et r.

Notes sur le chapitre 8

§2: le théoréme 2 est di & Schmidt (1931) (méthode analytique); ce
théoréme est un aspect d’un résultat général relatif aux espaces homogenes
principaux sur un corps de base fini (Lang (1956); voir aussi Serre, Groupes
algébriques et corps de classes, p. 119 (Hermann, 1959)). L’application
x > x@ utilisée dans la démonstration du théoréme 2 est souvent dite
« endomorphisme de Frobenius » (voir d’ailleurs chap. 1, prop. 8); le fait
que les points fixes de cet endomorphisme sont exactement les points
rationnels sur £k = F_ est un trait caractéristique de la « géométrie diophan-
tienne » sur un corps fini.

Un certain de nombre de cas particuliers du théoréme de Hasse avaient
déja été remarqués au cours du XIXe siécle; citons notamment la « derniére
inscription du journal de Gauss» («letzte Eintragung im Gauss’schen
Tagebuch », reproduite dans Deuring (1941), pp. 197-198), relative au
nombre de solutions de la congruence X2Y2 + X2 4+ Y2 — 1 = 0 (mod p),
pour p = 1 (mod 4) (a ce sujet, voir également [5], p. 307, et [4], p. 242,
note 3). Pour la démonstration originale du théoréme de Hasse, voir Hasse
(1933, 1934, 1936).

Les courbes (projectives, non singuliéres) de genre 1 sur un corps fini k&
ne sont autres (d’apres le théoréme de Schmidt) que les variétés abéliennes de
dimension 1 définies sur k; les variétés abéliennes de dimension quelconque
définies sur un corps fini ont été étudiées notamment par Honda, Milne,
Serre, Tate, Waterhouse: pour une bibliographie sur ce sujet, voir Water-
house (1969).

§ 3: le théoréme 3, annoncé par Weil en 1940, est démontré dans Weil
(1948) (= [20], 1¢ére partie) par voie « géométrique »: c’est cette démons-
tration qu’on a résumée ici; pour des démonstrations « arithmétiques »,
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voir Igusa (1949) et Roquette (1953) (voir aussi [S], chap. V, §§ 1-5); dans
tous les cas, le point essentiel est I'inégalité o (£&') > 0 (inégalité (23),
p. 292, dans [5], par exemple); pour un commentaire sur cette inégalité
(dite « de Castelnuovo »), voir Weil (1954), p. 553. Pour une application
aux « sommes exponentielles », voir Weil (1948, b).

§ 4: la constante A, (n, d, r) (lemme 1) peut étre prise €gale a 2d)" (en
fait, elle ne dépend donc pas de n); en revanche, la constante 4, (n,d. r)
(lemme 2) et par conséquent la constante 4 (1, d, r) (th. 4) dépendent de n;
on ne sait d’ailleurs pas en général les majorer explicitement, faute de rensei-
gnements précis sur le degré e (n, d, r) de ’ensemble algébrique E.

Pour d’autres remarques sur les résultats ci-dessus, voir également le
chapitre 9.

CHAPITRE 9

FONCTIONS ZETA

Dans ce dernier chapitre, on se donne comme toujours un corps fini £
a g = p’ éléments, de cldture algébrique k; pour tout entier m >1, k,,
désigne I'unique extension de degré m de k contenue dans k (chap. 1, § 1).
A tout ensemble algébrique V défini sur &, on peut alors associer la série
formelle Z (V; £) = exp ( ), N,t"/m), ou N,, désigne le nombre de points

m>1
de V rationnels sur k,, et ou t est une indéterminée. Il se trouve que cette
série formelle est en fait une fraction rationnelle en ¢, et que, moyennant
des hypothéses convenables sur V, cette fraction rationnelle peut étre décrite
avec précision. Le paragraphe 1 de ce chapitre énonce diverses définitions
équivalentes de Z (V; t), et justifie le nom de « fonction z€ta de V» qui lui
est attribué. Le paragraphe 2 donne une esquisse de la démonstration de la
rationalité de Z (V; t). Le paragraphe 3 montre comment le théoréme de
Riemann-Roch et le théoréme 3 du chapitre 8 permettent d’obtenir une
description trés compléte de Z (V;t) quand ¥ est une courbe projective
non singulieére. Le paragraphe 4 indique sans démonstration diverses généra-
lisations des résultats du paragraphe 3. Enfin, le paragraphe 5 donne des
exemples de calcul explicite de fonctions z€ta; ce paragraphe peut d’ailleurs
étre lu directement apres le paragraphe 2: on y utilise uniquement les défi-
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