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de la rationalité des fonctions zêta des variétés algébriques] » (à ce sujet, voir
chap. 9, § 2). La démonstration du théorème 3 donnée par Katz (1971) utilise
également (et directement) les méthodes analytiques /?-adiques de Dwork.

Chapitre 8

« HYPOTHÈSE DE RIEMANN »

Soient k un corps fini à q éléments, n un entier >1, F un polynôme
à n variables et à coefficients dans k, et N le nombre de solutions dans kn

de l'équation F 0. On a remarqué aux chapitres 4 (sect. 4.2, th. 6, cor. 1)

et 6 (sect. 1.2, th. 1, cor. 1, 2, 3; sect. 2.1, th. 2, cor. 1, 2) que, lorsque F
est multilinéaire ou diagonal (et qu'il satisfait en outre à certaines hypothèses
qui équivalent à supposer qu'il est absolument irréductible), alors N est de

l'ordre de grandeur de qn~*, l'exposant n — 1 s'interprétant d'ailleurs
comme dimension de l'hypersurface affine F 0. Le but du présent
chapitre est d'étendre ce résultat à n'importe quel ensemble algébrique, affine

ou projectif, absolument irréductible, défini sur k — autrement dit, à

n'importe quelle variété définie sur k; si V est une telle variété, et si N désigne
maintenant le nombre de points de V rationnels sur fc, on a en fait (§ 4, th. 4)

N qr + 0(qr~(1/2))

q étant considéré comme « infiniment grand », et la constante impliquée

par le symbole O ne dépendant que de r dim (V), du degré de V, et de la
dimension de l'espace affine ou projectif où V se trouve plongée.

Le théorème 4 (pour r quelconque) se déduit par récurrence sur r du

cas particulier où r 1, et où F est donc une courbe : ce cas est examiné en

détail aux paragraphes 1 (courbes de genre 0), 2 (courbes de genre 1) et 3

(courbes de genre quelconque). Le résultat central de ce chapitre est d'ailleurs
le théorème 3 (§ 3), dit « hypothèse de Riemann » pour la courbe V: on
verra en effet (chap. 9, sect. 3.2) que ce théorème est équivalent au résultat
suivant: tous les zéros de la fonction Ç (F; s) ont une partie réelle égale à 1/2.

Le langage géométrique utilisé dans ce chapitre (et dans le suivant) est

essentiellement celui des Foundations de Weil, c'est-à-dire le langage
« classique » (à une différence près : si F est un ensemble algébrique défini

sur k, on identifie V à l'ensemble de ses points algébriques sur k] il en résulte
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notamment que si F est une variété de dimension ^ 1 et si x est un point

générique de F, x n'est pas considéré comme un élément de F: autrement dit,

on n'a pas le droit d'écrire x e F). Pratiquement, pour la terminologie et les

résultats de géométrie algébrique dont on aura effectivement besoin, le

lecteur pourra se reporter au livre de Lang [12] ou à celui de Samuel [15].

Dans ce chapitre, k désigne (comme toujours) un corps fini à q pf
éléments, et k une clôture algébrique de k. An et P„ désignent respectivement

l'espace affine et l'espace projectif de dimension n sur k. Enfin, si F est un
ensemble algébrique défini sur k, / 'ensemble des points de V rationnels sur k
est désormais noté Vk.

§ 1. Courbes de genre 0 (*).

1.1. Théorème 1. — Si V est une courbe projective non singulière de

genre 0 définie sur k, elle est birégulièrement équivalente (sur k) à la droite

projective définie sur k.

Démonstration. — D'après un théorème classique de Poincaré (voir
[18], pp. 71-72), F, de genre 0, est birégulièrement équivalente sur k soit à

une droite, soit à une conique (ceci, sans hypothèse sur k; ce théorème de

Poincaré peut d'ailleurs se déduire facilement du théorème de Riemann-
Roch: voir par exemple [2], chap. XVI, th. 6). On peut donc se borner à

démontrer le théorème 1 lorsque F est une conique définie dans le plan
projectif P2 par une équation homogène et de degré 2, F (X0, Xu X2)

0, à coefficients dans k: le théorème de Chevalley (chap. 3, th. 1, cor. 1)

montre alors que cette équation admet une solution (a0, al9 a2) non triviale
dans k3, donc que F admet un point a rationnel sur k. Soit maintenant A

une droite projective du plan P2, définie sur k et ne passant pas par a
(si par exemple a0 #= 0, on peut prendre pour A la droite d'équation X0

0); pour tout point y de A, notons (p (y) le second point d'intersection de

F et de la droite joignant a à y; alors l'application y (-> <p (y) est évidemment
une équivalence birégulière A -> F définie sur k, et le théorème 1 est
démontré.

1.2. Corollaire 1. — Si N désigne le nombre de points de V rationnels
sur k, on a exactement N q + 1.

*) Pour un résumé rapide et élémentaire des propriétés des courbes algébriques
(genre, théorème de Riemann-Roch), voir Samuel (1967).
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Démonstration. — Le théorème 1 permet de se limiter au cas où F A

(la droite projective); mais l'ensemble Ak des points de A rationnels sur k
comporte évidemment q éléments « à distance finie » (correspondant bijec-
tivement aux éléments de k), plus un élément « à l'infini » — soit au total
q + 1 éléments, C.Q.F.D.

§ 2. Courbes de genre 1.

Pour la géométrie des courbes de genre 1, voir [4], notamment pp. 209-

233.

2.1. Théorème 2 (théorème de Schmidt). — Si V est une courbe

projective non singulière de genre 1 définie sur k, F admet au moins un point
rationnel sur k.

Démonstration. — D'après un théorème de Châtelet (voir par exemple

[4], pp. 230-233), il existe une courbe projective non singulière G (la jaco-
bienne de F), définie sur k, ayant un point o rationnel sur k, et biréguliè-
rement équivalente à F sur k (ce qui permet d'identifier k (G) à k (V)).
G est évidemment de genre 1, comme F, et on peut la munir d'une loi de

groupe rationnelle, définie sur k, notée additivement, ayant o pour élément

neutre, et faisant de G une variété abélienne de dimension 1 sur k ([4],

pp. 210-211). De plus, l'identification k (G) — k(V) permet de munir F
d'une structure d'espace homogène principal sur G ([4], pp. 226-227),
c'est-à-dire de construire deux applications rationnelles jâ: V x G -> V,

et v: F x F-> G, définies sur k, et possédant les propriétés suivantes:

(i) quel que soit x e F, on a [i (x, o) o ;

(ii) quels que soient x e F et a, b e G, on a ^ (p (x, a), b) p (x, a + b);

(iii) quels que soient x, y e F, il existe un a e G et un seul tel que n (x, a)

y, et a est égal à u (y, x).

Concrètement, G opère sur F par translations : \i (x, a) est le transformé de

x par la translation a, et v (y, x) est la translation qui transforme x en

y; ainsi, il n'y a aucun risque de confusion à écrire x + a au lieu de ji (x, a)

et y — x au lieu de v (y, x); on adoptera cette écriture dans le reste de la

démonstration.
Convenons d'autre part, pour tout point x (x0, xu d'un espace

projectif de dimension quelconque sur k, de noter x(q) le point (x0q, xxq,

Il est clair que x est rationnel sur k si et seulement si x(g) x (chap. 1,

prop. 2 ou prop. 8). Il est clair également que si U est un ensemble algébrique
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défini sur k et si x g U9 alors x{q) e U (représenter U par un système d'équations

à coefficients dans k, et remarquer que l'élévation à la puissance

#-ième est un automorphisme de k qui laisse invariante lesdits coefficients).

Appliquons ceci à F et G. Soit x un élément quelconque de F, et posons
a x — x(<z). Considérons d'autre part l'application rationnelle z (-» z(q)

— z de G dans G; elle n'est certainement pas constante (sinon, on aurait
z(q) _ 2 o(<z) — 0 0, soit z(^ z, pour tout z e G; tout point de G

serait rationnel sur k, et G serait de dimension 0: absurde); comme G est

irréductible, projective (donc complète), non singulière et de dimension 1,

cette application est surjective. En particulier, il existe b e G tel que a
b(9) — b, donc, en revenant à la définition de a, tel que x + b xiq)

+ b(<z) (x + b)(g) (cette dernière égalité parce que l'application rationnelle

fi: V x G V, qui à (x, b) associe x -h b, est définie sur k); mais alors

x + b est un point de F rationnel sur k, C.Q.F.D.

2.2. Corollaire 1 (théorème de Hasse). — Si N désigne le nombre de

points de V rationnels sur k, on a l'inégalité

(2.2.1) \q + 1 - N\ <2q1/2

Démonstration. — Soit o un point de F rationnel sur k (th. 2), et munissons

F de sa structure de variété abélienne définie sur k et ayant o pour
élément neutre. Soit M l'anneau des endomorphismes de F, et, pour tout
A g M, soit deg (A) le degré de l'application rationnelle A ([4], pp. 215-216).
Soit enfin F l'endomorphisme x f-» x(<z) de F. Alors F — 1 (c'est-à-dire
l'endomorphisme x K xiq) — x de F) est un élément non nul de M
(raisonner comme dans la sect. 2.1), donc une isogénie de F ([4], pp. 215-216)
dont le noyau est exactement l'ensemble des points de F rationnels sur k
(voir sect. 2.1). On peut démontrer que cette isogénie est non ramifiée
([4], p. 217), donc que l'ordre du noyau de F — 1 est égal au degré de
F — 1 ; ainsi,

(2.2.2) N deg (F — 1)

On peut démontrer également que M est un Z-module libre de rang fini,
sans diviseurs de zéro, et qu'il est muni d'un anti-automorphisme A 1—> A'
tel que AAr deg (A) pour tout A g M (voir par exemple Deuring (1941));
il en résulte notamment que, quel que soit m g Z, on a

(2.2.3) deg(F — m.l) (F — m.l) (F — m.iy m2 — tm + q

avec t F + Fr g Z, et q FFr deg (F) (puisque F(x) x(q)). Etant
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donné sa définition, le polynôme m2 — tm + q est toujours positif, d'où
t2 — Aq < 0, ou encore

(2.2.4) 1t1 < 2q1'2

Mais faisons m 1 dans (2.2.3) et utilisons (2.2.2); il vient

(2.2.5) t q + 1 - N,
et il suffit de porter (2.2.5) dans (2.2.4) pour obtenir l'inégalité (2.2.1).

2.3. La démonstration esquissée ci-dessus est essentiellement la démonstration

originale de Hasse (voir Hasse (1933, 1934, 1936)). Manin en a donné

une version « élémentaire » dont voici le principe (Manin (1956); pour les

détails des calculs, voir [6], chap. 10, pp. 197-206). On suppose pour
simplifier p 2, 3 (mais cette restriction n'est pas essentielle). Comme V admet

un point rationnel sur k, on peut supposer V écrite sous forme normale de

Weierstrass

(2.3.1) Y2 X3 - aX - b,

a, bek, 4a3 — 21b2 ^ 0. Soit alors £ un élément transcendant sur L,
et soit W la courbe définie sur K — k (Ç) et ayant pour équation

X3 - aX -b
<2-3-2) 7 Ï3 7 IT'<T - aÇ - b

C'est une courbe de genre 1, dont on connaît (au moins) deux points
rationnels sur K: a0 (Çq, (avec r\ £3 — aÇ — b) et b (£, 1).

Munissons W de sa structure de variété abélienne définie sur K, ayant le

point à l'infini o pour élément neutre, et pour laquelle trois points ont une

somme nulle si, et seulement si, ils sont alignés ([4], pp. 211-214); pour tout
me Z, posons am a0 — m.b, puis définissons un entier dm de la façon
suivante: si am o, posons dm — 0; si au contraire am # o, donc si le point
am est « à distance finie », de coordonnées affines xm, ym9 avec xm Pm(Ç)/
Qm (£) et Pm9 Qm premiers entre eux, posons dm deg (Pm). On peut alors
démontrer (à l'aide des formules d'addition sur une cubique de Weierstrass :

voir [4], p. 214) les deux relations suivantes:

d-i — dQ N — q ; dm_ 1 + dm + 1 2dm + 2 ;

ces deux formules permettent de calculer dm:

(2.3.3) dm m2 — (q + 1 —N) m + q;
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comme par définition dm 0, le polynôme en m figurant au second membre

de (2.3.3) est positif; d'où

(q + 1 — TV)2 < 4q

ce qui implique bien l'inégalité (2.2.1).

La parenté entre ces deux démonstrations tient au fait que dm deg (F
—m. 1).

2.4. On a vu au chapitre 6 (sect. 3.3, (1) et 3.5) que la courbe affine
Y2 1 — X3 (qui est de genre 1 pour p ^ 2, 3) a un nombre de points
rationnels sur k égal à q si q — 1 (mod 6) et à # + a + ä (avec

a n((p, x)) si # 1 (mod 6). Si on remarque que cette courbe, considérée

maintenant comme projective, admet un point à l'infini rationnel sur k, on
voit que le nombre total TV de ses points rationnels sur k satisfait à | q + 1

— TV | 0 dans le premier cas, et à | # + 1 — TV | < | a | + | ä | 2#1/2

dans le second cas (voir chap. 5, prop. 9, cor. 1) : le théorème de Hasse se

trouve ainsi vérifié directement pour cette courbe.

Raisonnement analogue pour la courbe Y2 X — X3, qui admet un

point à l'infini rationnel sur k, et pour la courbe Y3 1 — X3, qui admet

un ou trois points à l'infini rationnels sur k selon que q est congru à — 1

ou à 1 (mod 3) (on suppose naturellement p ^ 3).

Considérons enfin la courbe affine Y2 — 1 — X4 (qui est de genre 1 pour
p 2) et dont le nombre de points rationnels sur k est égal à q + 1 si

q — 1 (mod 4) et à# — 1 + a + â (avec a n (cp, x): chap. 6, sect. 3.3,

(2), et 3.5) si q 1 (mod 4). Dans le premier cas, cette courbe, envisagée
maintenant comme projective, admet à l'infini un point double rationnel
sur k, mais ce point est « isolé » (par désingularisation, il donnerait deux

points conjugués sur k, mais non rationnels sur k) : ce point ne doit donc pas
être pris en considération; on a donc ici TV q + 1, ou | q + 1 — TV | =0.
Dans le second cas, la courbe admet encore un point double à l'infini,
rationnel sur k, mais « non isolé » (par désingularisation, il donnerait deux
points rationnels sur k) : ce point doit donc être compté deux fois, d'où
maintenant TV=<7+l + a+â, donc, comme précédemment, | q + 1 — TV |

< 2q1/2: le théorème de Hasse se trouve également vérifié directement pour
cette courbe *).

*) En fait, on a raisonné ici, non sur la courbe Y2 1 - X4, mais sur sa normalisée
(voir d'ailleurs chap. 9, sect. 5.2, (2) et (4)).
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§ 3. Courbes de genre quelconque.

3.1. L'égalité N q + 1, pour une courbe de genre 0, et l'inégalité
| q + 1 — N | < 2q1/2, pour une courbe de genre 1 (th. 1, cor. 1, et th. 2,

cor. 1), sont des cas particuliers du résultat suivant, dû à Weil (1940, 1948):

Théorème 3 (« hypothèse de Riemann » pour F). — Si V est une courbe

projective non singulière de genre g définie sur k, et si N désigne le nombre de

points de V rationnels sur k, on a

(3.1.1) \q + 1 -N\ <2gq112.

Démonstration. — Soit W V x V la surface produit de F par elle-

même, c'est-à-dire le lieu sur k du point (x, y), où x et y sont deux points
génériques de F, indépendants sur k (voir [20], p. 29, ou Samuel (1967),
§ I et II). On appelle correspondance sur F ([20], p. 29) tout diviseur sur F,
donc tout cycle de dimension 1 sur F; si X est une correspondance sur F,

on appelle symétrique de X et on note X' la correspondance image de X
par la symétrie (x, y) b» (y, x) de W; si X et Y sont deux correspondances
sur F, on appelle somme de X et Y et on note X + Y leur somme en tant que
diviseurs sur F; on appelle produit (de composition: rien à voir avec le produit

d'intersection) de X et Y et on note X o Lia correspondance déduite de

X et Y par l'opération de composition des graphes dans le produit F x F
(pour une définition précise, voir [20], pp. 35-38); enfin, on écrit X Y
s'il existe deux diviseurs rrt et n sur la courbe V et une fonction rationnelle/
sur la surface W tels que

X - Y mxF) + (F x n) + (/),

(/) désignant le diviseur de la fonction /. On peut alors montrer ([20],

pp. 38-41) que la relation est une relation d'équivalence dans l'ensemble
des correspondances sur F, et qu'elle est compatible avec les opérations
somme et produit introduites ci-dessus: l'ensemble quotient par de

l'ensemble des correspondances sur F se trouve ainsi muni d'une structure
d'anneau; on le note A (F), et on l'appelle anneau des correspondances de F;
si £, r\ e A (F) sont les images de correspondances X et Y sur F, leur somme
Ç + rj et leur produit Çr\ sont par définition les images dans A (F) de X
+ Y et de X o Y; noter que la symétrie IbT est évidemment compatible
avec la relation ; elle définit donc par passage au quotient une involution
Ç K de A (F) qui est en fait un anti-automorphisme de A (F): si £,

r/eA(V), on a (Ç + rj)' + rj' et (Çrj)' rj't;'; noter aussi que si A
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désigne la diagonale de W, c'est-à-dire le lieu sur k du point (x, x), alors A

est birégulièrement équivalente à F sur k, et Ô, classe de la correspondance A

sur V', est l'élément neutre de A (V) pour la multiplication.
Pour toute correspondance X sur V, notons maintenant dx (X) et

d2 (X) les degrés des cycles prx (X) et pr2 (X), projections de X sur le

premier et sur le second facteur de W V x F; notons d'autre part i (X • A)

le nombre d'intersection de X et A sur W (qui est défini même si A est une

composante de X: voir par exemple Samuel (1967), p. 307), et posons

(3.1.2) S(X) d±(X) + d2(X) - i(XA)

S (X) est un entier rationnel, qui ne dépend que de la classe de la

correspondance X; si alors £ g A (V), et si X désigne n'importe quelle correspondance

d'image £ dans A (F), on peut définir un entier rationnel a (£), ne

dépendant que de £, par l'égalité a (£) S (X); g (£) est dit trace de Ç;

et on peut montrer ([20], pp. 41-54) que la trace possède les propriétés
suivantes :

Lemme 1. — Quels que soient Ç,rj e A (V), on a g (£ + rj) cr (£) + a (rj),

o(Çrj) (T(rjO, et o (£') <r (Ç).

Lemme 2. — S désignant toujours la classe de A, on a o (S) — 2g.

Lemme 3. — Quel que soit Ç # 0 dans A (F), on a a (££') > 0.

Le lemme 1 est immédiat; le lemme 2 résulte du fait que dx (A) d2 (A)

— 1, de la formule classique z (A - A) 2 — 2g (Samuel (1967), p. 307, (2)),
et de la définition (3.1.2) de o (<5) S (A). Le lemme 3 est la « clef de voûte »

de la démonstration: c'est de l'inégalité a (££') >0 convenablement appliquée

que va résulter l'inégalité (3.1.1). Soit en effet r le lieu sur k du point
z (x, x(q)) (la notation x(q) a été définie dans la sect. 2.1); F est une
correspondance sur F (« correspondance de Frobenius »), et sa symétrique

r' est le lieu sur k du point z' (xiq\ x); on a évidemment [k (x): k (x)]
1 et [k (x): k (x(4))] q, donc d± (F) 1 et d2 (F) q; on peut d'autre

part montrer que chacun des points du cycle intersection F • A a pour
multiplicité 1: comme les composantes de ce cycle sont exactement les

points (a, a) de Fx F avec a a(9), c'est-à-dire avec a rationnel sur k,
on voit que i (F • A) N; si alors y désigne la classe de la correspondance
F, la formule de définition (3.1.2) permet d'écrire

(3.1.3) g (y) q + 1 - iV

L'Enseignement mathém., t. XIX, fasc. 1-2. a
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On peut démontrer par ailleurs que yy' — qô; soit maintenant m un
entier rationnel et posons | y — mô; on a £' y' — mô, et

££' m2ô - m (y + y') + yy' ;

prenons les traces des deux membres, tenons compte de la valeur de yy' et
utilisons les lemmes 1 et 2; il vient:

<r(ÇÇ') 2gmz - cr(y + y') m + 2## ;

mais <7(y+y') 2<r(y) 2(q+\ — N) (lemme 1 et formule (3.1.3));
ainsi :

o (££') Igm1 - 2 (q + 1 -N) m + 2gq ;

le lemme 3 montre que le polynôme en m figurant dans le membre de droite
de cette dernière égalité est positif ; on a donc

(<2 + 1-IV)2 - 4g2q < 0

ce qui implique l'inégalité (3.1.1) et prouve le théorème 3.

3.2. On peut également démontrer le théorème 3 à l'aide de la théorie
des variétés abéliennes (structure de l'anneau des endomorphismes,
propriétés du polynôme caractéristique d'un endomorphisme, etc.; voir par
exemple [20], § VII à XI, ou [9], chap. 5) appliquée à la jacobienne de la
courbe V. Pour g — 1, cette seconde démonstration coïncide avec la démonstration

du « théorème de Hasse » donnée dans la section 2.2 (dans ce cas

en effet, F, admettant un point rationnel sur k par le théorème de Schmidt,
s'identifie à sa propre jacobienne); dans le cas général (g quelconque), cette
seconde démonstration n'est pas essentiellement différente de celle esquissée
dans la section 3.1, du fait que l'anneau des correspondances sur V est

isomorphe à l'anneau des endomorphismes de la jacobienne de V ([20],

pp. 161-163, th. 22 et cor. 2).

3.3. Revenons à l'inégalité (3.1.1). Considérons à titre d'exemple la
courbe plane X4 + Y4 1, et supposons q 1 (mod 4). Si i// est un caractère

d'ordre 4 de k*, la proposition 3 du chapitre 6 montre que le nombre de

points « à distance finie » sur cette courbe est égal à q + £ n x//32) ;

la somme comprend neuf termes, dont trois sont des sommes de Jacobi
triviales (pour j\ + j2 — 4) et valent — 1 (chap. 5, prop. 9, (i)), les six

autres (notons-les al9 oc6) étant des sommes de Jacobi non triviales,
de module qi/2: le nombre de points «à distance finie» est donc



— 83 —

q -3 + «! + + a6. Maintenant, la courbe étudiée, considérée comme

projective, est non-singulière, de genre g (4—1) (4—2)/2 3, par la

formule de Pliicker, et elle admet quatre points à l'infini; ainsi,

N q— 3 + 4 + + + a6, et on a

| q +1 - IV | < | at | + + | a6 | 6

ce qui vérifie directement le théorème 3 dans ce cas particulier.
La même vérification est possible plus généralement, grâce à la proposition

3 du chapitre 6, pour la courbe Xdl + Yd2 1, avec q — 1 divisible

par d1 et d2 : on laisse au lecteur le soin de faire les calculs, et notamment de

montrer que le genre est égal à ((^ — 1) (d2 — 1) — {d—1))/2, avec d

(du d2).

3.4. Le théorème 3 admet deux conséquences importantes:

Corollaire 1. — Soit Nm le nombre de points de V rationnels sur km

Fçm. Alors, quand m tend vers l'infini, Nm tend lui-meme vers l'infini ; en

particulier, pour tout m assez grand, Nm > 1.

Démonstration. — En effet, le théorème 3 appliqué au corps de base km

donne Nm > qm -f 1 — 2gqm!2, et le membre de droite tend vers l'infini
avec m.

Corollaire 2. — La courbe V possède un diviseur de degré 1 rationnel
sur k.

\

Démonstration. — Le corollaire 1 montre qu'on peut trouver deux entiers
successifs m et m + 1 tels que V admette un point rationnel sur km et un
point rationnel sur fcm+ x ; V admet donc un diviseur de degré m et un diviseur

de degré m + 1 rationnels sur k, et il suffit de retrancher le premier du
second pour obtenir un diviseur de degré (m+ 1) — m 1 rationnel sur k.

Pour g > 2, V ne possède généralement pas de point rationnel sur k: le
diviseur de degré 1 dont l'existence est affirmée par le corollaire 2 ne peut
donc généralement pas (sauf pour g 0 ou 1: th. 1, cor. 1, et th. 2) être
supposé positif.

§ 4. Variétés de dimension quelconque.

4.1. Soit V une variété projective définie sur k, de dimension r, et
supposée plongée dans P„, espace projectif de dimension n sur k\ rappelons
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qu'on appelle degré de V le nombre de points d'intersection de V avec une
sous-variété linéaire de P„ de dimension n — r « en position générique »

(voir [15], chap. I, § 8.4); une variété projective plongée dans P„, de degré d
et de dimension r sera dite « de type (n, d, r) ».

Cela étant, on a le théorème suivant, dû à Lang et Weil (1954) (voir
aussi Nisnevich (1954): Nisnevich se limite au cas où le corps de base k est
le corps premier Fp):

Théorème 4. — Si V est une variété projective de type {n, d, r) définie

sur k, et si N Nv désigne le nombre de points de V rationnels sur k, on a

(4.1.1) \N - qr | <B(d)4r"(1/2) + Ain, d,r)qr~1

A{n,d,r) désignant une constante qui ne dépend que de n, d et r, et B(d)
désignant une constante qui ne dépend que de d (et qu *on peut prendre égale à

(d-l)(d-2)).

Démonstration. — On raisonne par double récurrence, d'abord sur n,

puis sur r. Si n 0, on a N < d, et le théorème est évident; supposons donc

n > 1 : si V est contenue dans un hyperplan de P„ défini sur k, V peut être

considérée comme de type {n— 1, d, r), et l'hypothèse de récurrence sur n

permet d'écrire | N — qr | < B (d) #r_(1/2) + A (n— 1, d, r) qr~1 : le théorème

est également établi. Ainsi, on peut désormais supposer n fixé (> 1),

faire l'hypothèse suivante:

(H) V n 'est contenue dans aucun hyperplan de Fn défini sur k,

et raisonner par récurrence sur r. Pour r 0, on a N < d, et le théorème

est évident. Supposons maintenant r — 1 ; V est alors une courbe projective,
éventuellement singulière: soit V± une courbe projective non singulière définie

sur k et birationnellement équivalente à V sur k (via une équivalence biration-
nelle <p:V1-+ V), et soit N± le nombre de points de V1 rationnels sur k;
le théorème 3 montre que | q + 1 — N1 | <2gqlf2, g désignant le genre
de Vl9 donc de V; mais le genre de V et le nombre de points singuliers de V
sont tous deux majorés par {d— 1) (d— 2)/2 (projeter V sur un plan, ce qui ne

modifie ni g, ni d, et ne peut qu'augmenter le nombre de points singuliers ;

puis appliquer la formule de Plücker à cette projection); d'autre part, la

correspondance birationnelle cp: Vx -» V est bijective en dehors des points
singuliers de V (et fait correspondre, à des points rationnels sur k, des points
rationnels sur k, puisqu'elle est définie sur k), et elle associe, à chaque point
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singulier de F, au plus d points de V1 ; ainsi, | N — Nx | < d {d— 1) (d— 2)/

2, et finalement | N - q \ <B(d) q1'2 + A(n, d, 1), avec B(d) 2g

<(J-l)(d-2) et A(n,d,l) d(d-l)(d-2)/2 + l: le théorème est

établi pour les variétés de type (n, d, l).
Supposons alors r > 2, et le théorème démontré jusqu'à la dimension

r — 1. Soit P^ un second exemplaire de l'espace projectif P„ sur k; à tout
point w (w0,w„) de P^, associons l'hyperplan Hw de PM d'équation
w0X0 + + wnXn 0; les hyperplans Hw définis sur k correspondent

bijectivement aux points w de P^ rationnels sur k, et il y en a exactement

Qn (qn+1-l)/(q~l) =qn + ...+q + 1.

Calculons de deux manières différentes le nombre C des couples (x, i/w),
où x est un point de V rationnel sur k, et où w est un point de P^ rationnel sur
k et tel que x appartienne à Hw:
(1) Vk contient par définition N points, et par chacun d'eux passent

Qn-1 hyperplans définis sur k: d'où C NQn^1;
(2) pour chaque hyperplan Hw défini sur k, le cycle intersection V • 7/w

(voir [15], chap. II, § 6.1) est, en un sens évident, de type {n, d, r — 1), en

vertu de l'hypothèse (H) ; notons 7VW le nombre de points de V • Hw (c'est-
à-dire de F n Hw) rationnels sur k\ on a alors évidemment C iVw, w

w

parcourant l'ensemble des Qn points de P^ rationnels sur k.
Le rapprochement des résultats de ces deux calculs donne NQn_l £ Nw,

w

ou encore

(4.1.2) N Q-_\£1VW + X Nw,
weI we R

I (resp. R) désignant l'ensemble des points weP^ rationnels sur k et tels

que le cycle F • Hw soit (resp. ne soit pas) une variété. On posera Nr
card (/) et NR card (R); il est clair que Nj + NR Qn.

On a alors ces deux lemmes :

Lemme 1. — Il existe une constante A1{n,d,r) ne dépendant que de n, d
et r et ayant la propriété suivante : quel que soit Z, cycle positif de type
(;n, d, r) rationnel sur k, on a

(4.1.3) Nz < A1 (n, d, r) qr,

Nz désignant le nombre de points de Z rationnels sur k (un point de Z est un
point de la réunion des composantes de Z).
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Lemme 2. — Il existe une constante A2(n,d,r) ne dépendant que de n, d
et r et possédant la propriété suivante : quelle que soit V, variété de type
(«, d, r) définie sur k et vérifiant (H), le nombre NR défini ci-dessus satisfait à

(4.1.4) NR<A2(n,d,r)qn~1

Le lemme 1 est élémentaire; il se démontre par récurrence sur r, en

coupant Z par les éléments rationnels sur k d'un faisceau d'hyperplans
convenablement choisi dans P„. Le lemme 2 est plus technique; on le déduit
du lemme 1 en construisant, grâce à la théorie de la forme de Chow (à ce

sujet, voir par exemple [15], chap. I, § 9.4), un ensemble algébrique E défini
sur k, de type (w, e, n — 1), plongé dans P^, dont le degré e ~ e(n, d, r)
ne dépend que de n, d et r, et qui contient l'ensemble R ; comme les points de

R sont tous rationnels sur k, on a donc NR < Ne < A1 (n, e, n — 1) qn

et la constante du lemme 2 est donnée par

A2 (n, d, r) At (n, e (n, d,r) ,n — 1)

(L'ensemble algébrique E dépend de V; pour une démonstration détaillée
de ces deux lemmes, voir Lang-Weil (1954), pp. 820-821).

Achevons alors la démonstration du théorème 4. Dans le membre de

droite de (4.1.2), chaque terme iVw de la première somme est le nombre de

points rationnels sur k de F* //w, qui est une variété de type («, d,r— 1)

définie sur L, puisque we/; par hypothèse de récurrence (sur r), on a donc

\NW - qr'1| <B(d)qr~(3,2) +

D'autre part, le nombre de termes de cette première somme est Qn — NR;
les valeurs de {?„_ 1 et Qn sont connues, et celle de NR est majorée par
A2(n, d9r) (lemme 2); un calcul facile montre alors que

(4.1.5) lôn-1 E N* -4r--B(d)<f~(1/2)| <A3(n,d
we/

A3 (n, d, r) étant une constante qui ne dépend que de n, d et r. Considérons

maintenant la seconde somme figurant dans le membre de droite de (4.1.2);
chacun des termes Aw qui y apparaissent est le nombre de points rationnels

sur k d'un cycle, V • i/w, positif, rationnel sur k, et de type («, d,r — 1);

le lemme 1 donne donc Aw < A1 (;n, J, r - 1) #r-1; comme cette seconde

somme comporte NR termes, le lemme 2 montre qu'elle est majorée par
A4 («, dy r) qn+r~2, avec v44 (/?, d,r) A1 (n, d, r - 1) (;n, d, r) une

constante qui ne dépend que de n, </et r. Mais ôn_! qn~x + + q + 1 ;

ainsi, Qnl\ <#1-n, et on arrive à la majoration
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(4.1.6) I Qn-\£ Nv\<A4(n,d,rL
we R

Il suffit alors de porter les inégalités (4.1.5) et (4.1.6) dans la formule (4.1.2)

et de poser A {n, d, r) A3 (n, d, r) + A4 {n, d, r) pour obtenir l'inégalité

(4.1.1). Le théorème 4 se trouve ainsi établi.

4.2. Le théorème 4 admet la conséquence suivante, qui généralise le

corollaire 1 du théorème 3, et se démontre de la même manière:

Corollaire 1. — Soit Nm le nombre de points de V rationnels sur km

F^m. Alors, quand m tend vers l'infini, Nm tend lui-même vers l'infini ; en

particulier, pour tout m assez grand, Nm > 1.

La propriété « Am > 1 pour tout m assez grand », c'est-à-dire « V admet

un point rationnel sur toute extension algébrique de k de degré assez grand »,

est évidemment fausse en général sur un corps de base quelconque. Ainsi,
l'hyperquadrique projective X02 + + Xn2 0, définie sur le corps Q,
n'admet de point rationnel sur aucune extension de Q de degré impair m,
si grand que soit m; en effet, Q est un corps formellement réel ([10], chap. XI,
§2); si KjQ est de degré impair, K est alors lui-même formellement réel

{ibid., prop. 2, (ii)), et une égalité x02 + + xn2 avec x0, xn eK n'est

possible que si x0 xn 0. Un argument de ramification montrerait
de même que la variété X0n+1 -f pX1n+1 -f + pnXnn+1 0, définie sur
le corps Qp des nombres rationnels /?-adiques, n'admet de point rationnel sur
aucune extension de Qp de degré m non divisible par n + 1, si grand que soit m.

Cette propriété « Nm > 1 pour tout m assez grand » est également fausse

en général, même sur un corps de base fini, si on ne suppose pas V absolument
irréductible. Ainsi, considérons le polynôme P défini par (4.1.1) (chap. 4, § 4),
et supposons n >2; l'équation P (X0, Xn_ fi 0 définit alors une
k-wariété projective V(de type (n— 1, n, n — 2)), mais cette k-variété n'est pas
absolument irréductible, donc n'est pas une variété (elle se décompose en n

hyperplans définis sur K kn et conjugués sur k); et il est facile de vérifier
que si m est premier avec n, le nombre Nm de points de V rationnels sur km

est nul, si grand que soit m (noter que si (m, n) 1, km et kn sont linéairement

disjoints sur k (chap. 1, prop. 4, cor. 2); œu con est alors une base
de kmn sur k„v et on peut raisonner comme au chapitre 4, section 4.1, en
remplaçant k par km et K kn par kmn).

4.3. Remarquons enfin que le théorème 4 reste vrai pour des variétés
affines, moyennant une modification de la constante A {n. d, r). Soit en effet
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V cz An une variété affine de type (n, d, r) ; plongeons An dans Pn de manière

que l'hyperplan « à l'infini » H0 ait pour équation (par exemple) X0 0 ;

adjoignons alors à V ses points « à l'infini » de la façon habituelle, et notons
Wla variété projective ainsi obtenue; elle est de type (n, d,r), et on a, avec
des notations évidentes, Nv Nw — Nw.Hq; il suffit dans ces conditions
d'appliquer le théorème 4 à et le lemme 1 à Nw.h0 pour obtenir

(4.3.1) | Nv - qr | <B(d)qr~(1/1) + A' (n, d, r) q1"1

avec A' (n, d,r) — X («, d, r) + ^ («, d, r) une constante qui ne dépend

que de n, d et r.

Notes sur le chapitre 8

§2: le théorème 2 est dû à Schmidt (1931) (méthode analytique); ce

théorème est un aspect d'un résultat général relatif aux espaces homogènes

principaux sur un corps de base fini (Lang (1956); voir aussi Serre, Groupes

algébriques et corps de classes, p. 119 (Hermann, 1959)). L'application
x f-> x(^} utilisée dans la démonstration du théorème 2 est souvent dite
« endomorphisme de Frobenius » (voir d'ailleurs chap. 1, prop. 8); le fait
que les points fixes de cet endomorphisme sont exactement les points
rationnels sur k Fq est un trait caractéristique de la « géométrie diophan-
tienne » sur un corps fini.

Un certain de nombre de cas particuliers du théorème de Hasse avaient

déjà été remarqués au cours du XIXe siècle ; citons notamment la « dernière

inscription du journal de Gauss » (« letzte Eintragung im Gauss'schen

Tagebuch», reproduite dans Deuring (1941), pp. 197-198), relative au
nombre de solutions de la congruence X2 Y2 + X2 + Y2 — 1 =0 (mod p),

pour p 1 (mod 4) (à ce sujet, voir également [5], p. 307, et [4], p. 242,

note 3). Pour la démonstration originale du théorème de Hasse, voir Hasse

(1933, 1934, 1936).

Les courbes (projectives, non singulières) de genre 1 sur un corps fini k
ne sont autres (d'après le théorème de Schmidt) que les variétés abéliennes de

dimension 1 définies sur k ; les variétés abéliennes de dimension quelconque
définies sur un corps fini ont été étudiées notamment par Honda, Milne,
Serre, Tate, Waterhouse: pour une bibliographie sur ce sujet, voir Water-
house (1969).

§ 3: le théorème 3, annoncé par Weil en 1940, est démontré dans Weil
(1948) [20], lère partie) par voie «géométrique»: c'est cette démonstration

qu'on a résumée ici ; pour des démonstrations « arithmétiques »,
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voir Igusa (1949) et Roquette (1953) (voir aussi [5], chap. V, §§ 1-5); dans

tous les cas, le point essentiel est l'inégalité cr(ÇÇ') > 0 (inégalité (23),

p. 292, dans [5], par exemple); pour un commentaire sur cette inégalité

(dite « de Castelnuovo »), voir Weil (1954), p. 553. Pour une application

aux « sommes exponentielles », voir Weil (1948, b).

§ 4: la constante A1 (n, d, r) (lemme 1) peut être prise égale à (2d)r (en

fait, elle ne dépend donc pas de n)\ en revanche, la constante A2(n9 d, r)
(lemme 2) et par conséquent la constante A (n, d, r (th. 4) dépendent de n ;

on ne sait d'ailleurs pas en général les majorer explicitement, faute de

renseignements précis sur le degré e (;n, d, r) de l'ensemble algébrique E.

Pour d'autres remarques sur les résultats ci-dessus, voir également le

chapitre 9.

Chapitre 9

FONCTIONS ZÊTA

Dans ce dernier chapitre, on se donne comme toujours un corps fini k
à q pf éléments, de clôture algébrique k; pour tout entier m > 1, km

désigne l'unique extension de degré m de k contenue dans k (chap. 1, § 1).

A tout ensemble algébrique V défini sur fc, on peut alors associer la série

formelle Z (V; t) exp £ où Nm désigne le nombre de points

de V rationnels sur km, et où t est une indéterminée. Il se trouve que cette
série formelle est en fait une fraction rationnelle en t, et que, moyennant
des hypothèses convenables sur F, cette fraction rationnelle peut être décrite

avec précision. Le paragraphe 1 de ce chapitre énonce diverses définitions
équivalentes de Z (F; t), et justifie le nom de « fonction zêta de V» qui lui
est attribué. Le paragraphe 2 donne une esquisse de la démonstration de la
rationalité de Z(F; t). Le paragraphe 3 montre comment le théorème de

Riemann-Roch et le théorème 3 du chapitre 8 permettent d'obtenir une
description très complète de Z(F; t) quand F est une courbe projective
non singulière. Le paragraphe 4 indique sans démonstration diverses
généralisations des résultats du paragraphe 3. Enfin, le paragraphe 5 donne des

exemples de calcul explicite de fonctions zêta; ce paragraphe peut d'ailleurs
être lu directement après le paragraphe 2 : on y utilise uniquement les défi-
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