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théorémes 2 et 3 et telle que N soit égal exactement a g”*. Pour la construction
d’une telle famille de polyndmes, et pour la démonstration du théoréme 3,
voir Katz (1971) (respectivement § 4 et § 3); voir également les Notes en fin
de chapitre.

3.3. Pour des équations de forme particuliére, le théoréme 1 peut dans
certains cas étre amélioré. Ainsi, en combinant le théoréme 1 du chapitre 6
avec les « relations de Stickelberger » (prop. 1), on obtient sans difficulté
le résultat suivant:

THEOREME 4. — Soit F = a, X;" + ... + a,X,*™ un polynome diagonal
a coefficients dans le corps premier k = F¥,. Pour i = 1,..,n, posons 0,
= (p—1,d,), et soit b, le plus grand entier strictement inférieur a 1/5,
+ ... + 1/8,. Alors, si aek, et si N désigne le nombre de solutions dans k"
de 1’équation F = a, N est divisible par p™.

Ce résultat reste d’ailleurs vrai sur un corps fini quelconque k 4 ¢ = p”’
¢léments, a condition de supposer que chaque 0; = (¢—1, d;) divise p — 1:
N est alors divisible par ¢*2; cet exposant b, peut encore étre « amélioré »
sia = 0 (voir Joly (1971)). On notera I’analogie entre le théoréme 4 ci-dessus
et le théoréme 3 du chapitre 4.

Notes sur le chapitre 7

§ 1: la démonstration de la proposition 1 donnée ici est due a Hilbert
(« Zahlbericht »); cette proposition est en fait une conséquence d’un résultat
plus précis (« congruences de Stickelberger »):

(D)= —2Pp(j) (mod Pr*Y)

(avec par définition p (j) = jo !ji !...j,—1 1) voir Stickelberger (1890),
Davenport-Hasse (1934), ou [11], chap. IV, § 3. Pour une interprétation
analytique p-adique de ces congruences, voir Dwork (1960).

§ 2-3: dans Ax (1964), le cadre de la démonstration du théoréme 1 est,
non pas le corps de nombres L = Q (w, {), mais le corps Q, (w, §) des
racines p (g—1)-iémes de I'unité dans une cldture algébrique du corps
p-adique Q, (avec les notations du § 1, ce corps Q, (v, {) est d’ailleurs
isomorphe a Loy, completé P-adique de L); a cette différence pres, la
démonstration donnée ici est exactement celle d’Ax; elle est (selon Ax
lui-méme) « suggérée par certaines idées de Dwork [dans sa démonstration
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de la rationalité des fonctions z€ta des variétés algébriques] » (a ce sujet, voir
chap. 9, § 2). La démonstration du théoréme 3 donnée par Katz (1971) utilise
également (et directement) les méthodes analytiques p-adiques de Dwork.

CHAPITRE §

« HYPOTHESE DE RIEMANN »

Soient k£ un corps fini a g éléments, #» un entier > 1, F un polyndme
a n variables et & coefficients dans k, et N le nombre de solutions dans k"
de I’équation F = 0. On a remarqué aux chapitres 4 (sect. 4.2, th. 6, cor. 1)
et 6 (sect. 1.2, th. 1, cor. 1, 2, 3; sect. 2.1, th. 2, cor. 1, 2) que, lorsque F
est multilinéaire ou diagonal (et qu’il satisfait en outre a certaines hypothéses
qui équivalent a supposer qu’il est absolument irréductible), alors N est de
lordre de grandeur de ¢"~ !, I'exposant n — 1 s’interprétant d’ailleurs
comme dimension de 'hypersurface affine F = 0. Le but du présent cha-
pitre est d’étendre ce résultat a n’importe quel ensemble algébrique, affine
ou projectif, absolument irréductible, défini sur k — autrement dit, & n’im-
porte quelle variété définie sur k; si V est une telle variété, et si N désigne
maintenant le nombre de points de V rationnels sur &k, on a en fait (§ 4, th. 4)

N =q" +0(q~ %),

g étant considéré comme « infiniment grand », et la constante impliquée
par le symbole O ne dépendant que de r = dim (V'), du degré de V, et de la
dimension de I’espace affine ou projectif ou V se trouve plongée.

Le théoréme 4 (pour r quelconque) se déduit par récurrence sur r du
cas particulier ou » = 1, et ol V' est donc une courbe: ce cas est examiné en
détail aux paragraphes 1 (courbes de genre 0), 2 (courbes de genre 1) et 3
(courbes de genre quelconque). Le résultat central de ce chapitre est d’ailleurs
le théoréme 3 (§ 3), dit « hypothése de Riemann » pour la courbe V: on
verra en effet (chap. 9, sect. 3.2) que ce théoréme est équivalent au résultat
suivant: tous les zéros de la fonction { (V; s) ont une partie réelle égale a 1/2.

Le langage géométrique utilisé dans ce chapitre (et dans le suivant) est
essentiellement celui des Foundations de Welil, c’est-a-dire le langage
« classique » (& une différence prés: si V est un ensemble algébrique défini
sur k, on identifie V a [’ensemble de ses points algébriques sur k; il en résulte



	Notes sur le chapitre 7

