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théorèmes let 3 et telle que N soit égal exactement à qbl. Pour la construction

d'une telle famille de polynômes, et pour la démonstration du théorème 3,

voir Katz (1971) (respectivement § 4 et § 3); voir également les Notes en fin
de chapitre.

3.3. Pour des équations de forme particulière, le théorème 1 peut dans

certains cas être amélioré. Ainsi, en combinant le théorème 1 du chapitre 6

avec les « relations de Stickelberger » (prop. 1), on obtient sans difficulté
le résultat suivant:

Théorème 4. — Soit F axXfY + + anXndn un polynôme diagonal
à coefficients dans le corps premier k — Fp. Pour i 1, n, posons <5t-

(p—\,di), et soit h2 le plus grand entier strictement inférieur à l/ôl
+ + l/ôn. Alors, si a ek, et si N désigne le nombre de solutions dans kn

de l'équation F a, N est divisible par pb2.

Ce résultat reste d'ailleurs vrai sur un corps fini quelconque k à q pf
éléments, à condition de supposer que chaque ôt (q— 1, dt) divisep — 1 :

N est alors divisible par qb2; cet exposant b2 peut encore être « amélioré »

si a 0 (voir Joly (1971)). On notera l'analogie entre le théorème 4 ci-dessus

et le théorème 3 du chapitre 4.

Notes sur le chapitre 1

§ 1 : la démonstration de la proposition 1 donnée ici est due à Hilbert
(« Zahlbericht »); cette proposition est en fait une conséquence d'un résultat
plus précis (« congruences de Stickelberger ») :

tO") - l"U)!p (j)(modrtf)+I)

(avec par définition p (j)j0\j10; voir Stickelberger (1890),
Davenport-Hasse (1934), ou [11], chap. IV, § 3. Pour une interprétation
analytique p-adique de ces congruences, voir Dwork (1960).

§ 2-3: dans Ax (1964), le cadre de la démonstration du théorème 1 est,
non pas le corps de nombres LQ (co,mais le corps Qp (eu, Ç) des
racines p (q- l)-ièmes de l'unité dans une clôture algébrique du corps
p-adique Q„ (avec les notations du § 1, ce corps Qp (eu, Ç) est d'ailleurs
isomorphe à Lty, complété iß-adique de L); à cette différence près, la
démonstration donnée ici est exactement celle d'Ax; elle est (selon Ax
lui-même) « suggérée par certaines idées de Dwork [dans sa démonstration
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de la rationalité des fonctions zêta des variétés algébriques] » (à ce sujet, voir
chap. 9, § 2). La démonstration du théorème 3 donnée par Katz (1971) utilise
également (et directement) les méthodes analytiques /?-adiques de Dwork.

Chapitre 8

« HYPOTHÈSE DE RIEMANN »

Soient k un corps fini à q éléments, n un entier >1, F un polynôme
à n variables et à coefficients dans k, et N le nombre de solutions dans kn

de l'équation F 0. On a remarqué aux chapitres 4 (sect. 4.2, th. 6, cor. 1)

et 6 (sect. 1.2, th. 1, cor. 1, 2, 3; sect. 2.1, th. 2, cor. 1, 2) que, lorsque F
est multilinéaire ou diagonal (et qu'il satisfait en outre à certaines hypothèses
qui équivalent à supposer qu'il est absolument irréductible), alors N est de

l'ordre de grandeur de qn~*, l'exposant n — 1 s'interprétant d'ailleurs
comme dimension de l'hypersurface affine F 0. Le but du présent
chapitre est d'étendre ce résultat à n'importe quel ensemble algébrique, affine

ou projectif, absolument irréductible, défini sur k — autrement dit, à

n'importe quelle variété définie sur k; si V est une telle variété, et si N désigne
maintenant le nombre de points de V rationnels sur fc, on a en fait (§ 4, th. 4)

N qr + 0(qr~(1/2))

q étant considéré comme « infiniment grand », et la constante impliquée

par le symbole O ne dépendant que de r dim (V), du degré de V, et de la
dimension de l'espace affine ou projectif où V se trouve plongée.

Le théorème 4 (pour r quelconque) se déduit par récurrence sur r du

cas particulier où r 1, et où F est donc une courbe : ce cas est examiné en

détail aux paragraphes 1 (courbes de genre 0), 2 (courbes de genre 1) et 3

(courbes de genre quelconque). Le résultat central de ce chapitre est d'ailleurs
le théorème 3 (§ 3), dit « hypothèse de Riemann » pour la courbe V: on
verra en effet (chap. 9, sect. 3.2) que ce théorème est équivalent au résultat
suivant: tous les zéros de la fonction Ç (F; s) ont une partie réelle égale à 1/2.

Le langage géométrique utilisé dans ce chapitre (et dans le suivant) est

essentiellement celui des Foundations de Weil, c'est-à-dire le langage
« classique » (à une différence près : si F est un ensemble algébrique défini

sur k, on identifie V à l'ensemble de ses points algébriques sur k] il en résulte
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