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Comme £ a (7(u)) ord f] ci(u)) (lemme 2 et première formiile (1.3.1)),
u eU ueU

cette dernière inégalité peut s'écrire, après division par pf 1 + + p + 1,

f(p -1) (s/d)* < ord n O(u)) '
ue U

compte tenu de (1.3.1) et (1.3.4), on a alors

(2.4.2) f(p-l)(n-s+(s/dr) < ord(^"s nO(u))-
u eU

Mais le symbole ord est relatif à n 'importe quel idéal premier ^3 de B divisant

p, et on a (sect. 1.1, (1.1.3)) pB n^p l> donc> Puisclue <1 Pf>

J"] 1}; ainsi, étant donné (2.4.2), il suffit, pour prouver le lemme 3

$1*
(donc le théorème 1), d'établir la propriété suivante:

(2.4.3) Pour tout entier s tel que 0 </7, on a l'inégalité

n — s + (sjd)* > b + 1

Démontrons (2.4.3); il est clair que pour tout entier positif t, on a

t >((j+ 0/d)* — (sjd)*: car, pour t 0, les deux membres sont égaux,
et d'autre part le membre de droite, considéré comme fonction de t, croît
« moins vite » que t; dans cette inégalité, faisons alors t n — s; il vient

n — s + (sjd)* > (n\d)* ;

mais par définition même (;n/d)* b + 1 : ce qui prouve (2.4.3) et achève la
démonstration du théorème 1.

§ 3. Généralisations et compléments,

3.1. Le théorème 1 s'étend sans difficulté au cas d'un système d'équations

:

Théorème 2. — Soit Fu Fs une famille de s polynômes de degrés
respectifs du ds, à n variables et à coefficients dans k ; posons d1 di +
+ ds, et soit b le plus grand entier strictement inférieur à n/d. Si alors N
désigne le nombre de solutions dans kn du système d'équations

(3.1.1) F,0,

N est divisible par qh.

Démonstration. — On se sert du lemme combinatoire suivant:
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Lemme 1. — Soit Vl9 Vs une famille de s ensembles finis. Posons

V fi Vp eU pour toute partie R de S {1,s}, posons UR

— U Vj (pour R 0, UR — 0). On a alors
je R

(3.1.2) card (F) £ (-!)«"*(*>-1 card (UR)
RcS

Ce lemme se prouve facilement par récurrence sur .y. Appliquons-le à la
démonstration du théorème 2: pour tout j e S { 1, s }? soit Fy
l'ensemble des zéros dans kn de l'unique polynôme Fj\ avec les notations du

lemme, F est alors l'ensemble des solutions dans kn du système (3.1.1), on
a N card (F), et (3.1.2) montre qu'il suffit de prouver que, pour chaque

RcS, card (UR) est divisible par qb. Si R 0, UR 0, card (£/Â) 0,

et il n'y a rien à démontrer; sinon, posons FR Y[Fj : UR est alors l'en-
jeR

semble des zéros dans kn du polynôme FR, et si bR est le plus grand entier
strictement inférieur à n/deg (FR), le théorème 1 montre que card (UR) est

divisible par g6*; mais deg (FÄ) £ deg (Fy) < deg (Ffi <7, d'où
je -R je S

njd < "/deg (FÄ) et b < ô#; card (F^), divisible par est divisible a
fortiori par qb, C.Q.F.D.

3.2. Le théorème 1, pour wrce équation, est « le meilleur possible » au

sens suivant: quels que soient n et d, il existe F, degré d, à n variables et
à coefficients dans k, tel que (avec les notations du théorème 1 qb soit la

plus haute puissance de q divisant N. (Prendre par exemple pour F le
polynôme Gn d Xt Xd + Xd+l X2d + + ^(0-1)^+1 ••• %bd "F Xbd+1

Xn; pour ce polynôme, le nombre N peut être déterminé explicitement à

l'aide du théorème 6 du chapitre 4: on laisse au lecteur le soin de faire les

calculs en détail). En revanche, le théorème 2, pour un système de s équations,

peut être amélioré; en fait, on a le résultat suivant, dû à Katz (1971):

Théorème 3. — Mêmes données et notations que dans le théorème 2. Si
ô — sup dj, et si b± désigne le plus grand entier supérieur ou égal à

1 ^j^s
(in — d)/ô, alors N est divisible par qbl.

Ce théorème 3 (qui, pour s 1, coïncide évidemment avec le théorème 1)

est lui-même « le meilleur possible » ; en fait, on peut montrer (en utilisant
des polynômes du type Gn> d ci-dessus et des polynômes normiques, et en

raisonnant comme au chapitre 4, section 4.3) que, quels que soient n, s, et

dx, ds, il existe une famille Fu Fs satisfaisant aux hypothèses des
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théorèmes let 3 et telle que N soit égal exactement à qbl. Pour la construction

d'une telle famille de polynômes, et pour la démonstration du théorème 3,

voir Katz (1971) (respectivement § 4 et § 3); voir également les Notes en fin
de chapitre.

3.3. Pour des équations de forme particulière, le théorème 1 peut dans

certains cas être amélioré. Ainsi, en combinant le théorème 1 du chapitre 6

avec les « relations de Stickelberger » (prop. 1), on obtient sans difficulté
le résultat suivant:

Théorème 4. — Soit F axXfY + + anXndn un polynôme diagonal
à coefficients dans le corps premier k — Fp. Pour i 1, n, posons <5t-

(p—\,di), et soit h2 le plus grand entier strictement inférieur à l/ôl
+ + l/ôn. Alors, si a ek, et si N désigne le nombre de solutions dans kn

de l'équation F a, N est divisible par pb2.

Ce résultat reste d'ailleurs vrai sur un corps fini quelconque k à q pf
éléments, à condition de supposer que chaque ôt (q— 1, dt) divisep — 1 :

N est alors divisible par qb2; cet exposant b2 peut encore être « amélioré »

si a 0 (voir Joly (1971)). On notera l'analogie entre le théorème 4 ci-dessus

et le théorème 3 du chapitre 4.

Notes sur le chapitre 1

§ 1 : la démonstration de la proposition 1 donnée ici est due à Hilbert
(« Zahlbericht »); cette proposition est en fait une conséquence d'un résultat
plus précis (« congruences de Stickelberger ») :

tO") - l"U)!p (j)(modrtf)+I)

(avec par définition p (j)j0\j10; voir Stickelberger (1890),
Davenport-Hasse (1934), ou [11], chap. IV, § 3. Pour une interprétation
analytique p-adique de ces congruences, voir Dwork (1960).

§ 2-3: dans Ax (1964), le cadre de la démonstration du théorème 1 est,
non pas le corps de nombres LQ (co,mais le corps Qp (eu, Ç) des
racines p (q- l)-ièmes de l'unité dans une clôture algébrique du corps
p-adique Q„ (avec les notations du § 1, ce corps Qp (eu, Ç) est d'ailleurs
isomorphe à Lty, complété iß-adique de L); à cette différence près, la
démonstration donnée ici est exactement celle d'Ax; elle est (selon Ax
lui-même) « suggérée par certaines idées de Dwork [dans sa démonstration
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