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Comme Y, o (j(w)) = ord ( [ ¢;()) (lemme 2 et premicre formule (1.3.1)),
ue U

ue U

cette derniére inégalité peut s’écrire, aprés division par p/ ~! + ... + p + 1,
fp=1)(s/d)* < ord (] ¢
ueU
compte tenu de (1.3.1) et (1.3.4), on a alors
(2.4.2) flp—=1)(n—s+(s/d)*) < ord (¢""* Hjcj(u)).

Mais le symbole ord est relatif & n importe quel idéal premier P de B divisant
p, et on a (sect. 1.1, (1.1.3)) pB = J[ B?~*, donc, puisque ¢ = p’, ¢B

. SBip
= [] B/~ 1; ainsi, étant donné (2.4.2), il suffit, pour prouver le lemme 3
Plr
(donc le théoréme 1), d’établir la propriété suivante:

(2.4.3) Pour tout entier s tel que 0 <s < n, on a [’'inégalité
n—s+(/d*>b+1.

Démontrons (2.4.3); il est clair que pour tout entier positif 7, on a
t > ((s+1)/d)* — (s/d)*: car, pour t = 0, les deux membres sont €gaux,
et d’autre part le membre de droite, considéré comme fonction de ¢, croit
« moins vite » que ¢; dans cette inégalité, faisons alors # = n — s; il vient

n— s+ (s/d* > n/d)*;
mais par définition méme (n/d)* = b + 1: ce qui prouve (2.4.3) et achéve la
démonstration du théoréme 1.
§ 3. Généralisations et compléments.

3.1. Le théoréme 1 s’étend sans difficulté au cas d’un systéme d’équa-
tions:

THEOREME 2. — Soit Fy, ..., Fy une famille de s polynémes de degrés res-
pectifs dy, ..., dy, a n variables et a coefficients dans k ; posons d = d; + ...
+ d,, et soit b le plus grand entier strictement inférieur a n/d. Si alors N
désigne le nombre de solutions dans k" du systéme d’équations

(3.1.1) F, =0,..,F, =0,
N est divisible par q".

Démonstration. — On se sert du lemme combinatoire suivant:




7 —

Lemme 1. — Soit V, ...,V une famille de s ensembles finis. Posons
V= N V, et, pour toute partie R de S = {1,..,s}, posons Uy
i=j<s

= UV, (pour R = @, Uy = ). On a alors
JER

(3.1.2) card (V) = Y (= )R =1 card (Up) .
RcS

Ce lemme se prouve facilement par récurrence sur s. Appliquons-le a la
démonstration du théoréme 2: pour tout je S = {1, ..., s}, soit V; I’en-
semble des zéros dans k" de I'unique polynéme F;; avec les notations du
lemme, V est alors I’ensemble des solutions dans k" du systéme (3.1.1), on
a N = card (V), et (3.1.2) montre qu’il suffit de prouver que, pour chaque
R c S, card (Uy) est divisible par ¢°. Si R = &, Uy = @, card (Ug) = 0,
et il n’y a rien & démontrer; sinon, posons Fr = [] F; : Uy est alors I'en-

JjeR

semble des zéros dans k" du polyndme Fy, et si by est le plus grand entier
strictement inférieur & n/deg (Fy), le théoréme 1 montre que card (Uy) est

divisible par ¢"®; mais deg (Fg) = Y deg(F;) < ) deg(F,) = d, d’ou
jeR JjeS

njd < n/deg (Fg) et b < bg; card (Uy), divisible par ¢°R, est divisible a for-

tiori par ¢°, C.Q.F.D.

3.2. Le théoréme 1, pour une équation, est « le meilleur possible » au
sens suivant: quels que soient n et d, il existe F, de degré d, a n variables et
a coefficients dans k, tel que (avec les notations du théoréme 1) q" soit la
plus haute puissance de q divisant N. (Prendre par exemple pour F' le poly-
nome G, ; = X; ... X;+ Xgpq o Xog+ oo + Xpm1yae1 - Xpg + Xpgr1
... X,; pour ce polyndme, le nombre N peut étre déterminé explicitement &
’aide du théoréme 6 du chapitre 4: on laisse au lecteur le soin de faire les
calculs en détail). En revanche, le théoréme 2, pour un systéeme de s équa-
tions, peut étre amélioré; en fait, on a le résultat suivant, da a Katz (1971):

THEOREME 3. — Mémes données et notations que dans le théoréme 2. Si
6 = sup dj, et si b, désigne le plus grand entier supérieur ou égal a
1=j<s

(n—d)/6, alors N est divisible par ¢"'.

Ce théoréme 3 (qui, pours = 1, coincide évidemment avec le théoreme 1)
est lui-méme « le meilleur possible »; en fait, on peut montrer (en utilisant
des polyndmes du type G, , ci-dessus et des polyndOmes normiques, et en
raisonnant comme au chapitre 4, section 4.3) que, quels que soient n, s, et
dy, ..., d, il existe une famille F., ..., F; satisfaisant aux hypothéses des
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théorémes 2 et 3 et telle que N soit égal exactement a g”*. Pour la construction
d’une telle famille de polyndmes, et pour la démonstration du théoréme 3,
voir Katz (1971) (respectivement § 4 et § 3); voir également les Notes en fin
de chapitre.

3.3. Pour des équations de forme particuliére, le théoréme 1 peut dans
certains cas étre amélioré. Ainsi, en combinant le théoréme 1 du chapitre 6
avec les « relations de Stickelberger » (prop. 1), on obtient sans difficulté
le résultat suivant:

THEOREME 4. — Soit F = a, X;" + ... + a,X,*™ un polynome diagonal
a coefficients dans le corps premier k = F¥,. Pour i = 1,..,n, posons 0,
= (p—1,d,), et soit b, le plus grand entier strictement inférieur a 1/5,
+ ... + 1/8,. Alors, si aek, et si N désigne le nombre de solutions dans k"
de 1’équation F = a, N est divisible par p™.

Ce résultat reste d’ailleurs vrai sur un corps fini quelconque k 4 ¢ = p”’
¢léments, a condition de supposer que chaque 0; = (¢—1, d;) divise p — 1:
N est alors divisible par ¢*2; cet exposant b, peut encore étre « amélioré »
sia = 0 (voir Joly (1971)). On notera I’analogie entre le théoréme 4 ci-dessus
et le théoréme 3 du chapitre 4.

Notes sur le chapitre 7

§ 1: la démonstration de la proposition 1 donnée ici est due a Hilbert
(« Zahlbericht »); cette proposition est en fait une conséquence d’un résultat
plus précis (« congruences de Stickelberger »):

(D)= —2Pp(j) (mod Pr*Y)

(avec par définition p (j) = jo !ji !...j,—1 1) voir Stickelberger (1890),
Davenport-Hasse (1934), ou [11], chap. IV, § 3. Pour une interprétation
analytique p-adique de ces congruences, voir Dwork (1960).

§ 2-3: dans Ax (1964), le cadre de la démonstration du théoréme 1 est,
non pas le corps de nombres L = Q (w, {), mais le corps Q, (w, §) des
racines p (g—1)-iémes de I'unité dans une cldture algébrique du corps
p-adique Q, (avec les notations du § 1, ce corps Q, (v, {) est d’ailleurs
isomorphe a Loy, completé P-adique de L); a cette différence pres, la
démonstration donnée ici est exactement celle d’Ax; elle est (selon Ax
lui-méme) « suggérée par certaines idées de Dwork [dans sa démonstration
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