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Ces diverses propriétés étant établies, prouvons maintenant (toujours en
i supposant 0 <j < g — 1) que o (j) = s(j); les propriétés (i), puis (v), puis
(i) et (iii), montrent d’abord que pour 0 <{j<<p — 1, on a s(j) =J
. = j, = 6 (j); les propriétés (ii) et (iv) donnent d’autre part

s() <s(o) +s(Uy) + ..o +50s-1);

comme 0 <j,<p—1pour i=0,..[f—1, ces deux remarques im-
pliquent, pour 0 <j < g — 1,

©(1.4.9) s(G) <jo 41+ e Fipm1 =0

’égalité s (j) = o (j) résulte alors de (1.4.9), de la propriété (vi), et de I’égalite
Y, o(j) =f(p—1)(g—2)/2, qui se vérifie facilement par récurrence sur

0=j<g—-1
f. La proposition 1 se trouve ainsi démontrée.

§ 2. Démonstration du théoréme 1.
Cette démonstration se fera en quatre étapes.

2.1. Introduction du polynéme C (Y). Soit T le sous-ensemble de B
formé de O et des éléments de 7*; pour tout ¢ € T, soit f 'image de ¢t dans k
= B/P; 'application ¢ > f est alors une bijection de T sur k (sect. 1.1 et
1.2), dont la bijection inverse est le caractére 6, prolongé comme toujours
par 0 (0) = 0. Soit d’autre part f le caractére additif de k£ défini par S (x)
= (7™ (x € k); comme card (T') = g, il existe évidemment un polyndme
a une variable Y et un seul, soit C (YY), de degré ¢ — 1, a coeflicients dans
L, et tel que C(¢) = f (f) pour tout ¢ € T; posons

(2.1.1) C(Y) =co+cy Y+ ...+ YT,
LEMME 1. — Avec les notations du paragraphe 1, on a
(21.2)  co =15 ¢41 = —qllg—1); et ¢; = t(j)/(g—1)

pour 1 <j <q—2.

En effet, pour 0 <<j <<q — 1, on a, par définition de 7 (j), de 0 et de
C(Y),

()= 2L 077®BE) = Y tTIp@D = Y I C@®;

xek* te T* teT
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il suffit alors, pour obtenir les relations (2.1.2), de remplacer, dans le membre
de droite, C () par son expression développée ¢, + c1t + ... + ¢, 2971,
et de remarquer comme au paragraphe 1 que

—1,stu=0 (modg-—1);
(2.1.3) Y = {q ot g —1)

te T* 0, sinon.
LEMME 2. — Avec les notations du paragraphe 1, on a, pour tout j tel que
0 <j<q—1, l’égalité

(2.1.4) ord(c;) = o (j).

S1 0 <j < g — 1, il suffit d’appliquer le lemme 1, la proposition 1, et
de remarquer que ord (1/(¢g—1)) =0. Si j=¢g —1, on a j, = j; = ...
=jr-y =p—1, donc o (j) = f(p—1); on a d’autre part (lemme 1)
ord (¢;) = ord(—g¢f(g—1)) = ord(g) = ord (p!) = ford(p) = f(p—1
(sect. 1.3); d’out ord (c;) = o (j) également pour j = g — 1.

2.2. Evaluation de N a l’aide des c;. Commengons par introduire un
supplément de notations; x = (x,, ..., X,) désignera un point quelconque
de k"*1; U désignera I’ensemble des suites u = (uy, ..., u,) d’entiers ra-
tionnels non négatifs telles que ||u|| = u; + ... + u, <d = deg (F);
enfin, si ue U, X" désignera le mondéme X,*! ... X", u’ désignera la suite
(1, uy, ..., u,), et X" désignera le mondme X, X," .. X, " = X, X"
convention analogue pour x" et x* si x e k"*1, etc.

Cela étant, on a (chap. 5, prop. 3)

(2.2.1) N =g "' Y B(xoF(y,....x));

xekn+1
d’autre part, on peut écrire (en notant a,(ue U) les coefficients de F).
F(Xy, ..., X,) = Y a, X", donc XoF (Xq, ..., X;) = Y a,X™; comme f est

ueU ue U
un caractére additif, (2.2.1) peut se réécrire

(2.2.2) N=g" Y ] Bax).

xekn+1 yeU

Posons alors, quels que soient ue U et x;€k, b, = 0(a,) et t; = 0 (x,);
posons également t = (¢y, ..., %,); on a b,eT, t;eT, bt eT, et bt
= aux“'; ainsi,

Blax") = C(bt") = 3 cbJt",

0=j=g—1
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/" signifiant évidemment #,7¢,7*! ... £,7*; et (2.2.2) devient

(2.2.3) N=q' Y J] Y ¢pbt".
 teTn+1l yelU 0=j=q~1
Soit M I’ensemble de toutes les applications de U dans {0, 1,...,q — 1}
(cest-a-dire I’ensemble de toutes les « fagons d’associer un j a chaque u »);
la distributivité de la multiplication par rapport a I’addition permet de
mettre le second membre de (2.2.3) sous la forme

q—l‘ Z Z I‘[ Cj(u)buj(u)tj(u)u' .

jeM teTn+1l yelU

Pour chaque j € M, posons b¥ = []5,/™ (b est donc un élément de T'),
ueU

dési " la suit
et acsignons par e; la suite

Yiu = (i, Y juy, ... i@ u,).

ueU

L’égalité (2.2.3) peut alors s’écrire

(2.2.4) N=qg 'Y by D t9.

jeM ueU te Tn+1

2.3. Réduction du probléeme. Dans (2.2.4), tous les termes du membre
de droite (abstraction faite du facteur ¢~ !) sont dans ’anneau B des entiers
de L; il suffit donc pour prouver le théoréme 1 de montrer ceci:

(2.3.1)  Quel que soit j € M, I’entier algébrique || Ciwy 2 t est divisible
ue U teTn+1

(dans B) par ¢°*1.

Convenons d’écrire g — 1 [ e j' sig — 1 divise chacune des n + 1 compo-
santes de ej', etg— 1) ej' dans le cas contraire; d’aprés (2.1.3), on a

[ g™, sie) =(0,0,...,0);

| 0,sig—1xe;

- (2.3.2 o = s i /
a ) terzn:+1 | (=11 q"7%, sie; #(0,0,...,0),sig — 1|e;,
| et si e; (C’est-a-dire e j' privé de sa premiére compo-
| sante) posséde exactement s composantes non nulles;

~ et il suffit en fait, pour établir (2.3.1), donc le théoréme 1, de prouver ceci:




LEMME 3. — Si je M est tel que e; soit différent de (0,0, ..., 0), soit
« divisible » par q — 1, et que e; posséde exactement s composantes non nulles,
alors ’entier algébrique q"~*° [ ¢, est divisible (dans B) par ¢"*'.
ueU

2.4. Démonstration du lemme 3. Pour tout u € U et tout j € M, écrivons
Ientier j (u) en base p:

j =jo() +j;(wp + ... +jf—1(“)Pf_1

O <j;(m)y<p—1; 0<<i<<f—1); ceci définit j; (u) pour 0 <i < f;
étendons cette définition en convenant de poser, pour tout entier rationnel
z, j, (W) = jizy (), ol i (2) est le reste de division de z par f; enfin, pour tout
entier rationnel s, posons

JP) = j_() +j;4(Wp + ... ’*‘].f—1—h(“)Pf“1

(les j® (u) sont les entiers rationnels déduits de j (u) par permutation cir-
culaire des chiffres de j (u) en base p). Il est clair qu’on ne change rien aux
égalités (2.3.2) en y remplagant j par j¥, ce qui équivaut a effectuer sur T
la permutation ¢ t*"; en particulier, cette substitution ne modifie pas la
valeur de s; ainsi, sous les hypothéses du lemme 3, on a

2.4.1) s@-D<llemll =11 2 jPwull <d ZUJ'(")(U)-

ue U

Mais ) j® (u) est la premiére composante de e;n,: c’est donc (toujours

ue U

avec les hypothéses du lemme 3) un entier strictement positif divisible par
g — 1; si (s/d)* désigne le plus petit entier supérieur ou égal a s/d, (2.4.1)
implique alors

(=D (s/d)* < ZUJ'”')(U);

dans cette égalité, donnons a 4 les valeurs O, 1, ..., f — 1, et additionnons;
compte tenu de la définition de j® (u), il vient

flg—=1)(s/d)* < Z z Z Ji—n(w) Pi >

O<h=f—-1uelU O0Zi=f~-1

ou encore (en intervertissant ’ordre des sommations, en utilisant la notation
o (j), et en remplagant g par p’),

SO =D <@+ 4+p+1) ZUa(j (w).
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Comme Y, o (j(w)) = ord ( [ ¢;()) (lemme 2 et premicre formule (1.3.1)),
ue U

ue U

cette derniére inégalité peut s’écrire, aprés division par p/ ~! + ... + p + 1,
fp=1)(s/d)* < ord (] ¢
ueU
compte tenu de (1.3.1) et (1.3.4), on a alors
(2.4.2) flp—=1)(n—s+(s/d)*) < ord (¢""* Hjcj(u)).

Mais le symbole ord est relatif & n importe quel idéal premier P de B divisant
p, et on a (sect. 1.1, (1.1.3)) pB = J[ B?~*, donc, puisque ¢ = p’, ¢B

. SBip
= [] B/~ 1; ainsi, étant donné (2.4.2), il suffit, pour prouver le lemme 3
Plr
(donc le théoréme 1), d’établir la propriété suivante:

(2.4.3) Pour tout entier s tel que 0 <s < n, on a [’'inégalité
n—s+(/d*>b+1.

Démontrons (2.4.3); il est clair que pour tout entier positif 7, on a
t > ((s+1)/d)* — (s/d)*: car, pour t = 0, les deux membres sont €gaux,
et d’autre part le membre de droite, considéré comme fonction de ¢, croit
« moins vite » que ¢; dans cette inégalité, faisons alors # = n — s; il vient

n— s+ (s/d* > n/d)*;
mais par définition méme (n/d)* = b + 1: ce qui prouve (2.4.3) et achéve la
démonstration du théoréme 1.
§ 3. Généralisations et compléments.

3.1. Le théoréme 1 s’étend sans difficulté au cas d’un systéme d’équa-
tions:

THEOREME 2. — Soit Fy, ..., Fy une famille de s polynémes de degrés res-
pectifs dy, ..., dy, a n variables et a coefficients dans k ; posons d = d; + ...
+ d,, et soit b le plus grand entier strictement inférieur a n/d. Si alors N
désigne le nombre de solutions dans k" du systéme d’équations

(3.1.1) F, =0,..,F, =0,
N est divisible par q".

Démonstration. — On se sert du lemme combinatoire suivant:
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