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Ces diverses propriétés étant établies, prouvons maintenant (toujours en

supposant 0 <7 < q - 1) que a (/) s (7); les propriétés (i), puis (v), puis

(ii) et (iii), montrent d'abord que pour 0 <7 <7? — 1, on a ^ (7) j
y0 (7(7); les propriétés (ii) et (iv) donnent d'autre part

s(j)<s(jo) + s(ji) + + sO/-i);

comme 0 <y'f <77 - 1 pour i 0, 1, ces deux remarques
impliquent, pour 0 <7 < q — 1,

(1.4.9) s(7) <7o +7i + ..• + Jf-i Ö"(7) ;

l'égalité s (7) cr (7) résulte alors de (1.4.9), de la propriété (vi), et de l'égalité

£ a (7) f{p— 1) (<7 — 2)/2, qui se vérifie facilement par récurrence sur
0^7<g-l
/. La proposition 1 se trouve ainsi démontrée.

§ 2. Démonstration du théorème 1.

Cette démonstration se fera en quatre étapes.

2.1. Introduction du polynôme C(Y). Soit T le sous-ensemble de B
formé de 0 et des éléments de T* ; pour tout t eT, soit t l'image de t dans k

B/ty; l'application t K t est alors une bijection de T sur k (sect. 1.1 et

1.2), dont la bijection inverse est le caractère 6, prolongé comme toujours
par 9 (0) 0. Soit d'autre part ß le caractère additif de k défini par ß (x)

ÇTr(x) (x e k); comme card (T) q, il existe évidemment un polynôme
à une variable Y et un seul, soit C (7), de degré q — 1, à coefficients dans

L, et tel que C (t) ß (t) pour tout t e T; posons

(2.1.1) C (Y) c0 +Cly+ + cq_1 Y«"1

Lemme 1. — Avec les notations du paragraphe 1, on a

(2.1.2) c01 ; cq_1 -ql(q-l); et Cj t(j)l(q-l)
pour 1 < j <

En effet, pour 0 <j < q- 1, on a, par définition de t (j), de 9 et de

C(E),

*(;') Z 0~j(x)ß(x)Z Z t~jC(t);
xek* teT* teT*
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il suffit alors, pour obtenir les relations (2.1.2), de remplacer, dans le membre
de droite, C (t) par son expression développée c0 + cxt + +
et de remarquer comme au paragraphe 1 que

Iq
— 1 si u 0 (mod q — 1) :

0, sinon.

Lemme 2. — Avec les notations du paragraphe 1, on a, pour tout j tel que
0 <y < q — 1, l'égalité

(2.1.4) ord (Cj) <r (j).

Si 0 <y < q — 1, il suffit d'appliquer le lemme 1, la proposition 1, et
de remarquer que ord (l/(q— 1)) 0. Si j # — 1, on a y0 j\

p — 1, donc ö" (j) =f(p—l); on a d'autre part (lemme 1)

°rd (cj) oxd(-q/(q-l)) ord ordQ/) /ord (/>) f(p-l)
(sect. 1.3); d'où ord (c,) a (j) également pour j — q — 1.

2.2. Evaluation de N à l'aide des Cj. Commençons par introduire un
supplément de notations; x (x0, xn) désignera un point quelconque
de kn+1; U désignera l'ensemble des suites u (ul9...,un) d'entiers
rationnels non négatifs telles que ||u||=w1 + + w„<<i deg(F);
enfin, si u e U, Xu désignera le monôme X±ul XnUn, u' désignera la suite

(1, ul9 un), et Xw désignera le monôme X0X±U1 XnUtl X0XU;
convention analogue pour xu et xu si xekn+1, etc.

Cela étant, on a (chap. 5, prop. 3)

(2.2.1) N=q~l X ß{x
xekn +1

d'autre part, on peut écrire (en notant öu(ue U) les coefficients de F)
F(XU Xn) donc X0F(XU Xn) ***''> comme ß est

ueU usU
un caractère additif, (2.2.1) peut se réécrire

(2.2.2) N^q'1 £ Ylß(ay).
xet» +1 ueU

Posons alors, quels que soient u e U et e k, bu 6 (au) et tt 0(xt);
posons également t (t0,...,tn); on a bueT, butu'eT, et 5utu'

auxu'; ainsi,

ß(ay)c(but"')X
O^j^q ~ 1
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tjV signifiant évidemment t0Jt1Jul...tnjUn; et (2.2.2) devient

(2.2.3) N q'1£ 11 E CjbJtjW.
teTn + l ||6 t/ O^j^q—l

Soit M l'ensemble de toutes les applications de U dans { 0, 1,..., q — 1 }

(c'est-à-dire l'ensemble de toutes les « façons d'associer un j à chaque u ») ;

la distributivité de la multiplication par rapport à l'addition permet de

mettre le second membre de (2.2.3) sous la forme

4-11 z n^(u)V(u)t^u'.
je M teTn +1 ueU

Pour chaque j e M, posons MJ) J} &UJ(U) (bU) est donc un élément de T),
xx eV

et désignons par e/ la suite

£ j(u) u' (I)(u), Xi(u)"i> / (»)<)•
u eP

L'égalité (2.2.3) peut alors s'écrire

(2.2.4) <Tl E *ü) n <V(u) I te/-
jeM us 1/ teTn + l

2.3. Réduction du problème. Dans (2.2.4), tous les termes du membre
de droite (abstraction faite du facteur q'1) sont dans l'anneau B des entiers
de L; il suffit donc pour prouver le théorème 1 de montrer ceci:

(2.3.1) Quel que soit j e M, l'entier algébrique J^[ cj(u) £ fi' est divisible
ue U te Tn +1

(dans B) par qb+1.

Convenons d'écrire q — l \ e/ si q — l divise chacune des n + 1 composantes

de e/, et q — 1 J( e/ dans le cas contraire; d'après (2.1.3), on a

(2.3.2) X te/
te Tn + 1

nn+ 1 si e/ (0,0,..., 0) ;

0, si q— 1 Xe/ ;

(q- l)s+1 q"~s,si e/ # (0,0,..., 0) si 1 | e/,
et si e, (c'est-à-dire e/ privé de sa première composante)

possède exactement 5 composantes non nulles ;

et il suffit en fait, pour établir (2.3.1), donc le théorème 1, de prouver ceci:
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Lemme 3. — Si y g M est tel que e/ soit différent de (0, 0, 0), soit
« divisible » par q — 1, et que e7- possède exactement s composantes non nulles;
alors rentier algébrique qn s Y\ cj(u) est divisible (dans B) par qb+1.

ueU

2.4. Démonstration du lemme 3. Pour tout u e £/ et tout y e M, écrivons
l'entier y (u) en base p :

;(«) io («) +J'i(u)jP + ••• + J/-1 (u)/^'
(0 <./i (u) — 1 ; o <1 </ — 1); ceci définit jt (u) pour 0 < / < /;
étendons cette définition en convenant de poser, pour tout entier rationnel

zjz (u) yi(z) (u), où i (z) est le reste de division de z par/; enfin, pour tout
entier rationnel h, posons

j(h\u)=7-a(m) +Ji~h(»)p + ••• +jf-i-h(») Pf~'

(les y(/,) (u) sont les entiers rationnels déduits de y (u) par permutation
circulaire des chiffres de y (u) en base p). Il est clair qu'on ne change rien aux
égalités (2.3.2) en y remplaçant y par ßh\ ce qui équivaut à effectuer sur T
la permutation t tph; en particulier, cette substitution ne modifie pas la
valeur de s; ainsi, sous les hypothèses du lemme 3, on a

(2.4.1) s(q-l)<II e,(Ä) 11 11 X u) u 11 < £ 7(A)(ii)
ue U ue U

Mais £y(A)(u) est la première composante de e^: c'est donc (toujours
ue U

avec les hypothèses du lemme 3) un entier strictement positif divisible par
q — 1; si (sjd)* désigne le plus petit entier supérieur ou égal à s/d, (2.4.1)

implique alors

E /"Vu) ;
ue U

dans cette égalité, donnons à h les valeurs 0, 1, ...,/ — 1, et additionnons;
compte tenu de la définition de y(A) (u), il vient

/(«-i) («A0* < E E E
O^h^f-l ue U

ou encore (en intervertissant l'ordre des sommations, en utilisant la notation

o (y), et en remplaçant q par pf),

f(pf<(p/_1 + ...+jP + l) E ff0'(«))-
ue U
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Comme £ a (7(u)) ord f] ci(u)) (lemme 2 et première formiile (1.3.1)),
u eU ueU

cette dernière inégalité peut s'écrire, après division par pf 1 + + p + 1,

f(p -1) (s/d)* < ord n O(u)) '
ue U

compte tenu de (1.3.1) et (1.3.4), on a alors

(2.4.2) f(p-l)(n-s+(s/dr) < ord(^"s nO(u))-
u eU

Mais le symbole ord est relatif à n 'importe quel idéal premier ^3 de B divisant

p, et on a (sect. 1.1, (1.1.3)) pB n^p l> donc> Puisclue <1 Pf>

J"] 1}; ainsi, étant donné (2.4.2), il suffit, pour prouver le lemme 3

$1*
(donc le théorème 1), d'établir la propriété suivante:

(2.4.3) Pour tout entier s tel que 0 </7, on a l'inégalité

n — s + (sjd)* > b + 1

Démontrons (2.4.3); il est clair que pour tout entier positif t, on a

t >((j+ 0/d)* — (sjd)*: car, pour t 0, les deux membres sont égaux,
et d'autre part le membre de droite, considéré comme fonction de t, croît
« moins vite » que t; dans cette inégalité, faisons alors t n — s; il vient

n — s + (sjd)* > (n\d)* ;

mais par définition même (;n/d)* b + 1 : ce qui prouve (2.4.3) et achève la
démonstration du théorème 1.

§ 3. Généralisations et compléments,

3.1. Le théorème 1 s'étend sans difficulté au cas d'un système d'équations

:

Théorème 2. — Soit Fu Fs une famille de s polynômes de degrés
respectifs du ds, à n variables et à coefficients dans k ; posons d1 di +
+ ds, et soit b le plus grand entier strictement inférieur à n/d. Si alors N
désigne le nombre de solutions dans kn du système d'équations

(3.1.1) F,0,

N est divisible par qh.

Démonstration. — On se sert du lemme combinatoire suivant:
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