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désigne la valeur absolue p-adique dans Q: cette derniére inégalité équivaut
bien & ¢° | N.

En fait, on travaillera avec les valuations P-adiques, et non avec les
valeurs absolues; d’autre part, la phase (2) de la démonstration (qui est
indépendante de la phase (1)) sera traitée en premier, au paragraphe 1;
les phases (1) et (3) seront traitées au paragraphe 2. Quelques conséquences
ou généralisations du théoréme 1 (et notamment 1’extension du théoréme 1
au cas d’un systéme d’équations) sont indiquées au paragraphe 3.

§ 1. Relations de Siickelberger.

1.1. Soit k un corps fini & ¢ = p’ éléments. Notons w et { une racine
primitive (g— 1)-iéme et une racine primitive p-iéme de 1’unité dans le corps
des nombres complexes, posons K = Q(w), L = Q(w, Q) = K(7), et
soient 4 I’anneau des entiers de K et B I’anneau des entiers de L. Les théo-
rémes généraux sur la décomposition des idéaux premiers dans les corps
cyclotomiques (voir [3], chap. 3 et 5, ou [11], chap. IV) permettent d’énoncer :
(1.1.1) L’idéal pZ est non ramifié dans K, il se décompose dans A en
produit de g idéaux premiers de degré f: pA = p;p, ... p,; g est déterminé
par I’égalité fg = [K: Q], et chaque corps résiduel A/p; est isomorphe a k.
(1.1.2) Chaque idéal p; est totalement ramifié dans L, I’indice de ramifica-
tion étant égal & [L: K] = p — 1; la décomposition de p; dans B est de la
forme p;B = P27 1; le degré résiduel en P, | p; est égal a 1, et le corps
résiduel B/PB; s’identifie au corps résiduel 4/p;, donc 2 k.

Il résulte de (1.1.1) et (1.2.2) que l'idéal pZ se décompose dans B de la
fagon suivante:

(1.1.3) pZ = PP, P

Dans ce qui suit, on suppose choisis une fois pour toutes un idéal P, et

I'idéal p; correspondant; on les note simplement B et p, et on identifie B B
et A/p au corps k.

1.2.  Soit maintenant 7* le sous-groupe de L* engendré par ; T* est
cyclique, d’ordre ¢ — 1, et la restriction & T* de I’homomorphisme B
— BB = k est évidemment un isomorphisme de T* sur k*; Iisomorphisme

inverse k* — T* est un caractére multiplicatif d’ordre g — 1 de k, qu’on
notera 0.

1.3. Une derniére notation: pour tout élément non nul « de L, on
notera ord («) 'exposant de B dans la décomposition en facteurs premiers
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de I'1déal fractionnaire «B de B (ord est donc tout simplement la « valuation
P-adique normalisée » de L); les propriétés suivantes sont alors évidentes:
(1.3.1) Quels que soient «, f non nuls dans L, on a

ord («f) = ord(a) + ord (f); ord («+p) > inf(ord (), ord (B)).

(1.3.2) SiaeB, ona ord () >0.
(1.3.3) Siaek, onaord(e) =0 (mod p—1).
(1.3.4) Enfin, ord(p) = p — 1.

((1.3.4) résulte de (1.1.3); pour prouver (1.3.3), commencer par décomposer
dans K l'idéal premier a4 de A, puis utiliser (1.1.2)).

1.4. Soit alors j un entier rationnel, et considérons la somme de Gauss

(1.4.1) (077 ) = Zk*(?"j(X)ﬁ(X),

B étant le caractére additif de k défini par B (x) = 7" (xek; Tr désigne
comme toujours la trace relative & l'extension k/F,); le choix de w, ¢, B,
et d’une identification entre B/P et k, détermine enti¢rement 0 et f; la
somme de Gauss introduite en (1.4.1) ne dépend donc en fait que de j:
on posera pour simplifier ©(j) = © (077 I p); en outre, on pourra se borner
a étudier 7 (j) pour 0 <j < g — 1, puisque 6 est d’ordre g — 1. Cela
étant, la valuation P-adique ord (7 ( 7)) de 7 (j) est donnée par la proposition
suivante, due a Stickelberger:

PROPOSITION 1. — Soit j un entier tel que 0 <j < q — 1, et soit

J =Jjo +jip + ... +jf—1pf—1

[’écriture de j en base p, avec 0 <j, <p — 1 pouri =0, ..., f — 1; posons
0(j) =jo +ji + ... +jr—1 (somme des chiffres de j en base p) ; on a alors :

(1.4.2) ord (t(j)) = o (j).

Démonstration. — Pour tout entier j, posons a priori s () = ord (z (j));
il s’agit alors de prouver que si 0 <j < qg — 1, on a s(j) = a(j); or, la
fonction s posséde les propriétés (i) a (vi) ci-dessous:

(1) Quel que soit j, s (j) > 0; de plus, s (0) = 0.

En effet, 7 (j) est un entier de L, et 7(0) = — 1 est une umté de L.
(Pour I’égalité 7 (0) = — 1, voir chap. 5, sect. 2.2, (1)).
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| (ii) Quels que soient j et k, on a s (j+k) <s(j) + s (k). (k désigne ici un
~ entier: aucun risque de confusion avec le corps k).

Pour jou k = 0, il n’y a rien & prouver, puisque s (0) = 0; pourj + k
=qg—1,onas(j+k) = s(0) =0, et la encore, il n’y a rien a prouver,
- puisque s (j) et s (k) sont non négatifs. Supposons donc 0 <j < g — 1,
O<k<g-—1,etj+ k # q— 1; on a dans ce cas

(1.4.3) (Nt k) = n (077,07t (j+k)

(chap. 5, prop. 9, (ii)), et 'inégalité a démontrer résulte de la premiere for-
mule (1.3.1) et de (1.3.2), puisque la somme de Jacobi = (677, 67%) est
dans B.

(iii) Quels que soient j et k, on a s (j+k) = s(j) + s (k) (mod p — 1).

Pour j ou k = 0, il n’y a rien & prouver, puisque s (0) = O; pour j + k
=g—1,onart(j)rk) = g0 (=1) = p/6(—1), donc, compte tenu de
- (1.3.1) et (1.3.4), s(j) + s(k) = f(p—1) =0 (mod p — 1); on a d’autre
- part s(j+k) = s(0) = 0; la congruence a démontrer se trouve donc
~ établie dans ce cas particulier (la valeur de 7 (j) 7 (k) résulte de la prop. 7 du
~ chap. 5). Supposons maintenant 0 < j < g —1,0<k<g—1letj+ k
£ g — 1; I’égalité (1.4.3) et la premicre formule (1.3.1) donnent

s() +s(k) = s(j+k) 4+ ord(n(077,079);

. la congruence a démontrer résulte alors de (1.3.3), puisque la somme de
Jacobi 7 (077, 07F) est dans K.

(iv) Quels que soient j, et i >0, on a s (jp') = s (j).

En effet, pour tout x ek, on a 677 (x) =077 (xpi); on a ¢également
Tr (xpi) = Tr (x), puisque x et x?* sont conjugués sur F, (chap. 1, prop. 8);
il suffit alors de faire le changement de variable y = x?* dans la formule de
définition de la somme de Gauss 7 (jp’) pour obtenir 7 (j) = 7(jp'), d’olt
évidemment I’égalité & démontrer.

(v) Pour la valeur particuliére j = 1, on a s (1) = 1.

Posons A = { — 1; le polyndme minimal de { sur X (ou sur Q) étant
X7l 4+ L+ X+ 1 =(XP-1D)(X—-1), le polyndbme minimal de A est
évidemment ((X+1)’—1)/X = X*~' + pX?™? + ... + p, donc un poly-
nome d’Eisenstein relativement a p ([11], chap. I1, § 5): il en résulte que

(1.4.4) ord(%) = 1

L’Enseignement mathém., t. XIX, fasc. 1-2. 5
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(utiliser (1.3.4) et la deuxiéme formule (1.3.1)). Ecrivons d’autre part la
définition de 7 (1) en y remplagant { par 1 + A:

() = Y} 07 A +HTH,

xek*

soit, en développant (14 4)T"™) par la formule du bindme et en utilisant
(1.4.4):

(1.4.5) (1) = Y 071 (x)(1+4r(x)) (mod P?),

xek*

r (x) désignant 'unique entier rationnel compris entre 0 et p — 1 et dont
I'image dans F, soit égale a Tr (x). Dans le second membre de (1.4.5), faisons
le changement de variable £ = 0 (x); comme r(x) =1t + P + ... + pf=t
(mod ) (chap. 1, (3.2.1)), la congruence (1.4.5) devient

(1.4.6) t() =Yt + Y 7 ¢+ 4. +t277)  (mod B?);

te T* te T*

mais T* est le groupe des racines (g—1)-iémes de I'unité dans le corps des
nombres complexes; on a donc, pour tout entier rationnel u,

{q——l, siu=0 (modg-—1);

0, sinon;

> -

te T*
comme par ailleurs ¢ = p/ = 0 (mod P?), la congruence (1.4.6) se réduit a
(1.4.7) (1) = — 2 (mod P?);

d’ou évidemment, compte tenu de la deuxieme formule (1.3.1), s(1)
= ord (t (1)) = ord (4) = 1 (utiliser (1.4.4)), C.Q.F.D.

(vi) On aenfin I’égalité . s(j) = f(p—1) (g—2)/2.

0=j<qg—1

En effet, on a déja remarqué (voir la démonstration de (iii)) que

(1.4.8) s() +s(@—1-) =f(p-1;

comme 5(0) = s(g—1) = 0, la relation (1.4.8) donne, en faisant varier j
de 1 a ¢ — 2 et en additionnant,

>, (W+s@@—1-p)=2 3 () =f-D@-2),

0=j<q—-1 0=j<q-1

ce qui implique (vi).
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Ces diverses propriétés étant établies, prouvons maintenant (toujours en
i supposant 0 <j < g — 1) que o (j) = s(j); les propriétés (i), puis (v), puis
(i) et (iii), montrent d’abord que pour 0 <{j<<p — 1, on a s(j) =J
. = j, = 6 (j); les propriétés (ii) et (iv) donnent d’autre part

s() <s(o) +s(Uy) + ..o +50s-1);

comme 0 <j,<p—1pour i=0,..[f—1, ces deux remarques im-
pliquent, pour 0 <j < g — 1,

©(1.4.9) s(G) <jo 41+ e Fipm1 =0

’égalité s (j) = o (j) résulte alors de (1.4.9), de la propriété (vi), et de I’égalite
Y, o(j) =f(p—1)(g—2)/2, qui se vérifie facilement par récurrence sur

0=j<g—-1
f. La proposition 1 se trouve ainsi démontrée.

§ 2. Démonstration du théoréme 1.
Cette démonstration se fera en quatre étapes.

2.1. Introduction du polynéme C (Y). Soit T le sous-ensemble de B
formé de O et des éléments de 7*; pour tout ¢ € T, soit f 'image de ¢t dans k
= B/P; 'application ¢ > f est alors une bijection de T sur k (sect. 1.1 et
1.2), dont la bijection inverse est le caractére 6, prolongé comme toujours
par 0 (0) = 0. Soit d’autre part f le caractére additif de k£ défini par S (x)
= (7™ (x € k); comme card (T') = g, il existe évidemment un polyndme
a une variable Y et un seul, soit C (YY), de degré ¢ — 1, a coeflicients dans
L, et tel que C(¢) = f (f) pour tout ¢ € T; posons

(2.1.1) C(Y) =co+cy Y+ ...+ YT,
LEMME 1. — Avec les notations du paragraphe 1, on a
(21.2)  co =15 ¢41 = —qllg—1); et ¢; = t(j)/(g—1)

pour 1 <j <q—2.

En effet, pour 0 <<j <<q — 1, on a, par définition de 7 (j), de 0 et de
C(Y),

()= 2L 077®BE) = Y tTIp@D = Y I C@®;

xek* te T* teT
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