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désigne la valeur absolue j?-adique dans Q : cette dernière inégalité équivaut
bien à qb | N.

En fait, on travaillera avec les valuations ^3-adiques, et non avec les

valeurs absolues; d'autre part, la phase (2) de la démonstration (qui est

indépendante de la phase (1)) sera traitée en premier, au paragraphe 1 ;

les phases (1) et (3) seront traitées au paragraphe 2. Quelques conséquences

ou généralisations du théorème 1 (et notamment l'extension du théorème 1

au cas d'un système d'équations) sont indiquées au paragraphe 3.

§ 1. Relations de Stickelberger.

1.1. Soit k un corps fini à q pf éléments. Notons co et Ç une racine

primitive («q— l)-ième et une racine primitive j^-ième de l'unité dans le corps
des nombres complexes, posons K Q (co), L Q (co, Z) — K (Q, et
soient A l'anneau des entiers de K et B l'anneau des entiers de L. Les
théorèmes généraux sur la décomposition des idéaux premiers dans les corps
cyclotomiques (voir [3], chap. 3 et 5, ou [11], chap. IV) permettent d'énoncer:
(1.1.1) L'idéal pX est non ramifié dans K, il se décompose dans A en

produit de g idéaux premiers de degré f:pA pxp2 pg; g est déterminé

par l'égalité fg [K: Q], et chaque corps résiduel A/pt est isomorphe à k.
(1.1.2) Chaque idéal pf est totalement ramifié dans L, l'indice de ramification

étant égal à [L: K] p — 1 ; la décomposition de pf dans B est de la
forme iptB %p"lm9 le degré résiduel en | p4 est égal à 1, et le corps
résiduel B/Vßi s'identifie au corps résiduel A/yb donc à k.
Il résulte de (1.1.1) et (1.2.2) que l'idéal pX se décompose dans B de la
façon suivante:

(1.1.3) pX

Dans ce qui suit, on suppose choisis une fois pour toutes un idéal % et
l'idéal pf correspondant; on les note simplement $ et p, et on identifie B/*p
et A/p au corps k.

1.2. Soit maintenant J* le sous-groupe de L* engendré par œ; E* est
cyclique, d'ordre q - 1, et la restriction à T* de l'homomorphisme B
-+B/SÇ k est évidemment un isomorphisme de T* sur k* ; l'isomorphisme
inverse k* -> T* est un caractère multiplicatif d'ordre q — 1 de /t, qu'on
notera 0.

1.3. Une dernière notation: pour tout élément non nul a de L, on
notera ord (a) l'exposant de dans la décomposition en facteurs premiers
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de l'idéal fractionnaire ocB de i?.(ord est donc tout simplement la « valuation
^-adique normalisée » de L) ; les propriétés suivantes sont alors évidentes :

(1.3.1) Quels que soient oc, ß non nuls dans L, on a

ord (ocß) ord (oc) + ord (ß) ; ord (oc+ß) > inf (ord (a), ord (/?))

(1.3.2) Si a e B, on a ord (a) > 0.

(1.3.3) Si oceK, on a ord (oc) 0 (mod p— 1).

(1.3.4) Enfin, ord (p) p - 1.

((1.3.4) résulte de (1.1.3); pour prouver (1.3.3), commencer par décomposer
dans K l'idéal premier ocA de A, puis utiliser (1.1.2)).

1.4. Soit alors j un entier rationnel, et considérons la somme de Gauss

(1.4.1) T(0->I/O E e~J(x)ß(x),
xek*

ß étant le caractère additif de k défini par ß (x) ÇTr(-x) (xek; Tr désigne

comme toujours la trace relative à l'extension k/¥p); le choix de co, Ç, ty,
et d'une identification entre B/Sß et k, détermine entièrement 6 et ß; la

somme de Gauss introduite en (1.4.1) ne dépend donc en fait que de j:
on posera pour simplifier t (j) % (9~J \ß); en outre, on pourra se borner
à étudier t (J) pour 0 <y < q — 1, puisque 6 est d'ordre q — 1. Cela

étant, la valuation ^3-adique ord (t (j)) de t (j) est donnée par la proposition
suivante, due à Stickelberger :

Proposition 1. — Soit j un entier tel que 0 < j < q — 1, et soit

j io +hV + ••• +jf-iPf~1
l'écriture de j en base p, avec 0 < /£ <p — 1 pour i — 0, 1; posons
a (j) j0 + j\ + + jf_1 (somme des chiffres de j en base p); on a alors :

(1.4.2) ord (t (j)) a(j).Démonstration. — Pour tout entier j, posons a priori 5(7) ord (t (j)) ;

il s'agit alors de prouver que si 0 <7 < q — 1, on a s (/) <7 (y); or, la

fonction s possède les propriétés (i) à (vi) ci-dessous :

(i) Quel que soit j, s (j) > 0 ; de plus, s (0) 0.

En effet, t (j) est un entier de L, et t (0) — 1 est une unité de L.
(Pour l'égalité t (0) - 1, voir chap. 5, sect. 2.2, (i)).
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(ii) Quels que soient j et k, on a s (j+k) < .s (j) + s (k). (k désigne ici un

entier: aucun risque de confusion avec le corps k).

Pour j ou k 0, il n'y a rien à prouver, puisque ^ (0) 0 ; pour j + k

q - 1, on a s {j+k) s (0) 0, et là encore, il n'y a rien à prouver,
puisque s (j) et s (k) sont non négatifs. Supposons donc 0 <j < q — 1,

0 < k < q — 1, Qtj + k + q— 1; ona dans ce cas

(1.4.3) T(;)T(fc) TC(0-',0-*)T (j+k)
(chap. 5, prop. 9, (ii)), et l'inégalité à démontrer résulte de la première
formule (1.3.1) et de (1.3.2), puisque la somme de Jacobi n (9~j, 9~k) est

dans B.

(iii) Quels que soient j et k, on a s (j+k) s (j) + s (k) (mod p — 1).

Pour j ou k — 0, il n'y a rien à prouver, puisque s (0) 0; pour j + k
q — 1, on a t (j) t (k) q9J — 1) pf6j(— 1), donc, compte tenu de

(1.3.1) et (1.3.4), s(j) + s (k) f(p— 1) 0 (mod p — 1); on a d'autre

part s (j+k) s (0) 0; la congruence à démontrer se trouve donc
établie dans ce cas particulier (la valeur de t (j) t (k) résulte de la prop. 7 du

chap. 5). Supposons maintenant 0 < j < q — 1, 0 < k < q — 1 et j + k
+ q — 1; l'égalité (1.4.3) et la première formule (1.3.1) donnent

s(j)+ s (k) s (j+k) + ord ;

la congruence à démontrer résulte alors de (1.3.3), puisque la somme de

Jacobi 7i (9~J\ 6~k) est dans K.

(iv) Quels que soient j, et i > 0, on a s (jpl) s (j).

En effet, pour tout x e k, on a 6~jpl (x) 9~j (xpl); on a également
Tr (xpl) Tr (x), puisque x et xpi sont conjugués sur Fp (chap. 1, prop. 8);
il suffit alors de faire le changement de variable y xpl dans la formule de

définition de la somme de Gauss t (jpl) pour obtenir t (j) t (//?'), d'où
évidemment l'égalité à démontrer.

(v) Pour la valeur particulière j — 1, on a s (\) 1.

Posons 2 Ç — 1 ; le polynôme minimal de Ç sur (ou sur Q) étant
Xp~1 + + X + 1 (Xp— l)/(X— 1), le polynôme minimal de X est
évidemment ((X+l)p-l)/X Xp~x + pXp~2 + + p, donc un
polynôme d'Eisenstein relativement à p ([11], chap. II, § 5): il en résulte que

(1.4.4) ord (2) 1

L'Enseignement mathém., t. XIX, fasc. 1-2. 5
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(utiliser (1.3.4) et la deuxième formule (1.3.1)). Ecrivons d'autre part la
définition de x (1) en y remplaçant Ç par 1 -f X:

T(1) Ys r1(x)(i+A)r'<»),
xek*

soit, en développant (l + X)TrM par la formule du binôme et en utilisant
(1-4.4):

(1.4.5) t(1) s £ r1 (*)(!+Ar (x)) (mod iß2),
xek*

r (x) désignant l'unique entier rationnel compris entre 0 et p — 1 et dont
l'image dans Fp soit égale à Tr {x). Dans le second membre de (1.4.5), faisons
le changement de variable t 6 (x); comme r (x) t + tp + -f tp^~l

(mod $) (chap. 1, (3.2.1)), la congruence (1.4.5) devient

(1.4.6) t(l) s X rl + E r1(t+tp(modip2);
teT* teT*

mais T* est le groupe des racines (q — l)-ièmes de l'unité dans le corps des

nombres complexes; on a donc, pour tout entier rationnel w,

iq
— 1 si u ~ 0 (mod q — 1) ;

n0, sinon;

comme par ailleurs q pf 0 (mod 'p2), la congruence (1.4.6) se réduit à

(1.4.7) t (1) — À (mod^2);

d'où évidemment, compte tenu de la deuxième formule (1.3.1), s(l)
ord (r (1)) ord(A) 1 (utiliser (1.4.4)), C.Q.F.D.

(vi) On a enfin l'égalité ]T s (j) f(p — 1) (q — 2)/2.
0?=j<q-1

En effet, on a déjà remarqué (voir la démonstration de (iii)) que

(1-4.8) s(j)+ s(q-l-j) =f(p-ï);
comme £ (0) — £(#—1) 0, la relation (1.4.8) donne, en faisant varier j
de 1 à q — 2 et en additionnant,

E (s(j) + s(q-l-j))2 Y s(j) f(p-l)(q-2),
0^j<q~l 0^j<q~l

ce qui implique (vi).
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Ces diverses propriétés étant établies, prouvons maintenant (toujours en

supposant 0 <7 < q - 1) que a (/) s (7); les propriétés (i), puis (v), puis

(ii) et (iii), montrent d'abord que pour 0 <7 <7? — 1, on a ^ (7) j
y0 (7(7); les propriétés (ii) et (iv) donnent d'autre part

s(j)<s(jo) + s(ji) + + sO/-i);

comme 0 <y'f <77 - 1 pour i 0, 1, ces deux remarques
impliquent, pour 0 <7 < q — 1,

(1.4.9) s(7) <7o +7i + ..• + Jf-i Ö"(7) ;

l'égalité s (7) cr (7) résulte alors de (1.4.9), de la propriété (vi), et de l'égalité

£ a (7) f{p— 1) (<7 — 2)/2, qui se vérifie facilement par récurrence sur
0^7<g-l
/. La proposition 1 se trouve ainsi démontrée.

§ 2. Démonstration du théorème 1.

Cette démonstration se fera en quatre étapes.

2.1. Introduction du polynôme C(Y). Soit T le sous-ensemble de B
formé de 0 et des éléments de T* ; pour tout t eT, soit t l'image de t dans k

B/ty; l'application t K t est alors une bijection de T sur k (sect. 1.1 et

1.2), dont la bijection inverse est le caractère 6, prolongé comme toujours
par 9 (0) 0. Soit d'autre part ß le caractère additif de k défini par ß (x)

ÇTr(x) (x e k); comme card (T) q, il existe évidemment un polynôme
à une variable Y et un seul, soit C (7), de degré q — 1, à coefficients dans

L, et tel que C (t) ß (t) pour tout t e T; posons

(2.1.1) C (Y) c0 +Cly+ + cq_1 Y«"1

Lemme 1. — Avec les notations du paragraphe 1, on a

(2.1.2) c01 ; cq_1 -ql(q-l); et Cj t(j)l(q-l)
pour 1 < j <

En effet, pour 0 <j < q- 1, on a, par définition de t (j), de 9 et de

C(E),

*(;') Z 0~j(x)ß(x)Z Z t~jC(t);
xek* teT* teT*
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