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Jacobsthal (1907). Pour ¢ = p = 1 (mod 4), la formule (3.4.1) peut, avec les
notations de I’appendice du chapitre 5 (sect. A.1, exemple 2) et compte de
la proposition 12 (ibid.), s’écrire N, = p — ) — A. Plus généralement, si
DeZ, et si N,(D) désigne le nombre de solutions de la congruence Y?
= DX — X3 (mod p) (ou, ce qui revient au méme, de ¥Y? = X3 — DX

(mod p)), on a
N0 = —(2) 2= (2) 1.
. )—p_<i)4 _<Z>4 ’

cette formule est due a Davenport-Hasse (1934), et a été redémontrée par
Rajwade (1970); Morlaye (1972) vient de donner une version élémentaire
de la démonstration de Davenport-Hasse. La courbe Y? = X3 — DJX,
considérée comme variété abélienne de dimension 1 définie sur Q, a servi
de « banc d’essal » aux conjectures de Birch et Swinnerton-Dyer ; voir Birch-
Swinnerton-Dyer (1965), ou Cassels-Frohlich, Algebraic Number Theory,
chap. XII (Academic Press, 1967).

CHAPITRE 7

THEOREME D’AX

Le résultat central de ce chapitre est le théoréme suivant, di 2 Ax (1964),
et qui précise le théoreme de Chevalley-Warning (chap. 3, sect. 1.1):

THEOREME 1. — Soient k un corps fini @ q = p’ éléments, F un polynéme
de degré d, a n variables et a coefficients dans k, et b le plus grand entier
strictement inférieur a n/d. Si alors N désigne le nombre de zéros de F dans
k", N est divisible par q°.

La démonstration de ce théoréme est un peu analogue a celle du théo-
réme 1 du chapitre 6 (ou plus précisément de son corollaire 1): elle consiste
(du moins en principe): (1) a exprimer N a ’aide de sommes de Gauss, donc
d’entiers du corps L des racines p (¢—1)-iémes de I'unité; (2) a calculer la
« valeur absolue 3-adique » de ces sommes en chaque idéal premier 3 de
L au-dessus de p; (3) & en déduire enfin 'inégalité | N |, <| ¢”

p’Oﬁl'lp
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désigne la valeur absolue p-adique dans Q: cette derniére inégalité équivaut
bien & ¢° | N.

En fait, on travaillera avec les valuations P-adiques, et non avec les
valeurs absolues; d’autre part, la phase (2) de la démonstration (qui est
indépendante de la phase (1)) sera traitée en premier, au paragraphe 1;
les phases (1) et (3) seront traitées au paragraphe 2. Quelques conséquences
ou généralisations du théoréme 1 (et notamment 1’extension du théoréme 1
au cas d’un systéme d’équations) sont indiquées au paragraphe 3.

§ 1. Relations de Siickelberger.

1.1. Soit k un corps fini & ¢ = p’ éléments. Notons w et { une racine
primitive (g— 1)-iéme et une racine primitive p-iéme de 1’unité dans le corps
des nombres complexes, posons K = Q(w), L = Q(w, Q) = K(7), et
soient 4 I’anneau des entiers de K et B I’anneau des entiers de L. Les théo-
rémes généraux sur la décomposition des idéaux premiers dans les corps
cyclotomiques (voir [3], chap. 3 et 5, ou [11], chap. IV) permettent d’énoncer :
(1.1.1) L’idéal pZ est non ramifié dans K, il se décompose dans A en
produit de g idéaux premiers de degré f: pA = p;p, ... p,; g est déterminé
par I’égalité fg = [K: Q], et chaque corps résiduel A/p; est isomorphe a k.
(1.1.2) Chaque idéal p; est totalement ramifié dans L, I’indice de ramifica-
tion étant égal & [L: K] = p — 1; la décomposition de p; dans B est de la
forme p;B = P27 1; le degré résiduel en P, | p; est égal a 1, et le corps
résiduel B/PB; s’identifie au corps résiduel 4/p;, donc 2 k.

Il résulte de (1.1.1) et (1.2.2) que l'idéal pZ se décompose dans B de la
fagon suivante:

(1.1.3) pZ = PP, P

Dans ce qui suit, on suppose choisis une fois pour toutes un idéal P, et

I'idéal p; correspondant; on les note simplement B et p, et on identifie B B
et A/p au corps k.

1.2.  Soit maintenant 7* le sous-groupe de L* engendré par ; T* est
cyclique, d’ordre ¢ — 1, et la restriction & T* de I’homomorphisme B
— BB = k est évidemment un isomorphisme de T* sur k*; Iisomorphisme

inverse k* — T* est un caractére multiplicatif d’ordre g — 1 de k, qu’on
notera 0.

1.3. Une derniére notation: pour tout élément non nul « de L, on
notera ord («) 'exposant de B dans la décomposition en facteurs premiers
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de I'1déal fractionnaire «B de B (ord est donc tout simplement la « valuation
P-adique normalisée » de L); les propriétés suivantes sont alors évidentes:
(1.3.1) Quels que soient «, f non nuls dans L, on a

ord («f) = ord(a) + ord (f); ord («+p) > inf(ord (), ord (B)).

(1.3.2) SiaeB, ona ord () >0.
(1.3.3) Siaek, onaord(e) =0 (mod p—1).
(1.3.4) Enfin, ord(p) = p — 1.

((1.3.4) résulte de (1.1.3); pour prouver (1.3.3), commencer par décomposer
dans K l'idéal premier a4 de A, puis utiliser (1.1.2)).

1.4. Soit alors j un entier rationnel, et considérons la somme de Gauss

(1.4.1) (077 ) = Zk*(?"j(X)ﬁ(X),

B étant le caractére additif de k défini par B (x) = 7" (xek; Tr désigne
comme toujours la trace relative & l'extension k/F,); le choix de w, ¢, B,
et d’une identification entre B/P et k, détermine enti¢rement 0 et f; la
somme de Gauss introduite en (1.4.1) ne dépend donc en fait que de j:
on posera pour simplifier ©(j) = © (077 I p); en outre, on pourra se borner
a étudier 7 (j) pour 0 <j < g — 1, puisque 6 est d’ordre g — 1. Cela
étant, la valuation P-adique ord (7 ( 7)) de 7 (j) est donnée par la proposition
suivante, due a Stickelberger:

PROPOSITION 1. — Soit j un entier tel que 0 <j < q — 1, et soit

J =Jjo +jip + ... +jf—1pf—1

[’écriture de j en base p, avec 0 <j, <p — 1 pouri =0, ..., f — 1; posons
0(j) =jo +ji + ... +jr—1 (somme des chiffres de j en base p) ; on a alors :

(1.4.2) ord (t(j)) = o (j).

Démonstration. — Pour tout entier j, posons a priori s () = ord (z (j));
il s’agit alors de prouver que si 0 <j < qg — 1, on a s(j) = a(j); or, la
fonction s posséde les propriétés (i) a (vi) ci-dessous:

(1) Quel que soit j, s (j) > 0; de plus, s (0) = 0.

En effet, 7 (j) est un entier de L, et 7(0) = — 1 est une umté de L.
(Pour I’égalité 7 (0) = — 1, voir chap. 5, sect. 2.2, (1)).
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| (ii) Quels que soient j et k, on a s (j+k) <s(j) + s (k). (k désigne ici un
~ entier: aucun risque de confusion avec le corps k).

Pour jou k = 0, il n’y a rien & prouver, puisque s (0) = 0; pourj + k
=qg—1,onas(j+k) = s(0) =0, et la encore, il n’y a rien a prouver,
- puisque s (j) et s (k) sont non négatifs. Supposons donc 0 <j < g — 1,
O<k<g-—1,etj+ k # q— 1; on a dans ce cas

(1.4.3) (Nt k) = n (077,07t (j+k)

(chap. 5, prop. 9, (ii)), et 'inégalité a démontrer résulte de la premiere for-
mule (1.3.1) et de (1.3.2), puisque la somme de Jacobi = (677, 67%) est
dans B.

(iii) Quels que soient j et k, on a s (j+k) = s(j) + s (k) (mod p — 1).

Pour j ou k = 0, il n’y a rien & prouver, puisque s (0) = O; pour j + k
=g—1,onart(j)rk) = g0 (=1) = p/6(—1), donc, compte tenu de
- (1.3.1) et (1.3.4), s(j) + s(k) = f(p—1) =0 (mod p — 1); on a d’autre
- part s(j+k) = s(0) = 0; la congruence a démontrer se trouve donc
~ établie dans ce cas particulier (la valeur de 7 (j) 7 (k) résulte de la prop. 7 du
~ chap. 5). Supposons maintenant 0 < j < g —1,0<k<g—1letj+ k
£ g — 1; I’égalité (1.4.3) et la premicre formule (1.3.1) donnent

s() +s(k) = s(j+k) 4+ ord(n(077,079);

. la congruence a démontrer résulte alors de (1.3.3), puisque la somme de
Jacobi 7 (077, 07F) est dans K.

(iv) Quels que soient j, et i >0, on a s (jp') = s (j).

En effet, pour tout x ek, on a 677 (x) =077 (xpi); on a ¢également
Tr (xpi) = Tr (x), puisque x et x?* sont conjugués sur F, (chap. 1, prop. 8);
il suffit alors de faire le changement de variable y = x?* dans la formule de
définition de la somme de Gauss 7 (jp’) pour obtenir 7 (j) = 7(jp'), d’olt
évidemment I’égalité & démontrer.

(v) Pour la valeur particuliére j = 1, on a s (1) = 1.

Posons A = { — 1; le polyndme minimal de { sur X (ou sur Q) étant
X7l 4+ L+ X+ 1 =(XP-1D)(X—-1), le polyndbme minimal de A est
évidemment ((X+1)’—1)/X = X*~' + pX?™? + ... + p, donc un poly-
nome d’Eisenstein relativement a p ([11], chap. I1, § 5): il en résulte que

(1.4.4) ord(%) = 1

L’Enseignement mathém., t. XIX, fasc. 1-2. 5
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(utiliser (1.3.4) et la deuxiéme formule (1.3.1)). Ecrivons d’autre part la
définition de 7 (1) en y remplagant { par 1 + A:

() = Y} 07 A +HTH,

xek*

soit, en développant (14 4)T"™) par la formule du bindme et en utilisant
(1.4.4):

(1.4.5) (1) = Y 071 (x)(1+4r(x)) (mod P?),

xek*

r (x) désignant 'unique entier rationnel compris entre 0 et p — 1 et dont
I'image dans F, soit égale a Tr (x). Dans le second membre de (1.4.5), faisons
le changement de variable £ = 0 (x); comme r(x) =1t + P + ... + pf=t
(mod ) (chap. 1, (3.2.1)), la congruence (1.4.5) devient

(1.4.6) t() =Yt + Y 7 ¢+ 4. +t277)  (mod B?);

te T* te T*

mais T* est le groupe des racines (g—1)-iémes de I'unité dans le corps des
nombres complexes; on a donc, pour tout entier rationnel u,

{q——l, siu=0 (modg-—1);

0, sinon;

> -

te T*
comme par ailleurs ¢ = p/ = 0 (mod P?), la congruence (1.4.6) se réduit a
(1.4.7) (1) = — 2 (mod P?);

d’ou évidemment, compte tenu de la deuxieme formule (1.3.1), s(1)
= ord (t (1)) = ord (4) = 1 (utiliser (1.4.4)), C.Q.F.D.

(vi) On aenfin I’égalité . s(j) = f(p—1) (g—2)/2.

0=j<qg—1

En effet, on a déja remarqué (voir la démonstration de (iii)) que

(1.4.8) s() +s(@—1-) =f(p-1;

comme 5(0) = s(g—1) = 0, la relation (1.4.8) donne, en faisant varier j
de 1 a ¢ — 2 et en additionnant,

>, (W+s@@—1-p)=2 3 () =f-D@-2),

0=j<q—-1 0=j<q-1

ce qui implique (vi).
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Ces diverses propriétés étant établies, prouvons maintenant (toujours en
i supposant 0 <j < g — 1) que o (j) = s(j); les propriétés (i), puis (v), puis
(i) et (iii), montrent d’abord que pour 0 <{j<<p — 1, on a s(j) =J
. = j, = 6 (j); les propriétés (ii) et (iv) donnent d’autre part

s() <s(o) +s(Uy) + ..o +50s-1);

comme 0 <j,<p—1pour i=0,..[f—1, ces deux remarques im-
pliquent, pour 0 <j < g — 1,

©(1.4.9) s(G) <jo 41+ e Fipm1 =0

’égalité s (j) = o (j) résulte alors de (1.4.9), de la propriété (vi), et de I’égalite
Y, o(j) =f(p—1)(g—2)/2, qui se vérifie facilement par récurrence sur

0=j<g—-1
f. La proposition 1 se trouve ainsi démontrée.

§ 2. Démonstration du théoréme 1.
Cette démonstration se fera en quatre étapes.

2.1. Introduction du polynéme C (Y). Soit T le sous-ensemble de B
formé de O et des éléments de 7*; pour tout ¢ € T, soit f 'image de ¢t dans k
= B/P; 'application ¢ > f est alors une bijection de T sur k (sect. 1.1 et
1.2), dont la bijection inverse est le caractére 6, prolongé comme toujours
par 0 (0) = 0. Soit d’autre part f le caractére additif de k£ défini par S (x)
= (7™ (x € k); comme card (T') = g, il existe évidemment un polyndme
a une variable Y et un seul, soit C (YY), de degré ¢ — 1, a coeflicients dans
L, et tel que C(¢) = f (f) pour tout ¢ € T; posons

(2.1.1) C(Y) =co+cy Y+ ...+ YT,
LEMME 1. — Avec les notations du paragraphe 1, on a
(21.2)  co =15 ¢41 = —qllg—1); et ¢; = t(j)/(g—1)

pour 1 <j <q—2.

En effet, pour 0 <<j <<q — 1, on a, par définition de 7 (j), de 0 et de
C(Y),

()= 2L 077®BE) = Y tTIp@D = Y I C@®;

xek* te T* teT
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il suffit alors, pour obtenir les relations (2.1.2), de remplacer, dans le membre
de droite, C () par son expression développée ¢, + c1t + ... + ¢, 2971,
et de remarquer comme au paragraphe 1 que

—1,stu=0 (modg-—1);
(2.1.3) Y = {q ot g —1)

te T* 0, sinon.
LEMME 2. — Avec les notations du paragraphe 1, on a, pour tout j tel que
0 <j<q—1, l’égalité

(2.1.4) ord(c;) = o (j).

S1 0 <j < g — 1, il suffit d’appliquer le lemme 1, la proposition 1, et
de remarquer que ord (1/(¢g—1)) =0. Si j=¢g —1, on a j, = j; = ...
=jr-y =p—1, donc o (j) = f(p—1); on a d’autre part (lemme 1)
ord (¢;) = ord(—g¢f(g—1)) = ord(g) = ord (p!) = ford(p) = f(p—1
(sect. 1.3); d’out ord (c;) = o (j) également pour j = g — 1.

2.2. Evaluation de N a l’aide des c;. Commengons par introduire un
supplément de notations; x = (x,, ..., X,) désignera un point quelconque
de k"*1; U désignera I’ensemble des suites u = (uy, ..., u,) d’entiers ra-
tionnels non négatifs telles que ||u|| = u; + ... + u, <d = deg (F);
enfin, si ue U, X" désignera le mondéme X,*! ... X", u’ désignera la suite
(1, uy, ..., u,), et X" désignera le mondme X, X," .. X, " = X, X"
convention analogue pour x" et x* si x e k"*1, etc.

Cela étant, on a (chap. 5, prop. 3)

(2.2.1) N =g "' Y B(xoF(y,....x));

xekn+1
d’autre part, on peut écrire (en notant a,(ue U) les coefficients de F).
F(Xy, ..., X,) = Y a, X", donc XoF (Xq, ..., X;) = Y a,X™; comme f est

ueU ue U
un caractére additif, (2.2.1) peut se réécrire

(2.2.2) N=g" Y ] Bax).

xekn+1 yeU

Posons alors, quels que soient ue U et x;€k, b, = 0(a,) et t; = 0 (x,);
posons également t = (¢y, ..., %,); on a b,eT, t;eT, bt eT, et bt
= aux“'; ainsi,

Blax") = C(bt") = 3 cbJt",

0=j=g—1
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/" signifiant évidemment #,7¢,7*! ... £,7*; et (2.2.2) devient

(2.2.3) N=q' Y J] Y ¢pbt".
 teTn+1l yelU 0=j=q~1
Soit M I’ensemble de toutes les applications de U dans {0, 1,...,q — 1}
(cest-a-dire I’ensemble de toutes les « fagons d’associer un j a chaque u »);
la distributivité de la multiplication par rapport a I’addition permet de
mettre le second membre de (2.2.3) sous la forme

q—l‘ Z Z I‘[ Cj(u)buj(u)tj(u)u' .

jeM teTn+1l yelU

Pour chaque j € M, posons b¥ = []5,/™ (b est donc un élément de T'),
ueU

dési " la suit
et acsignons par e; la suite

Yiu = (i, Y juy, ... i@ u,).

ueU

L’égalité (2.2.3) peut alors s’écrire

(2.2.4) N=qg 'Y by D t9.

jeM ueU te Tn+1

2.3. Réduction du probléeme. Dans (2.2.4), tous les termes du membre
de droite (abstraction faite du facteur ¢~ !) sont dans ’anneau B des entiers
de L; il suffit donc pour prouver le théoréme 1 de montrer ceci:

(2.3.1)  Quel que soit j € M, I’entier algébrique || Ciwy 2 t est divisible
ue U teTn+1

(dans B) par ¢°*1.

Convenons d’écrire g — 1 [ e j' sig — 1 divise chacune des n + 1 compo-
santes de ej', etg— 1) ej' dans le cas contraire; d’aprés (2.1.3), on a

[ g™, sie) =(0,0,...,0);

| 0,sig—1xe;

- (2.3.2 o = s i /
a ) terzn:+1 | (=11 q"7%, sie; #(0,0,...,0),sig — 1|e;,
| et si e; (C’est-a-dire e j' privé de sa premiére compo-
| sante) posséde exactement s composantes non nulles;

~ et il suffit en fait, pour établir (2.3.1), donc le théoréme 1, de prouver ceci:




LEMME 3. — Si je M est tel que e; soit différent de (0,0, ..., 0), soit
« divisible » par q — 1, et que e; posséde exactement s composantes non nulles,
alors ’entier algébrique q"~*° [ ¢, est divisible (dans B) par ¢"*'.
ueU

2.4. Démonstration du lemme 3. Pour tout u € U et tout j € M, écrivons
Ientier j (u) en base p:

j =jo() +j;(wp + ... +jf—1(“)Pf_1

O <j;(m)y<p—1; 0<<i<<f—1); ceci définit j; (u) pour 0 <i < f;
étendons cette définition en convenant de poser, pour tout entier rationnel
z, j, (W) = jizy (), ol i (2) est le reste de division de z par f; enfin, pour tout
entier rationnel s, posons

JP) = j_() +j;4(Wp + ... ’*‘].f—1—h(“)Pf“1

(les j® (u) sont les entiers rationnels déduits de j (u) par permutation cir-
culaire des chiffres de j (u) en base p). Il est clair qu’on ne change rien aux
égalités (2.3.2) en y remplagant j par j¥, ce qui équivaut a effectuer sur T
la permutation ¢ t*"; en particulier, cette substitution ne modifie pas la
valeur de s; ainsi, sous les hypothéses du lemme 3, on a

2.4.1) s@-D<llemll =11 2 jPwull <d ZUJ'(")(U)-

ue U

Mais ) j® (u) est la premiére composante de e;n,: c’est donc (toujours

ue U

avec les hypothéses du lemme 3) un entier strictement positif divisible par
g — 1; si (s/d)* désigne le plus petit entier supérieur ou égal a s/d, (2.4.1)
implique alors

(=D (s/d)* < ZUJ'”')(U);

dans cette égalité, donnons a 4 les valeurs O, 1, ..., f — 1, et additionnons;
compte tenu de la définition de j® (u), il vient

flg—=1)(s/d)* < Z z Z Ji—n(w) Pi >

O<h=f—-1uelU O0Zi=f~-1

ou encore (en intervertissant ’ordre des sommations, en utilisant la notation
o (j), et en remplagant g par p’),

SO =D <@+ 4+p+1) ZUa(j (w).



71 —

Comme Y, o (j(w)) = ord ( [ ¢;()) (lemme 2 et premicre formule (1.3.1)),
ue U

ue U

cette derniére inégalité peut s’écrire, aprés division par p/ ~! + ... + p + 1,
fp=1)(s/d)* < ord (] ¢
ueU
compte tenu de (1.3.1) et (1.3.4), on a alors
(2.4.2) flp—=1)(n—s+(s/d)*) < ord (¢""* Hjcj(u)).

Mais le symbole ord est relatif & n importe quel idéal premier P de B divisant
p, et on a (sect. 1.1, (1.1.3)) pB = J[ B?~*, donc, puisque ¢ = p’, ¢B

. SBip
= [] B/~ 1; ainsi, étant donné (2.4.2), il suffit, pour prouver le lemme 3
Plr
(donc le théoréme 1), d’établir la propriété suivante:

(2.4.3) Pour tout entier s tel que 0 <s < n, on a [’'inégalité
n—s+(/d*>b+1.

Démontrons (2.4.3); il est clair que pour tout entier positif 7, on a
t > ((s+1)/d)* — (s/d)*: car, pour t = 0, les deux membres sont €gaux,
et d’autre part le membre de droite, considéré comme fonction de ¢, croit
« moins vite » que ¢; dans cette inégalité, faisons alors # = n — s; il vient

n— s+ (s/d* > n/d)*;
mais par définition méme (n/d)* = b + 1: ce qui prouve (2.4.3) et achéve la
démonstration du théoréme 1.
§ 3. Généralisations et compléments.

3.1. Le théoréme 1 s’étend sans difficulté au cas d’un systéme d’équa-
tions:

THEOREME 2. — Soit Fy, ..., Fy une famille de s polynémes de degrés res-
pectifs dy, ..., dy, a n variables et a coefficients dans k ; posons d = d; + ...
+ d,, et soit b le plus grand entier strictement inférieur a n/d. Si alors N
désigne le nombre de solutions dans k" du systéme d’équations

(3.1.1) F, =0,..,F, =0,
N est divisible par q".

Démonstration. — On se sert du lemme combinatoire suivant:
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Lemme 1. — Soit V, ...,V une famille de s ensembles finis. Posons
V= N V, et, pour toute partie R de S = {1,..,s}, posons Uy
i=j<s

= UV, (pour R = @, Uy = ). On a alors
JER

(3.1.2) card (V) = Y (= )R =1 card (Up) .
RcS

Ce lemme se prouve facilement par récurrence sur s. Appliquons-le a la
démonstration du théoréme 2: pour tout je S = {1, ..., s}, soit V; I’en-
semble des zéros dans k" de I'unique polynéme F;; avec les notations du
lemme, V est alors I’ensemble des solutions dans k" du systéme (3.1.1), on
a N = card (V), et (3.1.2) montre qu’il suffit de prouver que, pour chaque
R c S, card (Uy) est divisible par ¢°. Si R = &, Uy = @, card (Ug) = 0,
et il n’y a rien & démontrer; sinon, posons Fr = [] F; : Uy est alors I'en-

JjeR

semble des zéros dans k" du polyndme Fy, et si by est le plus grand entier
strictement inférieur & n/deg (Fy), le théoréme 1 montre que card (Uy) est

divisible par ¢"®; mais deg (Fg) = Y deg(F;) < ) deg(F,) = d, d’ou
jeR JjeS

njd < n/deg (Fg) et b < bg; card (Uy), divisible par ¢°R, est divisible a for-

tiori par ¢°, C.Q.F.D.

3.2. Le théoréme 1, pour une équation, est « le meilleur possible » au
sens suivant: quels que soient n et d, il existe F, de degré d, a n variables et
a coefficients dans k, tel que (avec les notations du théoréme 1) q" soit la
plus haute puissance de q divisant N. (Prendre par exemple pour F' le poly-
nome G, ; = X; ... X;+ Xgpq o Xog+ oo + Xpm1yae1 - Xpg + Xpgr1
... X,; pour ce polyndme, le nombre N peut étre déterminé explicitement &
’aide du théoréme 6 du chapitre 4: on laisse au lecteur le soin de faire les
calculs en détail). En revanche, le théoréme 2, pour un systéeme de s équa-
tions, peut étre amélioré; en fait, on a le résultat suivant, da a Katz (1971):

THEOREME 3. — Mémes données et notations que dans le théoréme 2. Si
6 = sup dj, et si b, désigne le plus grand entier supérieur ou égal a
1=j<s

(n—d)/6, alors N est divisible par ¢"'.

Ce théoréme 3 (qui, pours = 1, coincide évidemment avec le théoreme 1)
est lui-méme « le meilleur possible »; en fait, on peut montrer (en utilisant
des polyndmes du type G, , ci-dessus et des polyndOmes normiques, et en
raisonnant comme au chapitre 4, section 4.3) que, quels que soient n, s, et
dy, ..., d, il existe une famille F., ..., F; satisfaisant aux hypothéses des
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théorémes 2 et 3 et telle que N soit égal exactement a g”*. Pour la construction
d’une telle famille de polyndmes, et pour la démonstration du théoréme 3,
voir Katz (1971) (respectivement § 4 et § 3); voir également les Notes en fin
de chapitre.

3.3. Pour des équations de forme particuliére, le théoréme 1 peut dans
certains cas étre amélioré. Ainsi, en combinant le théoréme 1 du chapitre 6
avec les « relations de Stickelberger » (prop. 1), on obtient sans difficulté
le résultat suivant:

THEOREME 4. — Soit F = a, X;" + ... + a,X,*™ un polynome diagonal
a coefficients dans le corps premier k = F¥,. Pour i = 1,..,n, posons 0,
= (p—1,d,), et soit b, le plus grand entier strictement inférieur a 1/5,
+ ... + 1/8,. Alors, si aek, et si N désigne le nombre de solutions dans k"
de 1’équation F = a, N est divisible par p™.

Ce résultat reste d’ailleurs vrai sur un corps fini quelconque k 4 ¢ = p”’
¢léments, a condition de supposer que chaque 0; = (¢—1, d;) divise p — 1:
N est alors divisible par ¢*2; cet exposant b, peut encore étre « amélioré »
sia = 0 (voir Joly (1971)). On notera I’analogie entre le théoréme 4 ci-dessus
et le théoréme 3 du chapitre 4.

Notes sur le chapitre 7

§ 1: la démonstration de la proposition 1 donnée ici est due a Hilbert
(« Zahlbericht »); cette proposition est en fait une conséquence d’un résultat
plus précis (« congruences de Stickelberger »):

(D)= —2Pp(j) (mod Pr*Y)

(avec par définition p (j) = jo !ji !...j,—1 1) voir Stickelberger (1890),
Davenport-Hasse (1934), ou [11], chap. IV, § 3. Pour une interprétation
analytique p-adique de ces congruences, voir Dwork (1960).

§ 2-3: dans Ax (1964), le cadre de la démonstration du théoréme 1 est,
non pas le corps de nombres L = Q (w, {), mais le corps Q, (w, §) des
racines p (g—1)-iémes de I'unité dans une cldture algébrique du corps
p-adique Q, (avec les notations du § 1, ce corps Q, (v, {) est d’ailleurs
isomorphe a Loy, completé P-adique de L); a cette différence pres, la
démonstration donnée ici est exactement celle d’Ax; elle est (selon Ax
lui-méme) « suggérée par certaines idées de Dwork [dans sa démonstration
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de la rationalité des fonctions z€ta des variétés algébriques] » (a ce sujet, voir
chap. 9, § 2). La démonstration du théoréme 3 donnée par Katz (1971) utilise
également (et directement) les méthodes analytiques p-adiques de Dwork.

CHAPITRE §

« HYPOTHESE DE RIEMANN »

Soient k£ un corps fini a g éléments, #» un entier > 1, F un polyndme
a n variables et & coefficients dans k, et N le nombre de solutions dans k"
de I’équation F = 0. On a remarqué aux chapitres 4 (sect. 4.2, th. 6, cor. 1)
et 6 (sect. 1.2, th. 1, cor. 1, 2, 3; sect. 2.1, th. 2, cor. 1, 2) que, lorsque F
est multilinéaire ou diagonal (et qu’il satisfait en outre a certaines hypothéses
qui équivalent a supposer qu’il est absolument irréductible), alors N est de
lordre de grandeur de ¢"~ !, I'exposant n — 1 s’interprétant d’ailleurs
comme dimension de 'hypersurface affine F = 0. Le but du présent cha-
pitre est d’étendre ce résultat a n’importe quel ensemble algébrique, affine
ou projectif, absolument irréductible, défini sur k — autrement dit, & n’im-
porte quelle variété définie sur k; si V est une telle variété, et si N désigne
maintenant le nombre de points de V rationnels sur &k, on a en fait (§ 4, th. 4)

N =q" +0(q~ %),

g étant considéré comme « infiniment grand », et la constante impliquée
par le symbole O ne dépendant que de r = dim (V'), du degré de V, et de la
dimension de I’espace affine ou projectif ou V se trouve plongée.

Le théoréme 4 (pour r quelconque) se déduit par récurrence sur r du
cas particulier ou » = 1, et ol V' est donc une courbe: ce cas est examiné en
détail aux paragraphes 1 (courbes de genre 0), 2 (courbes de genre 1) et 3
(courbes de genre quelconque). Le résultat central de ce chapitre est d’ailleurs
le théoréme 3 (§ 3), dit « hypothése de Riemann » pour la courbe V: on
verra en effet (chap. 9, sect. 3.2) que ce théoréme est équivalent au résultat
suivant: tous les zéros de la fonction { (V; s) ont une partie réelle égale a 1/2.

Le langage géométrique utilisé dans ce chapitre (et dans le suivant) est
essentiellement celui des Foundations de Welil, c’est-a-dire le langage
« classique » (& une différence prés: si V est un ensemble algébrique défini
sur k, on identifie V a [’ensemble de ses points algébriques sur k; il en résulte
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