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Jacobsthal (1907). Pour q p 1 (mod 4), la formule (3.4.1) peut, avec les

notations de l'appendice du chapitre 5 (sect. A.l, exemple 2) et compte de

la proposition 12 (ibid.), s'écrire 7V4 p — X — 1. Plus généralement, si

De Z, et si 7V4(D) désigne le nombre de solutions de la congruence Y2

DX — X3 (mod p) (ou, ce qui revient au même, de Y2 X3 — DX
(mod p)), on a

cette formule est due à Davenport-Hasse (1934), et a été redémontrée par
Rajwade (1970); Morlaye (1972) vient de donner une version élémentaire
de la démonstration de Davenport-Hasse. La courbe Y2 X3 — DX,
considérée comme variété abélienne de dimension 1 définie sur Q, a servi
de « banc d'essai » aux conjectures de Birch et Swinnerton-Dyer; voir Birch-
Swinnerton-Dyer (1965), ou Cassels-Fröhlich, Algebraic Number Theory,
chap. XII (Academic Press, 1967).

Le résultat central de ce chapitre est le théorème suivant, dû à Ax (1964),
et qui précise le théorème de Chevalley-Warning (chap. 3, sect. 1.1):

Théorème 1. — Soient k un corps fini à q pf éléments, F un polynôme
de degré d, à n variables et à coefficients dans k, et b le plus grand entier
strictement inférieur à njd. Si alors N désigne le nombre de zéros de F dans

kn, N est divisible par qb.

La démonstration de ce théorème est un peu analogue à celle du théorème

1 du chapitre 6 (ou plus précisément de son corollaire 1): elle consiste

(du moins en principe) : (1) à exprimer N à l'aide de sommes de Gauss, donc
d'entiers du corps L des racines p {q— l)-ièmes de l'unité; (2) à calculer la

« valeur absolue ^3-adique » de ces sommes en chaque idéal premier $ de

L au-dessus de p; (3) à en déduire enfin l'inégalité | N \p < | qb \p, où | \p

Chapitre 7

THÉORÈME D'AX
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désigne la valeur absolue j?-adique dans Q : cette dernière inégalité équivaut
bien à qb | N.

En fait, on travaillera avec les valuations ^3-adiques, et non avec les

valeurs absolues; d'autre part, la phase (2) de la démonstration (qui est

indépendante de la phase (1)) sera traitée en premier, au paragraphe 1 ;

les phases (1) et (3) seront traitées au paragraphe 2. Quelques conséquences

ou généralisations du théorème 1 (et notamment l'extension du théorème 1

au cas d'un système d'équations) sont indiquées au paragraphe 3.

§ 1. Relations de Stickelberger.

1.1. Soit k un corps fini à q pf éléments. Notons co et Ç une racine

primitive («q— l)-ième et une racine primitive j^-ième de l'unité dans le corps
des nombres complexes, posons K Q (co), L Q (co, Z) — K (Q, et
soient A l'anneau des entiers de K et B l'anneau des entiers de L. Les
théorèmes généraux sur la décomposition des idéaux premiers dans les corps
cyclotomiques (voir [3], chap. 3 et 5, ou [11], chap. IV) permettent d'énoncer:
(1.1.1) L'idéal pX est non ramifié dans K, il se décompose dans A en

produit de g idéaux premiers de degré f:pA pxp2 pg; g est déterminé

par l'égalité fg [K: Q], et chaque corps résiduel A/pt est isomorphe à k.
(1.1.2) Chaque idéal pf est totalement ramifié dans L, l'indice de ramification

étant égal à [L: K] p — 1 ; la décomposition de pf dans B est de la
forme iptB %p"lm9 le degré résiduel en | p4 est égal à 1, et le corps
résiduel B/Vßi s'identifie au corps résiduel A/yb donc à k.
Il résulte de (1.1.1) et (1.2.2) que l'idéal pX se décompose dans B de la
façon suivante:

(1.1.3) pX

Dans ce qui suit, on suppose choisis une fois pour toutes un idéal % et
l'idéal pf correspondant; on les note simplement $ et p, et on identifie B/*p
et A/p au corps k.

1.2. Soit maintenant J* le sous-groupe de L* engendré par œ; E* est
cyclique, d'ordre q - 1, et la restriction à T* de l'homomorphisme B
-+B/SÇ k est évidemment un isomorphisme de T* sur k* ; l'isomorphisme
inverse k* -> T* est un caractère multiplicatif d'ordre q — 1 de /t, qu'on
notera 0.

1.3. Une dernière notation: pour tout élément non nul a de L, on
notera ord (a) l'exposant de dans la décomposition en facteurs premiers
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de l'idéal fractionnaire ocB de i?.(ord est donc tout simplement la « valuation
^-adique normalisée » de L) ; les propriétés suivantes sont alors évidentes :

(1.3.1) Quels que soient oc, ß non nuls dans L, on a

ord (ocß) ord (oc) + ord (ß) ; ord (oc+ß) > inf (ord (a), ord (/?))

(1.3.2) Si a e B, on a ord (a) > 0.

(1.3.3) Si oceK, on a ord (oc) 0 (mod p— 1).

(1.3.4) Enfin, ord (p) p - 1.

((1.3.4) résulte de (1.1.3); pour prouver (1.3.3), commencer par décomposer
dans K l'idéal premier ocA de A, puis utiliser (1.1.2)).

1.4. Soit alors j un entier rationnel, et considérons la somme de Gauss

(1.4.1) T(0->I/O E e~J(x)ß(x),
xek*

ß étant le caractère additif de k défini par ß (x) ÇTr(-x) (xek; Tr désigne

comme toujours la trace relative à l'extension k/¥p); le choix de co, Ç, ty,
et d'une identification entre B/Sß et k, détermine entièrement 6 et ß; la

somme de Gauss introduite en (1.4.1) ne dépend donc en fait que de j:
on posera pour simplifier t (j) % (9~J \ß); en outre, on pourra se borner
à étudier t (J) pour 0 <y < q — 1, puisque 6 est d'ordre q — 1. Cela

étant, la valuation ^3-adique ord (t (j)) de t (j) est donnée par la proposition
suivante, due à Stickelberger :

Proposition 1. — Soit j un entier tel que 0 < j < q — 1, et soit

j io +hV + ••• +jf-iPf~1
l'écriture de j en base p, avec 0 < /£ <p — 1 pour i — 0, 1; posons
a (j) j0 + j\ + + jf_1 (somme des chiffres de j en base p); on a alors :

(1.4.2) ord (t (j)) a(j).Démonstration. — Pour tout entier j, posons a priori 5(7) ord (t (j)) ;

il s'agit alors de prouver que si 0 <7 < q — 1, on a s (/) <7 (y); or, la

fonction s possède les propriétés (i) à (vi) ci-dessous :

(i) Quel que soit j, s (j) > 0 ; de plus, s (0) 0.

En effet, t (j) est un entier de L, et t (0) — 1 est une unité de L.
(Pour l'égalité t (0) - 1, voir chap. 5, sect. 2.2, (i)).
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(ii) Quels que soient j et k, on a s (j+k) < .s (j) + s (k). (k désigne ici un

entier: aucun risque de confusion avec le corps k).

Pour j ou k 0, il n'y a rien à prouver, puisque ^ (0) 0 ; pour j + k

q - 1, on a s {j+k) s (0) 0, et là encore, il n'y a rien à prouver,
puisque s (j) et s (k) sont non négatifs. Supposons donc 0 <j < q — 1,

0 < k < q — 1, Qtj + k + q— 1; ona dans ce cas

(1.4.3) T(;)T(fc) TC(0-',0-*)T (j+k)
(chap. 5, prop. 9, (ii)), et l'inégalité à démontrer résulte de la première
formule (1.3.1) et de (1.3.2), puisque la somme de Jacobi n (9~j, 9~k) est

dans B.

(iii) Quels que soient j et k, on a s (j+k) s (j) + s (k) (mod p — 1).

Pour j ou k — 0, il n'y a rien à prouver, puisque s (0) 0; pour j + k
q — 1, on a t (j) t (k) q9J — 1) pf6j(— 1), donc, compte tenu de

(1.3.1) et (1.3.4), s(j) + s (k) f(p— 1) 0 (mod p — 1); on a d'autre

part s (j+k) s (0) 0; la congruence à démontrer se trouve donc
établie dans ce cas particulier (la valeur de t (j) t (k) résulte de la prop. 7 du

chap. 5). Supposons maintenant 0 < j < q — 1, 0 < k < q — 1 et j + k
+ q — 1; l'égalité (1.4.3) et la première formule (1.3.1) donnent

s(j)+ s (k) s (j+k) + ord ;

la congruence à démontrer résulte alors de (1.3.3), puisque la somme de

Jacobi 7i (9~J\ 6~k) est dans K.

(iv) Quels que soient j, et i > 0, on a s (jpl) s (j).

En effet, pour tout x e k, on a 6~jpl (x) 9~j (xpl); on a également
Tr (xpl) Tr (x), puisque x et xpi sont conjugués sur Fp (chap. 1, prop. 8);
il suffit alors de faire le changement de variable y xpl dans la formule de

définition de la somme de Gauss t (jpl) pour obtenir t (j) t (//?'), d'où
évidemment l'égalité à démontrer.

(v) Pour la valeur particulière j — 1, on a s (\) 1.

Posons 2 Ç — 1 ; le polynôme minimal de Ç sur (ou sur Q) étant
Xp~1 + + X + 1 (Xp— l)/(X— 1), le polynôme minimal de X est
évidemment ((X+l)p-l)/X Xp~x + pXp~2 + + p, donc un
polynôme d'Eisenstein relativement à p ([11], chap. II, § 5): il en résulte que

(1.4.4) ord (2) 1

L'Enseignement mathém., t. XIX, fasc. 1-2. 5
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(utiliser (1.3.4) et la deuxième formule (1.3.1)). Ecrivons d'autre part la
définition de x (1) en y remplaçant Ç par 1 -f X:

T(1) Ys r1(x)(i+A)r'<»),
xek*

soit, en développant (l + X)TrM par la formule du binôme et en utilisant
(1-4.4):

(1.4.5) t(1) s £ r1 (*)(!+Ar (x)) (mod iß2),
xek*

r (x) désignant l'unique entier rationnel compris entre 0 et p — 1 et dont
l'image dans Fp soit égale à Tr {x). Dans le second membre de (1.4.5), faisons
le changement de variable t 6 (x); comme r (x) t + tp + -f tp^~l

(mod $) (chap. 1, (3.2.1)), la congruence (1.4.5) devient

(1.4.6) t(l) s X rl + E r1(t+tp(modip2);
teT* teT*

mais T* est le groupe des racines (q — l)-ièmes de l'unité dans le corps des

nombres complexes; on a donc, pour tout entier rationnel w,

iq
— 1 si u ~ 0 (mod q — 1) ;

n0, sinon;

comme par ailleurs q pf 0 (mod 'p2), la congruence (1.4.6) se réduit à

(1.4.7) t (1) — À (mod^2);

d'où évidemment, compte tenu de la deuxième formule (1.3.1), s(l)
ord (r (1)) ord(A) 1 (utiliser (1.4.4)), C.Q.F.D.

(vi) On a enfin l'égalité ]T s (j) f(p — 1) (q — 2)/2.
0?=j<q-1

En effet, on a déjà remarqué (voir la démonstration de (iii)) que

(1-4.8) s(j)+ s(q-l-j) =f(p-ï);
comme £ (0) — £(#—1) 0, la relation (1.4.8) donne, en faisant varier j
de 1 à q — 2 et en additionnant,

E (s(j) + s(q-l-j))2 Y s(j) f(p-l)(q-2),
0^j<q~l 0^j<q~l

ce qui implique (vi).
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Ces diverses propriétés étant établies, prouvons maintenant (toujours en

supposant 0 <7 < q - 1) que a (/) s (7); les propriétés (i), puis (v), puis

(ii) et (iii), montrent d'abord que pour 0 <7 <7? — 1, on a ^ (7) j
y0 (7(7); les propriétés (ii) et (iv) donnent d'autre part

s(j)<s(jo) + s(ji) + + sO/-i);

comme 0 <y'f <77 - 1 pour i 0, 1, ces deux remarques
impliquent, pour 0 <7 < q — 1,

(1.4.9) s(7) <7o +7i + ..• + Jf-i Ö"(7) ;

l'égalité s (7) cr (7) résulte alors de (1.4.9), de la propriété (vi), et de l'égalité

£ a (7) f{p— 1) (<7 — 2)/2, qui se vérifie facilement par récurrence sur
0^7<g-l
/. La proposition 1 se trouve ainsi démontrée.

§ 2. Démonstration du théorème 1.

Cette démonstration se fera en quatre étapes.

2.1. Introduction du polynôme C(Y). Soit T le sous-ensemble de B
formé de 0 et des éléments de T* ; pour tout t eT, soit t l'image de t dans k

B/ty; l'application t K t est alors une bijection de T sur k (sect. 1.1 et

1.2), dont la bijection inverse est le caractère 6, prolongé comme toujours
par 9 (0) 0. Soit d'autre part ß le caractère additif de k défini par ß (x)

ÇTr(x) (x e k); comme card (T) q, il existe évidemment un polynôme
à une variable Y et un seul, soit C (7), de degré q — 1, à coefficients dans

L, et tel que C (t) ß (t) pour tout t e T; posons

(2.1.1) C (Y) c0 +Cly+ + cq_1 Y«"1

Lemme 1. — Avec les notations du paragraphe 1, on a

(2.1.2) c01 ; cq_1 -ql(q-l); et Cj t(j)l(q-l)
pour 1 < j <

En effet, pour 0 <j < q- 1, on a, par définition de t (j), de 9 et de

C(E),

*(;') Z 0~j(x)ß(x)Z Z t~jC(t);
xek* teT* teT*
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il suffit alors, pour obtenir les relations (2.1.2), de remplacer, dans le membre
de droite, C (t) par son expression développée c0 + cxt + +
et de remarquer comme au paragraphe 1 que

Iq
— 1 si u 0 (mod q — 1) :

0, sinon.

Lemme 2. — Avec les notations du paragraphe 1, on a, pour tout j tel que
0 <y < q — 1, l'égalité

(2.1.4) ord (Cj) <r (j).

Si 0 <y < q — 1, il suffit d'appliquer le lemme 1, la proposition 1, et
de remarquer que ord (l/(q— 1)) 0. Si j # — 1, on a y0 j\

p — 1, donc ö" (j) =f(p—l); on a d'autre part (lemme 1)

°rd (cj) oxd(-q/(q-l)) ord ordQ/) /ord (/>) f(p-l)
(sect. 1.3); d'où ord (c,) a (j) également pour j — q — 1.

2.2. Evaluation de N à l'aide des Cj. Commençons par introduire un
supplément de notations; x (x0, xn) désignera un point quelconque
de kn+1; U désignera l'ensemble des suites u (ul9...,un) d'entiers
rationnels non négatifs telles que ||u||=w1 + + w„<<i deg(F);
enfin, si u e U, Xu désignera le monôme X±ul XnUn, u' désignera la suite

(1, ul9 un), et Xw désignera le monôme X0X±U1 XnUtl X0XU;
convention analogue pour xu et xu si xekn+1, etc.

Cela étant, on a (chap. 5, prop. 3)

(2.2.1) N=q~l X ß{x
xekn +1

d'autre part, on peut écrire (en notant öu(ue U) les coefficients de F)
F(XU Xn) donc X0F(XU Xn) ***''> comme ß est

ueU usU
un caractère additif, (2.2.1) peut se réécrire

(2.2.2) N^q'1 £ Ylß(ay).
xet» +1 ueU

Posons alors, quels que soient u e U et e k, bu 6 (au) et tt 0(xt);
posons également t (t0,...,tn); on a bueT, butu'eT, et 5utu'

auxu'; ainsi,

ß(ay)c(but"')X
O^j^q ~ 1
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tjV signifiant évidemment t0Jt1Jul...tnjUn; et (2.2.2) devient

(2.2.3) N q'1£ 11 E CjbJtjW.
teTn + l ||6 t/ O^j^q—l

Soit M l'ensemble de toutes les applications de U dans { 0, 1,..., q — 1 }

(c'est-à-dire l'ensemble de toutes les « façons d'associer un j à chaque u ») ;

la distributivité de la multiplication par rapport à l'addition permet de

mettre le second membre de (2.2.3) sous la forme

4-11 z n^(u)V(u)t^u'.
je M teTn +1 ueU

Pour chaque j e M, posons MJ) J} &UJ(U) (bU) est donc un élément de T),
xx eV

et désignons par e/ la suite

£ j(u) u' (I)(u), Xi(u)"i> / (»)<)•
u eP

L'égalité (2.2.3) peut alors s'écrire

(2.2.4) <Tl E *ü) n <V(u) I te/-
jeM us 1/ teTn + l

2.3. Réduction du problème. Dans (2.2.4), tous les termes du membre
de droite (abstraction faite du facteur q'1) sont dans l'anneau B des entiers
de L; il suffit donc pour prouver le théorème 1 de montrer ceci:

(2.3.1) Quel que soit j e M, l'entier algébrique J^[ cj(u) £ fi' est divisible
ue U te Tn +1

(dans B) par qb+1.

Convenons d'écrire q — l \ e/ si q — l divise chacune des n + 1 composantes

de e/, et q — 1 J( e/ dans le cas contraire; d'après (2.1.3), on a

(2.3.2) X te/
te Tn + 1

nn+ 1 si e/ (0,0,..., 0) ;

0, si q— 1 Xe/ ;

(q- l)s+1 q"~s,si e/ # (0,0,..., 0) si 1 | e/,
et si e, (c'est-à-dire e/ privé de sa première composante)

possède exactement 5 composantes non nulles ;

et il suffit en fait, pour établir (2.3.1), donc le théorème 1, de prouver ceci:
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Lemme 3. — Si y g M est tel que e/ soit différent de (0, 0, 0), soit
« divisible » par q — 1, et que e7- possède exactement s composantes non nulles;
alors rentier algébrique qn s Y\ cj(u) est divisible (dans B) par qb+1.

ueU

2.4. Démonstration du lemme 3. Pour tout u e £/ et tout y e M, écrivons
l'entier y (u) en base p :

;(«) io («) +J'i(u)jP + ••• + J/-1 (u)/^'
(0 <./i (u) — 1 ; o <1 </ — 1); ceci définit jt (u) pour 0 < / < /;
étendons cette définition en convenant de poser, pour tout entier rationnel

zjz (u) yi(z) (u), où i (z) est le reste de division de z par/; enfin, pour tout
entier rationnel h, posons

j(h\u)=7-a(m) +Ji~h(»)p + ••• +jf-i-h(») Pf~'

(les y(/,) (u) sont les entiers rationnels déduits de y (u) par permutation
circulaire des chiffres de y (u) en base p). Il est clair qu'on ne change rien aux
égalités (2.3.2) en y remplaçant y par ßh\ ce qui équivaut à effectuer sur T
la permutation t tph; en particulier, cette substitution ne modifie pas la
valeur de s; ainsi, sous les hypothèses du lemme 3, on a

(2.4.1) s(q-l)<II e,(Ä) 11 11 X u) u 11 < £ 7(A)(ii)
ue U ue U

Mais £y(A)(u) est la première composante de e^: c'est donc (toujours
ue U

avec les hypothèses du lemme 3) un entier strictement positif divisible par
q — 1; si (sjd)* désigne le plus petit entier supérieur ou égal à s/d, (2.4.1)

implique alors

E /"Vu) ;
ue U

dans cette égalité, donnons à h les valeurs 0, 1, ...,/ — 1, et additionnons;
compte tenu de la définition de y(A) (u), il vient

/(«-i) («A0* < E E E
O^h^f-l ue U

ou encore (en intervertissant l'ordre des sommations, en utilisant la notation

o (y), et en remplaçant q par pf),

f(pf<(p/_1 + ...+jP + l) E ff0'(«))-
ue U
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Comme £ a (7(u)) ord f] ci(u)) (lemme 2 et première formiile (1.3.1)),
u eU ueU

cette dernière inégalité peut s'écrire, après division par pf 1 + + p + 1,

f(p -1) (s/d)* < ord n O(u)) '
ue U

compte tenu de (1.3.1) et (1.3.4), on a alors

(2.4.2) f(p-l)(n-s+(s/dr) < ord(^"s nO(u))-
u eU

Mais le symbole ord est relatif à n 'importe quel idéal premier ^3 de B divisant

p, et on a (sect. 1.1, (1.1.3)) pB n^p l> donc> Puisclue <1 Pf>

J"] 1}; ainsi, étant donné (2.4.2), il suffit, pour prouver le lemme 3

$1*
(donc le théorème 1), d'établir la propriété suivante:

(2.4.3) Pour tout entier s tel que 0 </7, on a l'inégalité

n — s + (sjd)* > b + 1

Démontrons (2.4.3); il est clair que pour tout entier positif t, on a

t >((j+ 0/d)* — (sjd)*: car, pour t 0, les deux membres sont égaux,
et d'autre part le membre de droite, considéré comme fonction de t, croît
« moins vite » que t; dans cette inégalité, faisons alors t n — s; il vient

n — s + (sjd)* > (n\d)* ;

mais par définition même (;n/d)* b + 1 : ce qui prouve (2.4.3) et achève la
démonstration du théorème 1.

§ 3. Généralisations et compléments,

3.1. Le théorème 1 s'étend sans difficulté au cas d'un système d'équations

:

Théorème 2. — Soit Fu Fs une famille de s polynômes de degrés
respectifs du ds, à n variables et à coefficients dans k ; posons d1 di +
+ ds, et soit b le plus grand entier strictement inférieur à n/d. Si alors N
désigne le nombre de solutions dans kn du système d'équations

(3.1.1) F,0,

N est divisible par qh.

Démonstration. — On se sert du lemme combinatoire suivant:
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Lemme 1. — Soit Vl9 Vs une famille de s ensembles finis. Posons

V fi Vp eU pour toute partie R de S {1,s}, posons UR

— U Vj (pour R 0, UR — 0). On a alors
je R

(3.1.2) card (F) £ (-!)«"*(*>-1 card (UR)
RcS

Ce lemme se prouve facilement par récurrence sur .y. Appliquons-le à la
démonstration du théorème 2: pour tout j e S { 1, s }? soit Fy
l'ensemble des zéros dans kn de l'unique polynôme Fj\ avec les notations du

lemme, F est alors l'ensemble des solutions dans kn du système (3.1.1), on
a N card (F), et (3.1.2) montre qu'il suffit de prouver que, pour chaque

RcS, card (UR) est divisible par qb. Si R 0, UR 0, card (£/Â) 0,

et il n'y a rien à démontrer; sinon, posons FR Y[Fj : UR est alors l'en-
jeR

semble des zéros dans kn du polynôme FR, et si bR est le plus grand entier
strictement inférieur à n/deg (FR), le théorème 1 montre que card (UR) est

divisible par g6*; mais deg (FÄ) £ deg (Fy) < deg (Ffi <7, d'où
je -R je S

njd < "/deg (FÄ) et b < ô#; card (F^), divisible par est divisible a
fortiori par qb, C.Q.F.D.

3.2. Le théorème 1, pour wrce équation, est « le meilleur possible » au

sens suivant: quels que soient n et d, il existe F, degré d, à n variables et
à coefficients dans k, tel que (avec les notations du théorème 1 qb soit la

plus haute puissance de q divisant N. (Prendre par exemple pour F le
polynôme Gn d Xt Xd + Xd+l X2d + + ^(0-1)^+1 ••• %bd "F Xbd+1

Xn; pour ce polynôme, le nombre N peut être déterminé explicitement à

l'aide du théorème 6 du chapitre 4: on laisse au lecteur le soin de faire les

calculs en détail). En revanche, le théorème 2, pour un système de s équations,

peut être amélioré; en fait, on a le résultat suivant, dû à Katz (1971):

Théorème 3. — Mêmes données et notations que dans le théorème 2. Si
ô — sup dj, et si b± désigne le plus grand entier supérieur ou égal à

1 ^j^s
(in — d)/ô, alors N est divisible par qbl.

Ce théorème 3 (qui, pour s 1, coïncide évidemment avec le théorème 1)

est lui-même « le meilleur possible » ; en fait, on peut montrer (en utilisant
des polynômes du type Gn> d ci-dessus et des polynômes normiques, et en

raisonnant comme au chapitre 4, section 4.3) que, quels que soient n, s, et

dx, ds, il existe une famille Fu Fs satisfaisant aux hypothèses des
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théorèmes let 3 et telle que N soit égal exactement à qbl. Pour la construction

d'une telle famille de polynômes, et pour la démonstration du théorème 3,

voir Katz (1971) (respectivement § 4 et § 3); voir également les Notes en fin
de chapitre.

3.3. Pour des équations de forme particulière, le théorème 1 peut dans

certains cas être amélioré. Ainsi, en combinant le théorème 1 du chapitre 6

avec les « relations de Stickelberger » (prop. 1), on obtient sans difficulté
le résultat suivant:

Théorème 4. — Soit F axXfY + + anXndn un polynôme diagonal
à coefficients dans le corps premier k — Fp. Pour i 1, n, posons <5t-

(p—\,di), et soit h2 le plus grand entier strictement inférieur à l/ôl
+ + l/ôn. Alors, si a ek, et si N désigne le nombre de solutions dans kn

de l'équation F a, N est divisible par pb2.

Ce résultat reste d'ailleurs vrai sur un corps fini quelconque k à q pf
éléments, à condition de supposer que chaque ôt (q— 1, dt) divisep — 1 :

N est alors divisible par qb2; cet exposant b2 peut encore être « amélioré »

si a 0 (voir Joly (1971)). On notera l'analogie entre le théorème 4 ci-dessus

et le théorème 3 du chapitre 4.

Notes sur le chapitre 1

§ 1 : la démonstration de la proposition 1 donnée ici est due à Hilbert
(« Zahlbericht »); cette proposition est en fait une conséquence d'un résultat
plus précis (« congruences de Stickelberger ») :

tO") - l"U)!p (j)(modrtf)+I)

(avec par définition p (j)j0\j10; voir Stickelberger (1890),
Davenport-Hasse (1934), ou [11], chap. IV, § 3. Pour une interprétation
analytique p-adique de ces congruences, voir Dwork (1960).

§ 2-3: dans Ax (1964), le cadre de la démonstration du théorème 1 est,
non pas le corps de nombres LQ (co,mais le corps Qp (eu, Ç) des
racines p (q- l)-ièmes de l'unité dans une clôture algébrique du corps
p-adique Q„ (avec les notations du § 1, ce corps Qp (eu, Ç) est d'ailleurs
isomorphe à Lty, complété iß-adique de L); à cette différence près, la
démonstration donnée ici est exactement celle d'Ax; elle est (selon Ax
lui-même) « suggérée par certaines idées de Dwork [dans sa démonstration
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de la rationalité des fonctions zêta des variétés algébriques] » (à ce sujet, voir
chap. 9, § 2). La démonstration du théorème 3 donnée par Katz (1971) utilise
également (et directement) les méthodes analytiques /?-adiques de Dwork.

Chapitre 8

« HYPOTHÈSE DE RIEMANN »

Soient k un corps fini à q éléments, n un entier >1, F un polynôme
à n variables et à coefficients dans k, et N le nombre de solutions dans kn

de l'équation F 0. On a remarqué aux chapitres 4 (sect. 4.2, th. 6, cor. 1)

et 6 (sect. 1.2, th. 1, cor. 1, 2, 3; sect. 2.1, th. 2, cor. 1, 2) que, lorsque F
est multilinéaire ou diagonal (et qu'il satisfait en outre à certaines hypothèses
qui équivalent à supposer qu'il est absolument irréductible), alors N est de

l'ordre de grandeur de qn~*, l'exposant n — 1 s'interprétant d'ailleurs
comme dimension de l'hypersurface affine F 0. Le but du présent
chapitre est d'étendre ce résultat à n'importe quel ensemble algébrique, affine

ou projectif, absolument irréductible, défini sur k — autrement dit, à

n'importe quelle variété définie sur k; si V est une telle variété, et si N désigne
maintenant le nombre de points de V rationnels sur fc, on a en fait (§ 4, th. 4)

N qr + 0(qr~(1/2))

q étant considéré comme « infiniment grand », et la constante impliquée

par le symbole O ne dépendant que de r dim (V), du degré de V, et de la
dimension de l'espace affine ou projectif où V se trouve plongée.

Le théorème 4 (pour r quelconque) se déduit par récurrence sur r du

cas particulier où r 1, et où F est donc une courbe : ce cas est examiné en

détail aux paragraphes 1 (courbes de genre 0), 2 (courbes de genre 1) et 3

(courbes de genre quelconque). Le résultat central de ce chapitre est d'ailleurs
le théorème 3 (§ 3), dit « hypothèse de Riemann » pour la courbe V: on
verra en effet (chap. 9, sect. 3.2) que ce théorème est équivalent au résultat
suivant: tous les zéros de la fonction Ç (F; s) ont une partie réelle égale à 1/2.

Le langage géométrique utilisé dans ce chapitre (et dans le suivant) est

essentiellement celui des Foundations de Weil, c'est-à-dire le langage
« classique » (à une différence près : si F est un ensemble algébrique défini

sur k, on identifie V à l'ensemble de ses points algébriques sur k] il en résulte
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