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La relation (3.4.1) (Cest-a-dire 1’égalité N, = N, + 1) peut aussi se
démontrer en appliquant aux deux polyndémes P, (X) = 1 — X et Py (X)
— X — X3 le lemme suivant (qui se prouve sans difficulté):

LEMME 1. — (On suppose p # 2). Soit P (X') un polynéme a une variable
X et a coefficients dans k. Si ¢ désigne le caractére de Legendre de k, le
nombre Np de solutions sur k de I’équation Y 2 = P(X) est donné par

(3.4.2) Np=q+ Y ¢(Px).

xek

Au sujet de cette seconde méthode, voir Morlaye (1972).

3.5. Dans la section 3.3, on a supposé ¢ congru 2 1 modulo 6 (ou

modulo 4, ou modulo 3) pour pouvoir calculer Ny, N, et N3 par application
- directe de la proposition 3. On laisse au lecteur le soin de vérifier (ce qui est
~ immédiat) les assertions suivantes:

sig= —1(mod 6),ona Ny =¢q;siqg= —1(mod4),ona N, =gq
‘} +1;5ig= —1 (mod 3), on a Ny = q; enfin, si g = — 1 (mod 4), on a
; N4=q.

Notes sur le chapitre 6

§ 1-2: le lien entre nombre de solutions d’une congruence diagonale

' modulo p et sommes de Gauss et de Jacobi avait déja été remarqué par
 Gauss et Jacobi eux-mémes, notamment pour les congruences aX>? — 5Y?

= 1(mod p), aX* — bY* =1 (mod p), Y?> = aX* — b (mod p); a ce sujet,

" voir Weil (1949), pp. 497-498. La congruence X" + Y" + 1 = 0 (mod p)
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a été étudiée par Libri (1832) pour n = 3, 4, puis, beaucoup plus tard, par
Pellet, Jacobsthal, ainsi que Dickson (1909), Hurwitz (1909), Schur (1916),
Mordell (1922), etc., pour n quelconque, en relation avec le théoréme de
Fermat. La congruence X,* + ... + X} = m (mod p) a été étudiée notam-
ment par Hardy-Littlewood (1922) dans leurs travaux sur le probléme de
Waring. Le théoréme 2, pour deux variables, est dii & Davenport-Hasse
(1934), et, indépendamment, a Hua-Vandiver (1949, a; b) et Weil (1949)
pour un nombre de variables quelconque.

§ 3: les propositions 1 et 2 (pour g = p) figurent déja dans Lebesgue
(1837), ou elles sont d’ailleurs démontrées d’une autre maniére. La propo-

- sition 3 et les exemples de la section 3.3 sont empruntés & Davenport-Hasse
¢ (1934). Le lien entre nombre de solutionsde Y% = X — X3 et de Y? = 1

— X* semble avoir été remarqué (incidemment) pour la premiére fois par
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Jacobsthal (1907). Pour ¢ = p = 1 (mod 4), la formule (3.4.1) peut, avec les
notations de I’appendice du chapitre 5 (sect. A.1, exemple 2) et compte de
la proposition 12 (ibid.), s’écrire N, = p — ) — A. Plus généralement, si
DeZ, et si N,(D) désigne le nombre de solutions de la congruence Y?
= DX — X3 (mod p) (ou, ce qui revient au méme, de ¥Y? = X3 — DX

(mod p)), on a
N0 = —(2) 2= (2) 1.
. )—p_<i)4 _<Z>4 ’

cette formule est due a Davenport-Hasse (1934), et a été redémontrée par
Rajwade (1970); Morlaye (1972) vient de donner une version élémentaire
de la démonstration de Davenport-Hasse. La courbe Y? = X3 — DJX,
considérée comme variété abélienne de dimension 1 définie sur Q, a servi
de « banc d’essal » aux conjectures de Birch et Swinnerton-Dyer ; voir Birch-
Swinnerton-Dyer (1965), ou Cassels-Frohlich, Algebraic Number Theory,
chap. XII (Academic Press, 1967).

CHAPITRE 7

THEOREME D’AX

Le résultat central de ce chapitre est le théoréme suivant, di 2 Ax (1964),
et qui précise le théoreme de Chevalley-Warning (chap. 3, sect. 1.1):

THEOREME 1. — Soient k un corps fini @ q = p’ éléments, F un polynéme
de degré d, a n variables et a coefficients dans k, et b le plus grand entier
strictement inférieur a n/d. Si alors N désigne le nombre de zéros de F dans
k", N est divisible par q°.

La démonstration de ce théoréme est un peu analogue a celle du théo-
réme 1 du chapitre 6 (ou plus précisément de son corollaire 1): elle consiste
(du moins en principe): (1) a exprimer N a ’aide de sommes de Gauss, donc
d’entiers du corps L des racines p (¢—1)-iémes de I'unité; (2) a calculer la
« valeur absolue 3-adique » de ces sommes en chaque idéal premier 3 de
L au-dessus de p; (3) & en déduire enfin 'inégalité | N |, <| ¢”
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