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§ 3. « Exemplis gaudeamus ».

A titre d’application des théorémes 1 et 2, on va calculer dans ce para-
graphe le nombre de solutions de certains types simples (et classiques)
d’équations diagonales.

3.1. On s’intéresse d’abord aux équations de la forme
a; X + ... +a,X,> =b;

on peut se limiter au cas oll p est impair; ¢ = p’ est alors impair, et on a
0; = 2 pour i = 1, ..., n; ’ensemble J des paragraphes 1 et 2 est formé
du seul élément j = (1, ..., 1); enfin, les caractéres y; = 0¥~ V/% sont tous
égaux & l'unique caractére d’ordre 2 de k*, c’est-a-dire au caractére de
Legendre de k, qu’on notera ¢ (voir chap. 5, sect. 1.5).

(1) Supposons d’abord »n impair. Si b = 0, on utilise le corollaire 1 du
théoréme 1, en remarquant que 7 est vide: on a donc N = ¢"~ 1. Si b # 0,
on utilise le théoréme 2, qui donne ici

(3.1.1) NOb =q" 4+ ™ay...a)n(p,...,0);

comme @" = @ #eetque d = @, on an(e,.., ¢) =1(p)" et (p)?
= gp (—1) (chap. 5, prop. 10, (ii) et prop. 7); ainsi,

(3.1.2) (@, ..y @) = (q@ (1)) 172,
le rapprochement de (3.1.1) et (3.1.2), et le fait que ¢ vaut 1 sur les carrés
et — 1 sur les non carrés de k*, permettent alors de conclure: |

PROPOSITION 1. — Pour n impair (et p # 2), le nombre N de solutions
dans k* de 1'équation a,X,*> + ... + a,X,> = b (ou les a; sont supposés
tous différents de Q) est donné par les formules suivantes :

@ Sib=0,N=q"".
g+ g2 s (=) D2, g,bek*?,

(i) Sib #0,N = { "t — g2 i (=)D a,b k.

(2) Supposons maintenant n pair. Si b = 0, on utilise le théoréme 1, en
remarquant que I = J; on trouve

N=q¢""+qgg-Dea...a)t(@);
mais 1 ()" = (t (¢)*)"* = (g (—1))"?; ainsi
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(3.1.3) N=gqg"'+q'@-Do((-D"%ay...a,)q"?.
Si b # 0, on utilise le théoreme 2, en remarquant que
(g, 0) = —@(=D1(e)> = —p(=D(qe(-1)"™>"

(chap. 5, prop. 10, (i) puis (ii), et prop. 7; noter que ¢" = &). Au total:

PROPOSITION 2. — Pour n pair (et p # 2), N est donné par les formules
suivantes :
. gl gt — gD i (=1 2ay ... a, €k*?,
1) Sib=0,N = -1 /2 (n/2)-1 : n/2 %2
A , si (=D ay ... a,¢k*;
{ gt —q®Dt i (=DYay ... a,ek*?,

g""t + gD si (=1)"%a ... a, Ek*2.

(i) Sib#0,N =

On retrouve ainsi, et de maniére plus naturelle, les résultats du chapitre 5,
section 4.3, (3) et (4).

3.2. On s’intéresse maintenant aux équations de la forme a,X ;"
+ a,X,® = b, avec a,, a, et b # 0. Pour simplifier, on écrira X, Y au
lieu de X, X,, et on se limitera aucas ot a; = a, = b = 1; on supposera
d’autre part ¢ — 1 divisible par d, et d, (on a toujours le droit de le faire:
voir chap. 4, sect. 1.3 et 3.1). Si alors on note y, et x, des caractéres multi-
plicatifs d’ordre d, et d, de k, et si J désigne I’ensemble des couples d’entiers
(i, 7o) tels que 1 <j;, <d; — 1, 1 <j, <d, — 1, le théoréme 2 permet
d’énoncer: |

PROPOSITION 3. — Le nombre N de solutions sur k de I’équation X*
+ Y% = 1 est donné par
(3.2.1) N =gq+ ) n(u' 0.
iedJ

3.3. La proposition 3 permet notamment de calculer le nombre de
points rationnels sur k de certaines courbes de genre 11).

(1) La courbe Y* = 1 — X3 (avec g = 1 (mod 6)). Si ¢ désigne le carac-
tére de Legendre et si y est un caractére d’ordre 3 de k* (donc tel que y?
= j), (3.2.1) donne

(3.3.1) Ni=q+n(e,0) +7n(p, ).

1) Les exemples ci-dessous resserviront aux chapitres 8 et 9.
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(2) La courbe Y?> = 1 — X* (avec ¢ = 1 (mod 4)). Si ¢ désigne toujours
le caractére de Legendre, et si i est un caractére d’ordre 4 de k* (donc
tel que Y* = ¢ et > = ), (3.2.1) donne

(3.3.2) N, =q—14+7a(p,¥) +n(p,¥).

(Se rappeler que 7 (¢, ) = — @ (—1), et noter que ¢ (—1) = 1, puisque
g = 1 (mod 4), et que — 1 est donc un carré dans k).

(3) La courbe Y*® =1 — X3 (avec ¢ = 1 (mod 3)). Si y désigne un carac-
tére d’ordre 3 de k* (donc tel que ¥* = %), (3.2.1) donne

(3.3.3) Ny =q—-2+7n(x) +n0, 0.

(Noter que 7 (x, 1) = n (%, x) = — x(—1): chap. 5, prop. 9, (i); et remar-
quer que y (—1) = 1, puisque — 1 = (=1)3).

3.4. Considérons maintenant la courbe V, d’équation Y* = X — X3;
elle est également de genre 1 (on suppose pour simplifier ¢ = 1 (mod 4));
I’équation, en revanche, n’est plus diagonale: on peut toutefois, griace a
(3.3.2), calculer le nombre N, de points de C, rationnels sur k; en fait (et
avec les notations de la section 3.3, (2)):

Un procédé de démonstration est le suivant (on laisse au lecteur le soin
de régler les détails); tout d’abord, la congruence ¢ = 1 (mod 4) entraine
que — 1 est un carré dans k, et que — 4 est une puissance 4-iéme dans k:
pour vérifier ce dernier point, appliquer les « lois complémentaires »

(:—__1.) - (__1)(1’—1)/2’ (;) — (_1)(;;2—1)/8
p

([17], p. 15), et se rappeler que g = p’; soient donc a et i deux éléments de k
tels que i2 = — 1, a* = — 4, et a*> = 2i. Soient d’autre part V,, V, et V
les courbes d’équations respectives Y% =1 — X*, Y? = g* — X* et
2a*Y? = X + X3, et soient N,, N, et N4 leurs nombres de points rationnels
sur k (toutes ces courbes sont considérées comme affines). Il est clair que
N, = N,, et comme 2a*> = 4i, on voit également sans peine que N, = N,:
compte tenu de (3.3.2), il suffit alors de prouver que N, = N, + 1, ce qui
se déduit facilement de Iexistence d’une application birationnelle A: V¥,
— V,, définie par

A(x,y) = (X*/(y+a?), x/(y+a?).
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La relation (3.4.1) (Cest-a-dire 1’égalité N, = N, + 1) peut aussi se
démontrer en appliquant aux deux polyndémes P, (X) = 1 — X et Py (X)
— X — X3 le lemme suivant (qui se prouve sans difficulté):

LEMME 1. — (On suppose p # 2). Soit P (X') un polynéme a une variable
X et a coefficients dans k. Si ¢ désigne le caractére de Legendre de k, le
nombre Np de solutions sur k de I’équation Y 2 = P(X) est donné par

(3.4.2) Np=q+ Y ¢(Px).

xek

Au sujet de cette seconde méthode, voir Morlaye (1972).

3.5. Dans la section 3.3, on a supposé ¢ congru 2 1 modulo 6 (ou

modulo 4, ou modulo 3) pour pouvoir calculer Ny, N, et N3 par application
- directe de la proposition 3. On laisse au lecteur le soin de vérifier (ce qui est
~ immédiat) les assertions suivantes:

sig= —1(mod 6),ona Ny =¢q;siqg= —1(mod4),ona N, =gq
‘} +1;5ig= —1 (mod 3), on a Ny = q; enfin, si g = — 1 (mod 4), on a
; N4=q.

Notes sur le chapitre 6

§ 1-2: le lien entre nombre de solutions d’une congruence diagonale

' modulo p et sommes de Gauss et de Jacobi avait déja été remarqué par
 Gauss et Jacobi eux-mémes, notamment pour les congruences aX>? — 5Y?

= 1(mod p), aX* — bY* =1 (mod p), Y?> = aX* — b (mod p); a ce sujet,

" voir Weil (1949), pp. 497-498. La congruence X" + Y" + 1 = 0 (mod p)
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a été étudiée par Libri (1832) pour n = 3, 4, puis, beaucoup plus tard, par
Pellet, Jacobsthal, ainsi que Dickson (1909), Hurwitz (1909), Schur (1916),
Mordell (1922), etc., pour n quelconque, en relation avec le théoréme de
Fermat. La congruence X,* + ... + X} = m (mod p) a été étudiée notam-
ment par Hardy-Littlewood (1922) dans leurs travaux sur le probléme de
Waring. Le théoréme 2, pour deux variables, est dii & Davenport-Hasse
(1934), et, indépendamment, a Hua-Vandiver (1949, a; b) et Weil (1949)
pour un nombre de variables quelconque.

§ 3: les propositions 1 et 2 (pour g = p) figurent déja dans Lebesgue
(1837), ou elles sont d’ailleurs démontrées d’une autre maniére. La propo-

- sition 3 et les exemples de la section 3.3 sont empruntés & Davenport-Hasse
¢ (1934). Le lien entre nombre de solutionsde Y% = X — X3 et de Y? = 1

— X* semble avoir été remarqué (incidemment) pour la premiére fois par
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