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§ 3. « Exemplis gaudeamus ».

A titre d'application des théorèmes 1 et 2, on va calculer dans ce

paragraphe le nombre de solutions de certains types simples (et classiques)
d'équations diagonales.

3.1. On s'intéresse d'abord aux équations de la forme

a^Xf2 + -h a„X„2 b ;

on peut se limiter au cas où p est impair; q — pf est alors impair, et on a

Si 2 pour i 1,..., n; l'ensemble J des paragraphes 1 et 2 est formé
du seul élément j (1, 1); enfin, les caractères Xi Q{q~1)lôi sont tous

égaux à l'unique caractère d'ordre 2 de /:*, c'est-à-dire au caractère de

Legendre de k, qu'on notera cp (voir chap. 5, sect. 1.5).

(1) Supposons d'abord n impair. Si b 0, on utilise le corollaire 1 du
théorème 1, en remarquant que / est vide: on a donc N — q11'1. Si b A 0,

on utilise le théorème 2, qui donne ici

(3.1.1) N(b) =qn~1 +(p(b-na1...an)7t((p,...,(p);

comme cpn cp ^ s et que cp cp, on a n (cp,..., cp) t (cp)n~1 et t (cp)2

qcp (—1) (chap. 5, prop. 10, (ii) et prop. 7); ainsi,

(3.1.2) n(<p,..., (p) (qcp

le rapprochement de (3.1.1) et (3.1.2), et le fait que cp vaut 1 sur les carrés

et — 1 sur les non carrés de &*, permettent alors de conclure:

Proposition 1. — Pour n impair (et p ^ 2), le nombre N de solutions

dans kn de Véquation a1X12 + + anX2 b (où les at sont supposés

tous différents de 0) est donné par les formules suivantes :

(i) Si b 0 ,N 4m-1.

f qn~x + q(n~~1)/2 si — l)(n~1)/2al ...anbek*2
I q"'1 - q(n~1)l2 9 si — l){n~1)l2a1...anb$k*2.

(ii) Si b # 0 N

(2) Supposons maintenant n pair. Si b 0, on utilise le théorème 1, en

remarquant que / /; on trouve

N q"'1 + q~1{q-l)(p{al... an)z (cp

mais z(<p)n (t ((p)2)"'2(l<P ainsi



— 59 —

(3.1.3) N qn~l+q-1(«-l)<p((-l)"/2«i
Si b # 0, on utilise le théorème 2, en remarquant que

n(<p, ...,<p) - (p(-l)T((p)n~2 - ç>(-l)(^(-l))(B"2)/2

(chap. 5, prop. 10, (i) puis (ii), et prop. 7; noter que (pn s). Au total:

Proposition 2. — Pour n pair (et p # 2), N est donné par les formules
suivantes :

q»-i + qn/2 — g(/,/2)~S si (~l)n/2a1 ...anek*2

g""1 - q"72 + g(w/2)_1 si (-l)"72^ a„ ^ fc*2 ;

qn~i -^(n/2)-1, si (-l)"72^ ...anek*2

g"-1 + <î("/2)~1, si — l)"72«! $k*2

On retrouve ainsi, et de manière plus naturelle, les résultats du chapitre 5,

section 4.3, (3) et (4).

3.2. On s'intéresse maintenant aux équations de la forme alXldl
+ a2X2d2 b, avec ax, ö2 et b ^ 0. Pour simplifier, on écrira X", F au
lieu de Xl9 X2, et on se limitera au cas où a1 a2 b 1 ; on supposera
d'autre part q — 1 divisible par et (on a toujours le droit de le faire:
voir chap. 4, sect. 1.3 et 3.1). Si alors on note Xi et %2 des caractères

multiplicatifs d'ordre d1 et d2 de k, et si J désigne l'ensemble des couples d'entiers

0*1,72) te^s fiue 1 — 1, 1 <7*2 < d2 — 1, le théorème 2 permet
d'énoncer:

Proposition 3. — Le nombre N de solutions sur k de l'équation Xdl
4- Yd2 — 1 est donné par

(3.2.1) N^q + Zn (x/W2).
je J

3.3. La proposition 3 permet notamment de calculer le nombre de

points rationnels sur k de certaines courbes de genre 11).

(1) La courbe Y2 1 — X3 (avec q 1 (mod 6)). Si (p désigne le caractère

de Legendre et si x est un caractère d'ordre 3 de k* (donc tel que x2

£), (3.2.1) donne

(3.3.1) iVi q+n(<p, y) +n(<P,

(ii) Sib#0 N

Les exemples ci-dessous resserviront aux chapitres 8 et 9.
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(2) La courbe Y2 1 — X4 (avec q 1 (mod 4)). Si cp désigne toujours
le caractère de Legendre, et si xj/ est un caractère d'ordre 4 de k* (donc
tel que \j/2 <p et ïj/3 ïp), (3.2.1) donne

(3.3.2) N2 q - 1 + n(q>9\p) + it(<p9}p)

(Se rappeler que n(ç, cp) — (p (— 1), et noter que cp — 1) 1, puisque

q 1 (mod 4), et que — 1 est donc un carré dans k).

(3) La courbe Y3 1 — X3 (avec q 1 (mod 3)). Si x désigne un caractère

d'ordre 3 de k* (donc tel que x2 — z)> (3.2.1) donne

(3.3.3) N3 q - 2 + n(x,x) + n(x,x).

(Noter que n (;x, x) x) - X (~ 1)* chap. 5, prop. 9, (i); et remarquer

que x(— 1) 1? puisque — 1 (—l)3).

3.4. Considérons maintenant la courbe VA d'équation Y2 X — X3;
elle est également de genre 1 (on suppose pour simplifier q 1 (mod 4));
l'équation, en revanche, n'est plus diagonale: on peut toutefois, grâce à

(3.3.2), calculer le nombre N4 de points de C4 rationnels sur en fait (et

avec les notations de la section 3.3, (2)):

(3.4.1) N4 q + 7i (<p,#) + n((p,\j/)

Un procédé de démonstration est le suivant (on laisse au lecteur le soin

de régler les détails); tout d'abord, la congruence q 1 (mod 4) entraîne

que — 1 est un carré dans k, et que — 4 est une puissance 4-ième dans k:

pour vérifier ce dernier point, appliquer les « lois complémentaires »

(_i)<*-n/\ Q (_i)o>2-i>/8

([17], p. 15), et se rappeler que q pf\ soient donc a et i deux éléments de k
tels que i2 — — 1, a4 — 4, et a2 2i. Soient d'autre part V29 V'2 et V4

les courbes d'équations respectives Y2 1 — X4, Y2 a4 — X4 et
2a2 Y2 X + X3, et soient N2, N2 et N4 leurs nombres de points rationnels

sur k (toutes ces courbes sont considérées comme affines). Il est clair que

N2 7^2, et comme la2 — Ai, on voit également sans peine que N4 — N4:

compte tenu de (3.3.2), il suffit alors de prouver que N4 N2 + 1, ce qui
se déduit facilement de l'existence d'une application birationnelle k : V2

V4, définie par

^ (*, J) (x2l(y + a2) +a2)).
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La relation (3.4.1) (c'est-à-dire l'égalité N4 N2 4- 1) peut aussi se

démontrer en appliquant aux deux polynômes P2 (2Q 1 — X4 et P4 (X)
X — X3 le lemme suivant (qui se prouve sans difficulté):

Lemme 1. — On suppose p ^ 2). Soit P (X) un polynôme à une variable

X et à coefficients dans k. Si (p désigne le caractère de Legendre de k, le

nombre NP de solutions sur k de l 'équation Y2 P (X) est donné par

(3.4.2) NP q + X (p (P (x))
xek

Au sujet de cette seconde méthode, voir Morlaye (1972).

3.5. Dans la section 3.3, on a supposé q congru à 1 modulo 6 (ou

modulo 4, ou modulo 3) pour pouvoir calculer Nu N2 et N3 par application
directe de la proposition 3. On laisse au lecteur le soin de vérifier (ce qui est

immédiat) les assertions suivantes:

si q - 1 (mod 6), on a N± q; si q - 1 (mod 4), on a N2 q

+ 1 ; si q — 1 (mod 3), on a N3 q; enfin, si q — 1 (mod 4), on a

N4 — q>

Notes sur le chapitre 6

§1-2: le lien entre nombre de solutions d'une congruence diagonale
modulo p et sommes de Gauss et de Jacobi avait déjà été remarqué par
Gauss et Jacobi eux-mêmes, notamment pour les congruences aX3 — b Y3

1 (mod p), aX4 — b Y4 1 (mod p), Y2 aX4 — b (mod p) ; à ce sujet,
voir Weil (1949), pp. 497-498. La congruence Xn + Yn + 1 0 (mod p)
a été étudiée par Libri (1832) pour n — 3, 4, puis, beaucoup plus tard, par
Pellet, Jacobsthal, ainsi que Dickson (1909), Hurwitz (1909), Schur (1916),

I Mordell (1922), etc., pour n quelconque, en relation avec le théorème de

Fermât. La congruence Xxk + + Xsk m (mod p) a été étudiée notam-
| ment par Hardy-Littlewood (1922) dans leurs travaux sur le problème de
j Waring. Le théorème 2, pour deux variables, est dû à Davenport-Hasse
j (1934), et, indépendamment, à Hua-Vandiver (1949, a; b) et Weil (1949)
| pour un nombre de variables quelconque.

§ 3: les propositions 1 et 2 (pour q p) figurent déjà dans Lebesgue
j (1837), où elles sont d'ailleurs démontrées d'une autre manière. La propo-
j sition 3 et les exemples de la section 3.3 sont empruntés à Davenport-Hasse
j (1934). Le lien entre nombre de solutions de Y2 X — X3 et de Y2 1

j — X4 semble avoir été remarqué (incidemment) pour la première fois par


	§3. « Exemplis gaudeamus ».

