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est lui-méme le nombre de points rationnels sur k£ de n’importe quel hyper-
plan défini sur k. Ce corollaire 3 montre également que si g est supérieur a
une certaine constante ne dépendant que de d et »n, alors N > 1: I’équation
F = 0 admet donc une solution dés que g est assez grand.

Le corollaire 3 est un cas particulier d’un résultat trés général qui sera
démontré au chapitre 8 (th. 4): on examinera plus en détail a cette occasion
les conséquences qu’on peut tirer d’une inégalité telle que (1.2.9).

Revenons au corollaire 1; si [ est vide, on a 4, = 0; ainsi:

COROLLAIRE 4. — Si [’ensemble I est vide, on a N = q"~ 1.

Un cas ou 7 est vide est celui ot 'un des J; est égal a 1 (on a mé€me alors
A, = 0); mais dans cette situation, I’égalité N = ¢g"~ ! peut se prouver
directement: il suffit de remarquer (comme au chap. 4, sect. 3.1) qu'on
ne modifie pas N en remplagant dans F les d; par les J;, et de noter par
ailleurs que si dans une équation diagonale I’'un des exposants (disons d,)
est égal a 1, alors le nombre total de solutions de I’équation est ¢g"~!: car
on peut se fixer arbitrairement les valeurs de X,, ..., X, dans k (d’ou g" !
possibilités), et F = 0 devient alors une équation du premier degré en
I’'unique variable X;.

Un cas plus général ol [ est vide est celui oll 'un des entiers §; est
premier avec les n — 1 autres (on laisse au lecteur le soin de le vérifier);
ceci se produit notamment si I'un des d; est premier avec les n — 1 autres.
Exemple: quel que soit g, des équations telles que

X?4+Y34+2Z23=0; X?’4+Y24+2Z°5=0,

admettent exactement g* solutions sur k = F,.

Un autre cas ol [ est vide est celui ol n est impeir, et olt d; = 2 pour
i =1,..,n; ce cas a déja été vu au chapitre 4, section 4.3, (3), et sera
examiné a nouveau dans la section 3.1 ci-dessous.

§ 2. Eguations diagonales avec terme constant.

On suppose maintenant b # 0, et on cherche a évaluer N (b).

2.1. Deésignons par L (U) = L (Uy, ..., U,) la forme linéaire b~ 'a, U,
+ ... + b7 'a,U,, et pour tout i (1 <i<n) et tout u; ek, notons m; ()
le nombre de solutions dans k de I’équation & une variable U,: Ul =y,
(chap. 5, sect. 1.5); x; désignant un caractére multiplicatif de & d’ordre 0;
= (¢—1, d;), on a alors (loc. cit., prop. 5)
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. 4;—1 N
(2.1.1) m(u) = ) %' (w);
Jji=0
par ailleurs, il est clair que
(2.1.2) N(b) = > my(uy)...m,(u,),

ueH

H désignant I’hyperplan affine de k" formé des points u = (uy, ..., 4,) tels
que L (u) = 1; (2.1.1) et (2.1.2) donnent alors

n 6;—1

(2.1.3) Ny =) JI X ' ).

ueH i=1 j;=0

Isolons dans le membre de droite les g"~ ! termes (égaux & 1) correspondant
aj = 0 (c’est-a-dire a (74, ..., j,) = (0, ..., 0)) et, pour les autres, interver-
tissons 'ordre des sommations; il vient

(2.1.4) N®) =q""+ ) 2 H ' (uy) .

170 ueH i=

Or, un raisonnement analogue a celui fait au chapitre 5, section 4.2, montre
que si j n’est pas nul, mais si I’'une au moins des composantes j; de j est nulle,
n
alors Y [] x”* (u) = 0; (2.1.4) se réduit donc a
ueH i=1

n

(2.1.5) NB) =¢7' + 3 T I o),

ieJ ueH i=

J ayant la mé€me signification qu’au paragraphe 1.

Effectuons alors le changement de variables u > x défini par x; =
= b™Yau; (1 <i < n), et désignons par H, I’hyperplan affine de k" formé
des x = (x, ..., x,,) tels que x; + ... + x, = 1; (2.1.5) devient

@1 NG =¢+ LI 207 a) ¥ T 1

ieJ i= er1

n

La quantité Y [] z/* (x;) n’est autre que la somme de Jacobi = (y,7%, ...,
xeH) i=1

¥ ™) (chap. 5, déf. 3), quon notera = (j) pour alléger Décriture;
convenons d’autre part, pour tout j € J, de poser

(2.1.7) C(b,)) = '=1—[12iji (b~'a));



(si on fait y; = 0" comme au paragraphe 1, on a en particulier C (1, i)
= C(j)); on arrive alors a ceci:.

THEOREME 2. — Le second membre b étant supposé non nul, et les quantités
C(b,]) et n(j) étant définies comme ci-dessus, le nombre N (b) de solutions
dans k" de 1’équation diagonale F = b est donné exactement par

(2.1.8) N@®) =4q""+ ) Ch, D).
jed
COROLLAIRE 1. — Posons (comme dans le corollaire 2 du théoréme 1)
A, = card (J) = (6,—1) ... (6,—1); on a alors l’inégalité
(2.1.9) IN(b) — g"* | < Apq® V72
Démonstration. — 11 suffit de remarquer que dans la formule (2.1.8),

chaque quantité C (b, j) est une racine de I'unité, donc un nombre complexe
de module 1, et que chaque quantité 7 (j) est une somme de Jacobi non
triviale a n caractéres relative a k, donc un nombre complexe de module au
plus égal & ¢‘*~ 1'% (chap. 5, prop. 10, cor. 1).

Pour n > 2, on a évidemment (n—1)/2 < n — (3/2); ainsi:

COROLLAIRE 2. — I] existe une constante A ,, ne dépendant que du degré
et du nombre de variables de F, et telle que (si n > 2)

(2.1.10) IN(b) —q" 1| < Ag"" G2,

Ce corollaire appelle naturellement les mémes remarques que le corol-
laire 3 du théoréme 1. '

2.2. Supposons toujours b # 0, et soit N, le nombre de solutions dans
k"*1 de I’équation diagonale sans second membre

(2.2.1) a X"+ ..+ a0, X - bX1T] =0;
on vérifie sans peine que N, N (b) et N, sont liés par
(2.2.2) Ny, =N+ (@—-1)N(b);

mais le théoréme 1 permet d’exprimer N et N, a 'aide de sommes de Gauss:
(2.2.2) permettrait donc également d’exprimer N (b) & I’aide de sommes de
Gauss; la formule qui en résulterait est peu maniable, et il est inutile de
Pécrire ici explicitement: signalons simplement que cette formule est iden-
tique & celle qu’on pourrait déduire de (2.1.8) en appliquant la proposition 10
du chapitre 5 & chacune des sommes de Jacobi 7 (j) qui y figurent.
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