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est lui-même le nombre de points rationnels sur k de n'importe quel hyper-

plan défini sur k. Ce corollaire 3 montre également que si q est supérieur à

une certaine constante ne dépendant que de d et n, alors N > 1 : l'équation
F — 0 admet donc une solution dès que q est assez grand.

Le corollaire 3 est un cas particulier d'un résultat très général qui sera

démontré au chapitre 8 (th. 4) : on examinera plus en détail à cette occasion
les conséquences qu'on peut tirer d'une inégalité telle que (1.2.9).

Revenons au corollaire 1; si I est vide, ona^i 0; ainsi:

Corollaire 4. — Si l'ensemble I est vide, on a N qn~1.

Un cas où 1 est vide est celui où l'un des ôt est égal à 1 (on a même alors
A 2 0); mais dans cette situation, l'égalité N qtt~1 peut se prouver
directement: il suffit de remarquer (comme au chap. 4, sect. 3.1) qu'on
ne modifie pas N en remplaçant dans F les dt par les ôh et de noter par
ailleurs que si dans une équation diagonale l'un des exposants (disons dt)
est égal à 1, alors le nombre total de solutions de l'équation est q11"1: car
on peut se fixer arbitrairement les valeurs de X29 Xn dans k (d'où qn_1

possibilités), et F 0 devient alors une équation du premier degré en

l'unique variable Xx.
Un cas plus général où I est vide est celui où l'un des entiers ôt est

premier avec les n — 1 autres (on laisse au lecteur le soin de le vérifier);
ceci se produit notamment si l'un des d( est premier avec les n — 1 autres.
Exemple: quel que soit q, des équations telles que

X2 + y3 + Z 3 0 ; X2 + Y2 + z 5 0

admettent exactement q2 solutions sur k Fr
Un autre cas où / est vide est celui où n est impair, et où dt 2 pour

i 1,...,«; ce cas a déjà été vu au chapitre 4, section 4.3, (3), et sera
examiné à nouveau dans la section 3.1 ci-dessous.

§ 2. Equations diagonales avec terme constant.

On suppose maintenant ù # 0, et on cherche à évaluer N (b).

2.1. Désignons par L (U) L (Uu Un) la forme linéaire b~1a1U1
+ + b~ 1anUn, et pour tout i (1 < / < n) et tout ut e k, notons mt (ut)
le nombre de solutions dans k de l'équation à une variable Ut: Utdi ut
(chap. 5, sect. 1.5); Xi désignant un caractère multiplicatif de k d'ordre ôt

(q— 1, dt), on a alors (loc. cit., prop. 5)
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(2.1.1) (iq) Y Xiji Oh) ;
Ji 0

par ailleurs, il est clair que

(2.1.2) IV (fc) X mj (uj) m„ (u„),
ueH

H désignant l'hyperplan affine de kn formé des points u (w1?un) tels

que L (u) 1 ; (2.1.1) et (2.1.2) donnent alors

(2.1.3) N(b)E n'iV'OO-
ueff i=l jfj 0

Isolons dans le membre de droite les 1 termes (égaux à 1) correspondant
à j 0 (c'est-à-dire à (Ju ...,jn) (0,..., 0)) et, pour les autres, intervertissons

l'ordre des sommations; il vient

(2.1.4) N(b) q--1 +E I n XtJ,(ud>
j^O ueH i= 1

Or, un raisonnement analogue à celui fait au chapitre 5, section 4.2, montre

que si j n'est pas nul, mais si l'une au moins des composantes jt de j est nulle,
n

alors Y FI %iJi ~ 0» (2.1.4) se réduit donc à

u e H i= 1

(2-1.5) N(b) q"'1 + E Eli X;Ji("i),
je / u eH i= 1

J ayant la même signification qu'au paragraphe 1.

Effectuons alors le changement de variables u x défini par xt
b~1aiui (1 < i < n), et désignons par H1 l'hyperplan affine de kn formé

des x (xu xn) tels que xx + + xn 1; (2.1.5) devient

(2.1.6) N(b) =qn~t +E .fl x/'(b-'ad E fi
\e J i 1 x e iîi i 1

n

La quantité Y El XiJi (xù n'est autre que la somme de Jacobi n (x\jl-> -,
xe//i i — i

X„jn) (chap. 5, déf. 3), qu'on notera n (j) pour alléger l'écriture;
convenons d'autre part, pour tout j e J, de poser

(2.1.7) C(è,j) fl x/'ib-'ad;
i= 1
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(si on fait 0*£ comme au paragraphe 1, on a en particulier C (1, j)
C (j)) ; on arrive alors à ceci :

Théorème 2. —Le second membre b étant supposé non nul, fes* quantités

C(b, j) 7i (j) eta/7? définies comme ci-dessus, /e nombre N (b) de solutions

dans kn de l'équation diagonale F b est donné exactement par

(2.1.8) Nib) q*-1 + £ C (b, j) n (j)
i eJ

Corollaire 1. — Posons (comme dans le corollaire 2 du théorème 1

A2 card (/) (ô1 — 1)... (<5„ — 1); on a alors l'inégalité

(2.1.9) | N(b) - qn~1 | <^(n_1)/2
Démonstration. — Il suffit de remarquer que dans la formule (2.1.8),

chaque quantité C (b, j) est une racine de l'unité, donc un nombre complexe
de module 1, et que chaque quantité n (j) est une somme de Jacobi non
triviale à n caractères relative à h, donc un nombre complexe de module au

plus égal à g("~1)/2 (chap. 5, prop. 10, cor. 1).

Pour n > 2, on a évidemment {n—1)/2 < n — (3/2); ainsi:

Corollaire 2. — Il existe une constante A2, ne dépendant que du degré
et du nombre de variables de F, et telle que (si n > 2)

(2.1.10) | N{b) - q»-1 | <A2qn~(3/2).

Ce corollaire appelle naturellement les mêmes remarques que le corollaire

3 du théorème 1.

2.2. Supposons toujours b ^ 0, et soit Nt le nombre de solutions dans
kn+1 de l'équation diagonale sans second membre

(2.2.1) + + a„Xnd»- bX^+l 0 ;

on vérifie sans peine que N, N (b) et 7V\ sont liés par

(2.2.2) Nj, N +(q-l)N(b);
mais le théorème 1 permet d'exprimer et à l'aide de sommes de Gauss :

(2.2.2) permettrait donc également d'exprimer N (b) à l'aide de sommes de

Gauss; la formule qui en résulterait est peu maniable, et il est inutile de
l'écrire ici explicitement: signalons simplement que cette formule est identique

à celle qu'on pourrait déduire de (2.1.8) en appliquant la proposition 10

du chapitre 5 à chacune des sommes de Jacobi n (j) qui y figurent.
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