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Gauss et de Jacobi ; si on sait calculer ces sommes, on obtient explicitement
N (b); sinon, l'évaluation du module des sommes de Gauss et de Jacobi
donnée au chapitre 5 (prop. 8, prop. 9, cor. 1 et prop. 10, cor. 1) permet
d'écrire une estimation approchée de N (b) ; cette estimation est (sauf dans
des cas exceptionnels) de la forme N (b) qn~x + O (#n_(3/2)), q étant
considéré comme « infiniment grand », et la constante impliquée par le O

ne dépendant que du nombre de variables n et des degrés partiels dp. c'est
là un type de résultat dont on a déjà vu un exemple au chapitre 4 (th. 6,

cor. 1), et qu'on retrouvera systématiquement au chapitre 8.

Dans tout le présent chapitre, les notations sont les suivantes : k désigne

un corps fini à q pf éléments; n est un entier >2; al9 an sont n
éléments de k, qu'on suppose tous différents de 0; dl9..., dn sont n entiers > 1 ;

F désigne le polynôme diagonal axXxdl + + anXndn; b est un élément

quelconque de k ; N (b) désigne le nombre de solutions dans kn de

l'équation F — b ; si b 0 (équation « sans second membre » ou « sans

terme constant»), on écrit N au lieu de N{0); enfin, pour i 1,

on pose <5f (q— 1, dt) et ht (q—l)/ôi.

§. 1. Equations diagonales sans terme constant.

On s'intéresse d'abord au cas où b 0, et on cherche à évaluer N
N (0). La lettre ß désigne un caractère additif non trivial de k, fixé une

fois pour toutes.

1.1. On aura besoin du résultat suivant:

Lemme 1. — Soient y un caractère additif non trivial de k, d un entier

> 1, et % un caractère multiplicatif de k, d'ordre 3 (q— 1, d). Alors

(i.i.i) X y(xi)Z T(z-/ly).
xek j- 1

Démonstration. — Si, pour tout aek, m (a) désigne le nombre de
solutions dans k de l'équation Xd a, le membre de gauche de (1.1.1) peut
évidemment s'écrire £ m (a) y (a); mais on a vu (chap. 5, prop. 5) que

aek
<5-1 <5-1

m (a) est égal à £ XJ (a) i ledit membre de gauche vaut donc £ £ xJ (a) 1 (a)>
j~0 j=0 aek

ce qui se décompose en

X y.' (°) y (0) + X x° (a) y («) + X X X («) y («) ;

j= 0 aek* j 1 a e k*
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dans cette somme de trois termes, le premier vaut 1 (chap. 5, convention

(1.4.1)), et le second, qui est une somme de Gauss correspondant au caractère

multiplicatif trivial x° au caractère additif non trivial y, vaut — 1

(chap. 5, sect. 2.2, (i)). Seul reste donc le troisième terme, évidemment égal

au membre de droite de (1.1.1): le lemme est ainsi prouvé.

1.2. Calculons alors N; partons de la formule (1.3.1) du chapitre 5,

et isolons, dans la somme de droite, les qn termes (égaux à 1) correspondant
h y 0; il vient

N q-i+q~i £ Yß(yF(x)),
yek* xekn

ou encore, compte tenu de la définition de F et du fait que ß est un caractère
additif,

(1.2.1) N q""1+ q~l£yek* i= 1

avec par définition B {i, y)£ ß(ya^f);le lemme 1, appliqué au carac-
X{ek

tère additif non trivial y ßya.,etla proposition 6 du chapitre 5,
permettent de transformer le second membre et d'écrire

i1-2-2) B(i,y)£ xJi (>'«;) (ïj1)
Ji i

Désignons alors par 9 un caractère multiplicatif d'ordre — 1 de fixé
une fois pour toutes (par exemple celui défini au chapitre 5 par (1.4.2)) et
faisons Xi 0Ai; (1.2.2) devient

<5,-1
(i-2-3) B(i,y) £ Biihi(yaßx(eiihi).

Ji 1

Notons / l'ensemble des vecteurs entiers j (j\, ...,/„) tels que 1 <
<<5; - 1 pour i 1pour tout je/, posons s(j) =j1/ô1 +
+ jJàn> désignons par Ilesous-ensemble de / formé des j tels que .y (j) soit
entier; enfin, pour tout je/, posons

(1.2.4) C(j) H (aß ;j) f) t(0^")-l-l {= 1

Avec ces notations, (1.2.1) et (1.2.3) donnent

(1.2.5) N q"-1 +Ç-1 £ S(j)C(j)r(j),
je J
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SQ) désignant (provisoirement) la quantité 0(q 1 is(,) (y) ; mais les
y ek*

relations d'orthogonalité (1.1.1) (chap. 5, sect. 1.1) montrent que S(j) 0,

sauf si (q— 1) s (j) est divisible par q — 1 (c'est-à-dire si ^(j) est entier, donc

par définition si j e I) auquel cas S (j) q — 1 ; cette remarque permet,
dans (1.2.5), de limiter la sommation aux je/, et de remplacer tous les

termes S (j) par q — 1; on arrive ainsi au résultat suivant:

Théorème 1. — L'ensemble I et les quantités C(j) et T(j) étant définis
comme ci-dessus, le nombre N de solutions dans kn de l 'équation diagonale
F 0 est donné exactement par

(1.2.6) N q-1 + q1 (q — 1) Y, C (j) T(j)
el

Corollaire 1. — Si A^ card (/), on a l'inégalité

(1.2.7) | N - q"-1 | <Ai(q-l)q(n/2)~1
Démonstration. — Il suffit de remarquer que, dans la formule (1.2.6),

chaque quantité C (j) est une racine de l'unité, donc un nombre complexe
de module 1, et que chaque quantité T (j) est un produit de n sommes de

Gauss non triviales relatives à k, donc un nombre complexe de module
qn/1 (chap. 5, prop. 8).

Corollaire 2. — Si A2 card (/) (ô^ — 1)... (<5n— 1), on a
l'inégalité

(1.2.8) \N - q"'1 | < A2qn/2

Démonstration. — C'est une conséquence immédiate de (1.2.7), puisque
A i < A 2 (en effet, I c: /) et que q — 1 < q.

La constante A2 ne dépend essentiellement que du degré d sup dt
de F, et du nombre de variables n figurant dans F; d'autre part, pour n > 3,

on a évidemment nj2 < n — (3/2); le corollaire 2 permet donc d'énoncer
ceci:

Corollaire 3. — Il existe une constante A2ne dépendant que du degré et

du nombre de variables de F, et telle que (si « > 3)

(1.2.9) \N -q"'1| <42q"-(3/2).

Ainsi, pour n > 3, l'hypersurface F 0 (qui est alors absolument
irréductible, ce qui ne serait pas le cas pour n < 2) a un nombre N de points
rationnels sur k qui est voisin (en un sens bien précis) de qn_1: ce qn~x
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est lui-même le nombre de points rationnels sur k de n'importe quel hyper-

plan défini sur k. Ce corollaire 3 montre également que si q est supérieur à

une certaine constante ne dépendant que de d et n, alors N > 1 : l'équation
F — 0 admet donc une solution dès que q est assez grand.

Le corollaire 3 est un cas particulier d'un résultat très général qui sera

démontré au chapitre 8 (th. 4) : on examinera plus en détail à cette occasion
les conséquences qu'on peut tirer d'une inégalité telle que (1.2.9).

Revenons au corollaire 1; si I est vide, ona^i 0; ainsi:

Corollaire 4. — Si l'ensemble I est vide, on a N qn~1.

Un cas où 1 est vide est celui où l'un des ôt est égal à 1 (on a même alors
A 2 0); mais dans cette situation, l'égalité N qtt~1 peut se prouver
directement: il suffit de remarquer (comme au chap. 4, sect. 3.1) qu'on
ne modifie pas N en remplaçant dans F les dt par les ôh et de noter par
ailleurs que si dans une équation diagonale l'un des exposants (disons dt)
est égal à 1, alors le nombre total de solutions de l'équation est q11"1: car
on peut se fixer arbitrairement les valeurs de X29 Xn dans k (d'où qn_1

possibilités), et F 0 devient alors une équation du premier degré en

l'unique variable Xx.
Un cas plus général où I est vide est celui où l'un des entiers ôt est

premier avec les n — 1 autres (on laisse au lecteur le soin de le vérifier);
ceci se produit notamment si l'un des d( est premier avec les n — 1 autres.
Exemple: quel que soit q, des équations telles que

X2 + y3 + Z 3 0 ; X2 + Y2 + z 5 0

admettent exactement q2 solutions sur k Fr
Un autre cas où / est vide est celui où n est impair, et où dt 2 pour

i 1,...,«; ce cas a déjà été vu au chapitre 4, section 4.3, (3), et sera
examiné à nouveau dans la section 3.1 ci-dessous.

§ 2. Equations diagonales avec terme constant.

On suppose maintenant ù # 0, et on cherche à évaluer N (b).

2.1. Désignons par L (U) L (Uu Un) la forme linéaire b~1a1U1
+ + b~ 1anUn, et pour tout i (1 < / < n) et tout ut e k, notons mt (ut)
le nombre de solutions dans k de l'équation à une variable Ut: Utdi ut
(chap. 5, sect. 1.5); Xi désignant un caractère multiplicatif de k d'ordre ôt

(q— 1, dt), on a alors (loc. cit., prop. 5)
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