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Gauss et de Jacobi; si on sait calculer ces sommes, on obtient explicitement
N (b); sinon, I’évaluation du module des sommes de Gauss et de Jacobi
donnée au chapitre 5 (prop. 8, prop. 9, cor. 1 et prop. 10, cor. 1) permet
d’écrire une estimation approchée de N (b); cette estimation est (sauf dans
des cas exceptionnels) de la forme N (b) = ¢"~ ! + O (¢" ®/%), ¢ étant
considéré comme « infiniment grand », et la constante impliquée par le O
ne dépendant que du nombre de variables n et des degrés partiels d;: c’est
14 un type de résultat dont on a déja vu un exemple au chapitre 4 (th. 6,
cor. 1), et qu’on retrouvera systématiquement au chapitre 8.

Dans tout le présent chapitre, les notations sont les suivantes: k désigne
un corps fini & ¢ = pf éléments; n est un entier > 2; ay, ..., a, sont n élé-
ments de k, qu’on suppose tous différents de 0; d, ..., d, sont n entiers > 1;
F désigne le polyndome diagonal a; X, + ... + ¢,X,%*; b est un élément
quelconque de k; N (b) désigne le nombre de solutions dans k" de
I’équation F = b; si b = 0 (équation « sans second membre » ou « sans
terme constant »), on écrit N au lieu de N (0); enfin, pour i = 1, ..., n,
on pose 9; = (q—1,d;) et h; = (g—1)/9,.

§ 1. Equations diagonales sans terme constant.

On s’intéresse d’abord au cas ou b = 0, et on cherche a évaluer N
= N (0). La lettre  désigne un caractére additif non trivial de k, fixé une

fois pour toutes.

1.1. On aura besoin du résultat suivant:

LEMME 1. — Soient y un caractére additif non trivial de k, d un entier
> 1, et y un caractére multiplicatif de k, d’ordre 6 = (q—1, d). Alors
o—1
(1.1.1) L e =3 .
xX€ J=

Démonstration. — Si, pour tout a € k, m (a) désigne le nombre de solu-
tions dans k de ’équation X¢ = g, le membre de gauche de (1.1.1) peut
évidemment s’écrire Y. m (a) y (@); mais on a vu (chap. 5, prop. 5) que

ack
5-1 5—1
m (a) est égal & Z %’ (a); ledit membre de gauche vautdonc Y, ) ¥/ (a) y (a),
Jj=0 aeck

Jj=
ce qui se decompose en

Z (070 + ) X’@y@ + Z Y @)y (a);

ack* Jj=1 aeck*
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dans cette somme de trois termes, le premier vaut 1 (chap. 5, convention
(1.4.1)), et le second, qui est une somme de Gauss correspondant au carac-
tére multiplicatif trivial ¥° et au caractére additif non trivial y, vaut — 1
(chap. §, sect. 2.2, (i)). Seul reste donc le troisiéme terme, évidemment égal
au membre de droite de (1.1.1): le lemme est ainsi prouvé.

1.2. Calculons alors N; partons de la formule (1.3.1) du chapitre 5,
et isolons, dans la somme de droite, les g" termes (égaux a 1) correspondant
ay = 0; il vient

N=qg""+q" ) ¥ BOF®),
- yYek* xekn
ou encore, compte tenu de la définition de F et du fait que f est un caractére
additif,
(1.2.1) N=g""+4q7"Y [IB(GY),
1

yek* i=

avec par définition B (i, y) = ) B (ya,x*); le lemme 1, appliqué au carac-

x;ek
tére additif non trivial y = Pya;» €t la proposition 6 du chapitre 5, per-
mettent de transformer le second membre et d’écrire
6;—1

(1.2.2) By = T 7 () ().

Ji=
Désignons alors par 6 un caractére multiplicatif d’ordre g — 1 de k, fixé
une fois pour toutes (par exemple celui défini au chapitre 5 par (1.4.2)) et
faisons y; = 0"; (1.2.2) devient

6;—1
(1.2.3) B(i,y) = Y 0% (ya) (6t

Ji=1
Notons J I’ensemble des vecteurs entiers §J= (1) tels que 1<,
<9d;— 1 pour i =1,..,n; pour tout jeJ, posons s(j) = j, /6, + ...
+ Ju/04; désignons par I le sous-ensemble de J formé des J tels que s (j) soit
entier; enfin, pour tout i € J, posons
(1.2.4) CH =[] 0™ (a); TG = [] (0%,
i=1 '

i=1

Avec ces notations, (1.2.1) et (1.2.3) donnent

(1.2.5) N =g 447" ZJ SHCH TG,
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S (j) désignant (provisoirement) la quantité Y 0@~ s® (3); mais les
yek*
relations d’orthogonalité (1.1.1) (chap. 5, sect. 1.1) montrent que S(j) = O,

sauf si (q—1) s (j) est divisible par g — 1 (c’est-a-dire si s (j) est entier, donc |
par définition si je I) auquel cas S(j) = q — 1; cette remarque permet,
dans (1.2.5), de limiter la sommation aux je I, et de remplacer tous les
termes S (j) par ¢ — 1; on arrive ainsi au résultat suivant:

THEOREME 1. — L ’ensemble I et les quantités C(j) et T (j) étant définis
comme ci-dessus, le nombre N de solutions dans k" de [’équation diagonale
F = 0 est donné exactement par
(1.2.6) N=¢"+¢"@-D2LCOTW.

je

COROLLAIRE 1. — Si A, = card (1), on a l’inégalité

(1.2.7) IN —g"" 1 [ < A (g—-1D g™,

Démonstration. — 1l suffit de remarquer que, dans la formule (1.2.6),
chaque quantité C (j) est une racine de I'unité, donc un nombre complexe
de module 1, et que chaque quantité 7 (j) est un produit de » sommes de
Gauss non triviales relatives a k, donc un nombre complexe de module
q"'? (chap. 5, prop. 8).

COROLLAIRE 2. — Si A, = card (J) = (0,—1) ... (6,—1), on a [l’iné-
galité

(1.2.8) IN — g1 | < 4,q"7 .

Démonstration. — C’est une conséquence immédiate de (1.2.7), puisque
A; <A, (eneffet, ] =« J)et que g — 1 <gq.

La constante 4, ne dépend essentiellement que du degré d = sup d;
de F, et du nombre de variables » figurant dans F'; d’autre part, pour n > 3,
on a évidemment n/2 <n — (3/2); le corollaire 2 permet donc d’énoncer
ceci:

COROLLAIRE 3. — Il existe une constante A, ne dépendant que du degré et
du nombre de variables de F, et telle que (sin >3)

(1.2.9) IN — g" 1| < A,g"= G,

Ainsi, pour n > 3, U'hypersurface F = 0 (qui est alors absolument irré-
ductible, ce qui ne serait pas le cas pour n < 2) a un nombre N de points
rationnels sur k qui est voisin (en un sens bien précis) de ¢" " ': ce ¢"*
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est lui-méme le nombre de points rationnels sur k£ de n’importe quel hyper-
plan défini sur k. Ce corollaire 3 montre également que si g est supérieur a
une certaine constante ne dépendant que de d et »n, alors N > 1: I’équation
F = 0 admet donc une solution dés que g est assez grand.

Le corollaire 3 est un cas particulier d’un résultat trés général qui sera
démontré au chapitre 8 (th. 4): on examinera plus en détail a cette occasion
les conséquences qu’on peut tirer d’une inégalité telle que (1.2.9).

Revenons au corollaire 1; si [ est vide, on a 4, = 0; ainsi:

COROLLAIRE 4. — Si [’ensemble I est vide, on a N = q"~ 1.

Un cas ou 7 est vide est celui ot 'un des J; est égal a 1 (on a mé€me alors
A, = 0); mais dans cette situation, I’égalité N = ¢g"~ ! peut se prouver
directement: il suffit de remarquer (comme au chap. 4, sect. 3.1) qu'on
ne modifie pas N en remplagant dans F les d; par les J;, et de noter par
ailleurs que si dans une équation diagonale I’'un des exposants (disons d,)
est égal a 1, alors le nombre total de solutions de I’équation est ¢g"~!: car
on peut se fixer arbitrairement les valeurs de X,, ..., X, dans k (d’ou g" !
possibilités), et F = 0 devient alors une équation du premier degré en
I’'unique variable X;.

Un cas plus général ol [ est vide est celui oll 'un des entiers §; est
premier avec les n — 1 autres (on laisse au lecteur le soin de le vérifier);
ceci se produit notamment si I'un des d; est premier avec les n — 1 autres.
Exemple: quel que soit g, des équations telles que

X?4+Y34+2Z23=0; X?’4+Y24+2Z°5=0,

admettent exactement g* solutions sur k = F,.

Un autre cas ol [ est vide est celui ol n est impeir, et olt d; = 2 pour
i =1,..,n; ce cas a déja été vu au chapitre 4, section 4.3, (3), et sera
examiné a nouveau dans la section 3.1 ci-dessous.

§ 2. Eguations diagonales avec terme constant.

On suppose maintenant b # 0, et on cherche a évaluer N (b).

2.1. Deésignons par L (U) = L (Uy, ..., U,) la forme linéaire b~ 'a, U,
+ ... + b7 'a,U,, et pour tout i (1 <i<n) et tout u; ek, notons m; ()
le nombre de solutions dans k de I’équation & une variable U,: Ul =y,
(chap. 5, sect. 1.5); x; désignant un caractére multiplicatif de & d’ordre 0;
= (¢—1, d;), on a alors (loc. cit., prop. 5)
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