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Notes sur le chapitre 5

§ 1: le fait que Fp+ est en dualité avec lui-même par (x,y) H» e2nlxylp est

évident, et connu « depuis toujours ». Les caractères multiplicatifs de ¥p

se sont introduits progressivement à partir du milieu du XVIIIe siècle avec

l'étude des restes quadratiques (Euler, Legendre, Gauss), cubiques (Gauss,

Jacobi, Eisenstein) et biquadratiques (Gauss, Jacobi).

§2: les sommes de Gauss apparaissent (sous la forme déguisée des

périodes cyclotomiques) dans la dernière section des Disquisitiones Arithme-
ticae : Gauss les utilise pour étudier, avant la lettre, le groupe de Galois de

l'extension Q(e2ni/p)/Q; à ce sujet, voir par exemple [8], pp. 453-460. Par
la suite, les sommes de Gauss reparaissent systématiquement dans les

travaux arithmétiques de Gauss, Jacobi, Eisenstein, Kummer, Stickelberger,
en relation notamment avec l'étude des lois de réciprocité, et avec la
représentation des nombres premiers par des formes quadratiques binaires à

coefficients entiers ; pour une synthèse de ces travaux, voir le livre centenaire
de Bachmann (Die Lehre von der Kreistheilung, Teubner, Leipzig, 1872),
ainsi que Stickelberger (1890). (L'utilisation de la somme de Gauss t

e2^lp p0ur démontrer la loi de réciprocité quadratique

est bien connue: voir [8], pp. 116-117, ou [17], chap. 1, sect. 3.3).

§ 3-4: les sommes de Jacobi apparaissent également dans les travaux
mentionnés ci-dessus ; elles y sont définies à partir des sommes de Gauss par
une formule qui coïncide avec la formule (3.3.2). Elles sont étudiées
systématiquement chez Stickelberger (1890), Davenport-Hasse (1934) et Weil
(1949) (ce dernier article contient d'ailleurs d'intéressantes indications
historiques).

Ce chapitre utilise les propositions 3 et 5 du chapitre 5 pour établir des
formules donnant le nombre exact N (b) de solutions dans kn d'une équation
diagonale alX1dl + + anXndn bk coefficients dans k (k désigne toujours
un corps fini à q éléments). Ces formules font intervenir des sommes de

Chapitre 6
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Gauss et de Jacobi ; si on sait calculer ces sommes, on obtient explicitement
N (b); sinon, l'évaluation du module des sommes de Gauss et de Jacobi
donnée au chapitre 5 (prop. 8, prop. 9, cor. 1 et prop. 10, cor. 1) permet
d'écrire une estimation approchée de N (b) ; cette estimation est (sauf dans
des cas exceptionnels) de la forme N (b) qn~x + O (#n_(3/2)), q étant
considéré comme « infiniment grand », et la constante impliquée par le O

ne dépendant que du nombre de variables n et des degrés partiels dp. c'est
là un type de résultat dont on a déjà vu un exemple au chapitre 4 (th. 6,

cor. 1), et qu'on retrouvera systématiquement au chapitre 8.

Dans tout le présent chapitre, les notations sont les suivantes : k désigne

un corps fini à q pf éléments; n est un entier >2; al9 an sont n
éléments de k, qu'on suppose tous différents de 0; dl9..., dn sont n entiers > 1 ;

F désigne le polynôme diagonal axXxdl + + anXndn; b est un élément

quelconque de k ; N (b) désigne le nombre de solutions dans kn de

l'équation F — b ; si b 0 (équation « sans second membre » ou « sans

terme constant»), on écrit N au lieu de N{0); enfin, pour i 1,

on pose <5f (q— 1, dt) et ht (q—l)/ôi.

§. 1. Equations diagonales sans terme constant.

On s'intéresse d'abord au cas où b 0, et on cherche à évaluer N
N (0). La lettre ß désigne un caractère additif non trivial de k, fixé une

fois pour toutes.

1.1. On aura besoin du résultat suivant:

Lemme 1. — Soient y un caractère additif non trivial de k, d un entier

> 1, et % un caractère multiplicatif de k, d'ordre 3 (q— 1, d). Alors

(i.i.i) X y(xi)Z T(z-/ly).
xek j- 1

Démonstration. — Si, pour tout aek, m (a) désigne le nombre de
solutions dans k de l'équation Xd a, le membre de gauche de (1.1.1) peut
évidemment s'écrire £ m (a) y (a); mais on a vu (chap. 5, prop. 5) que

aek
<5-1 <5-1

m (a) est égal à £ XJ (a) i ledit membre de gauche vaut donc £ £ xJ (a) 1 (a)>
j~0 j=0 aek

ce qui se décompose en

X y.' (°) y (0) + X x° (a) y («) + X X X («) y («) ;

j= 0 aek* j 1 a e k*
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dans cette somme de trois termes, le premier vaut 1 (chap. 5, convention

(1.4.1)), et le second, qui est une somme de Gauss correspondant au caractère

multiplicatif trivial x° au caractère additif non trivial y, vaut — 1

(chap. 5, sect. 2.2, (i)). Seul reste donc le troisième terme, évidemment égal

au membre de droite de (1.1.1): le lemme est ainsi prouvé.

1.2. Calculons alors N; partons de la formule (1.3.1) du chapitre 5,

et isolons, dans la somme de droite, les qn termes (égaux à 1) correspondant
h y 0; il vient

N q-i+q~i £ Yß(yF(x)),
yek* xekn

ou encore, compte tenu de la définition de F et du fait que ß est un caractère
additif,

(1.2.1) N q""1+ q~l£yek* i= 1

avec par définition B {i, y)£ ß(ya^f);le lemme 1, appliqué au carac-
X{ek

tère additif non trivial y ßya.,etla proposition 6 du chapitre 5,
permettent de transformer le second membre et d'écrire

i1-2-2) B(i,y)£ xJi (>'«;) (ïj1)
Ji i

Désignons alors par 9 un caractère multiplicatif d'ordre — 1 de fixé
une fois pour toutes (par exemple celui défini au chapitre 5 par (1.4.2)) et
faisons Xi 0Ai; (1.2.2) devient

<5,-1
(i-2-3) B(i,y) £ Biihi(yaßx(eiihi).

Ji 1

Notons / l'ensemble des vecteurs entiers j (j\, ...,/„) tels que 1 <
<<5; - 1 pour i 1pour tout je/, posons s(j) =j1/ô1 +
+ jJàn> désignons par Ilesous-ensemble de / formé des j tels que .y (j) soit
entier; enfin, pour tout je/, posons

(1.2.4) C(j) H (aß ;j) f) t(0^")-l-l {= 1

Avec ces notations, (1.2.1) et (1.2.3) donnent

(1.2.5) N q"-1 +Ç-1 £ S(j)C(j)r(j),
je J
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SQ) désignant (provisoirement) la quantité 0(q 1 is(,) (y) ; mais les
y ek*

relations d'orthogonalité (1.1.1) (chap. 5, sect. 1.1) montrent que S(j) 0,

sauf si (q— 1) s (j) est divisible par q — 1 (c'est-à-dire si ^(j) est entier, donc

par définition si j e I) auquel cas S (j) q — 1 ; cette remarque permet,
dans (1.2.5), de limiter la sommation aux je/, et de remplacer tous les

termes S (j) par q — 1; on arrive ainsi au résultat suivant:

Théorème 1. — L'ensemble I et les quantités C(j) et T(j) étant définis
comme ci-dessus, le nombre N de solutions dans kn de l 'équation diagonale
F 0 est donné exactement par

(1.2.6) N q-1 + q1 (q — 1) Y, C (j) T(j)
el

Corollaire 1. — Si A^ card (/), on a l'inégalité

(1.2.7) | N - q"-1 | <Ai(q-l)q(n/2)~1
Démonstration. — Il suffit de remarquer que, dans la formule (1.2.6),

chaque quantité C (j) est une racine de l'unité, donc un nombre complexe
de module 1, et que chaque quantité T (j) est un produit de n sommes de

Gauss non triviales relatives à k, donc un nombre complexe de module
qn/1 (chap. 5, prop. 8).

Corollaire 2. — Si A2 card (/) (ô^ — 1)... (<5n— 1), on a
l'inégalité

(1.2.8) \N - q"'1 | < A2qn/2

Démonstration. — C'est une conséquence immédiate de (1.2.7), puisque
A i < A 2 (en effet, I c: /) et que q — 1 < q.

La constante A2 ne dépend essentiellement que du degré d sup dt
de F, et du nombre de variables n figurant dans F; d'autre part, pour n > 3,

on a évidemment nj2 < n — (3/2); le corollaire 2 permet donc d'énoncer
ceci:

Corollaire 3. — Il existe une constante A2ne dépendant que du degré et

du nombre de variables de F, et telle que (si « > 3)

(1.2.9) \N -q"'1| <42q"-(3/2).

Ainsi, pour n > 3, l'hypersurface F 0 (qui est alors absolument
irréductible, ce qui ne serait pas le cas pour n < 2) a un nombre N de points
rationnels sur k qui est voisin (en un sens bien précis) de qn_1: ce qn~x
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est lui-même le nombre de points rationnels sur k de n'importe quel hyper-

plan défini sur k. Ce corollaire 3 montre également que si q est supérieur à

une certaine constante ne dépendant que de d et n, alors N > 1 : l'équation
F — 0 admet donc une solution dès que q est assez grand.

Le corollaire 3 est un cas particulier d'un résultat très général qui sera

démontré au chapitre 8 (th. 4) : on examinera plus en détail à cette occasion
les conséquences qu'on peut tirer d'une inégalité telle que (1.2.9).

Revenons au corollaire 1; si I est vide, ona^i 0; ainsi:

Corollaire 4. — Si l'ensemble I est vide, on a N qn~1.

Un cas où 1 est vide est celui où l'un des ôt est égal à 1 (on a même alors
A 2 0); mais dans cette situation, l'égalité N qtt~1 peut se prouver
directement: il suffit de remarquer (comme au chap. 4, sect. 3.1) qu'on
ne modifie pas N en remplaçant dans F les dt par les ôh et de noter par
ailleurs que si dans une équation diagonale l'un des exposants (disons dt)
est égal à 1, alors le nombre total de solutions de l'équation est q11"1: car
on peut se fixer arbitrairement les valeurs de X29 Xn dans k (d'où qn_1

possibilités), et F 0 devient alors une équation du premier degré en

l'unique variable Xx.
Un cas plus général où I est vide est celui où l'un des entiers ôt est

premier avec les n — 1 autres (on laisse au lecteur le soin de le vérifier);
ceci se produit notamment si l'un des d( est premier avec les n — 1 autres.
Exemple: quel que soit q, des équations telles que

X2 + y3 + Z 3 0 ; X2 + Y2 + z 5 0

admettent exactement q2 solutions sur k Fr
Un autre cas où / est vide est celui où n est impair, et où dt 2 pour

i 1,...,«; ce cas a déjà été vu au chapitre 4, section 4.3, (3), et sera
examiné à nouveau dans la section 3.1 ci-dessous.

§ 2. Equations diagonales avec terme constant.

On suppose maintenant ù # 0, et on cherche à évaluer N (b).

2.1. Désignons par L (U) L (Uu Un) la forme linéaire b~1a1U1
+ + b~ 1anUn, et pour tout i (1 < / < n) et tout ut e k, notons mt (ut)
le nombre de solutions dans k de l'équation à une variable Ut: Utdi ut
(chap. 5, sect. 1.5); Xi désignant un caractère multiplicatif de k d'ordre ôt

(q— 1, dt), on a alors (loc. cit., prop. 5)
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(2.1.1) (iq) Y Xiji Oh) ;
Ji 0

par ailleurs, il est clair que

(2.1.2) IV (fc) X mj (uj) m„ (u„),
ueH

H désignant l'hyperplan affine de kn formé des points u (w1?un) tels

que L (u) 1 ; (2.1.1) et (2.1.2) donnent alors

(2.1.3) N(b)E n'iV'OO-
ueff i=l jfj 0

Isolons dans le membre de droite les 1 termes (égaux à 1) correspondant
à j 0 (c'est-à-dire à (Ju ...,jn) (0,..., 0)) et, pour les autres, intervertissons

l'ordre des sommations; il vient

(2.1.4) N(b) q--1 +E I n XtJ,(ud>
j^O ueH i= 1

Or, un raisonnement analogue à celui fait au chapitre 5, section 4.2, montre

que si j n'est pas nul, mais si l'une au moins des composantes jt de j est nulle,
n

alors Y FI %iJi ~ 0» (2.1.4) se réduit donc à

u e H i= 1

(2-1.5) N(b) q"'1 + E Eli X;Ji("i),
je / u eH i= 1

J ayant la même signification qu'au paragraphe 1.

Effectuons alors le changement de variables u x défini par xt
b~1aiui (1 < i < n), et désignons par H1 l'hyperplan affine de kn formé

des x (xu xn) tels que xx + + xn 1; (2.1.5) devient

(2.1.6) N(b) =qn~t +E .fl x/'(b-'ad E fi
\e J i 1 x e iîi i 1

n

La quantité Y El XiJi (xù n'est autre que la somme de Jacobi n (x\jl-> -,
xe//i i — i

X„jn) (chap. 5, déf. 3), qu'on notera n (j) pour alléger l'écriture;
convenons d'autre part, pour tout j e J, de poser

(2.1.7) C(è,j) fl x/'ib-'ad;
i= 1
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(si on fait 0*£ comme au paragraphe 1, on a en particulier C (1, j)
C (j)) ; on arrive alors à ceci :

Théorème 2. —Le second membre b étant supposé non nul, fes* quantités

C(b, j) 7i (j) eta/7? définies comme ci-dessus, /e nombre N (b) de solutions

dans kn de l'équation diagonale F b est donné exactement par

(2.1.8) Nib) q*-1 + £ C (b, j) n (j)
i eJ

Corollaire 1. — Posons (comme dans le corollaire 2 du théorème 1

A2 card (/) (ô1 — 1)... (<5„ — 1); on a alors l'inégalité

(2.1.9) | N(b) - qn~1 | <^(n_1)/2
Démonstration. — Il suffit de remarquer que dans la formule (2.1.8),

chaque quantité C (b, j) est une racine de l'unité, donc un nombre complexe
de module 1, et que chaque quantité n (j) est une somme de Jacobi non
triviale à n caractères relative à h, donc un nombre complexe de module au

plus égal à g("~1)/2 (chap. 5, prop. 10, cor. 1).

Pour n > 2, on a évidemment {n—1)/2 < n — (3/2); ainsi:

Corollaire 2. — Il existe une constante A2, ne dépendant que du degré
et du nombre de variables de F, et telle que (si n > 2)

(2.1.10) | N{b) - q»-1 | <A2qn~(3/2).

Ce corollaire appelle naturellement les mêmes remarques que le corollaire

3 du théorème 1.

2.2. Supposons toujours b ^ 0, et soit Nt le nombre de solutions dans
kn+1 de l'équation diagonale sans second membre

(2.2.1) + + a„Xnd»- bX^+l 0 ;

on vérifie sans peine que N, N (b) et 7V\ sont liés par

(2.2.2) Nj, N +(q-l)N(b);
mais le théorème 1 permet d'exprimer et à l'aide de sommes de Gauss :

(2.2.2) permettrait donc également d'exprimer N (b) à l'aide de sommes de

Gauss; la formule qui en résulterait est peu maniable, et il est inutile de
l'écrire ici explicitement: signalons simplement que cette formule est identique

à celle qu'on pourrait déduire de (2.1.8) en appliquant la proposition 10

du chapitre 5 à chacune des sommes de Jacobi n (j) qui y figurent.



— 58 —

§ 3. « Exemplis gaudeamus ».

A titre d'application des théorèmes 1 et 2, on va calculer dans ce

paragraphe le nombre de solutions de certains types simples (et classiques)
d'équations diagonales.

3.1. On s'intéresse d'abord aux équations de la forme

a^Xf2 + -h a„X„2 b ;

on peut se limiter au cas où p est impair; q — pf est alors impair, et on a

Si 2 pour i 1,..., n; l'ensemble J des paragraphes 1 et 2 est formé
du seul élément j (1, 1); enfin, les caractères Xi Q{q~1)lôi sont tous

égaux à l'unique caractère d'ordre 2 de /:*, c'est-à-dire au caractère de

Legendre de k, qu'on notera cp (voir chap. 5, sect. 1.5).

(1) Supposons d'abord n impair. Si b 0, on utilise le corollaire 1 du
théorème 1, en remarquant que / est vide: on a donc N — q11'1. Si b A 0,

on utilise le théorème 2, qui donne ici

(3.1.1) N(b) =qn~1 +(p(b-na1...an)7t((p,...,(p);

comme cpn cp ^ s et que cp cp, on a n (cp,..., cp) t (cp)n~1 et t (cp)2

qcp (—1) (chap. 5, prop. 10, (ii) et prop. 7); ainsi,

(3.1.2) n(<p,..., (p) (qcp

le rapprochement de (3.1.1) et (3.1.2), et le fait que cp vaut 1 sur les carrés

et — 1 sur les non carrés de &*, permettent alors de conclure:

Proposition 1. — Pour n impair (et p ^ 2), le nombre N de solutions

dans kn de Véquation a1X12 + + anX2 b (où les at sont supposés

tous différents de 0) est donné par les formules suivantes :

(i) Si b 0 ,N 4m-1.

f qn~x + q(n~~1)/2 si — l)(n~1)/2al ...anbek*2
I q"'1 - q(n~1)l2 9 si — l){n~1)l2a1...anb$k*2.

(ii) Si b # 0 N

(2) Supposons maintenant n pair. Si b 0, on utilise le théorème 1, en

remarquant que / /; on trouve

N q"'1 + q~1{q-l)(p{al... an)z (cp

mais z(<p)n (t ((p)2)"'2(l<P ainsi
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(3.1.3) N qn~l+q-1(«-l)<p((-l)"/2«i
Si b # 0, on utilise le théorème 2, en remarquant que

n(<p, ...,<p) - (p(-l)T((p)n~2 - ç>(-l)(^(-l))(B"2)/2

(chap. 5, prop. 10, (i) puis (ii), et prop. 7; noter que (pn s). Au total:

Proposition 2. — Pour n pair (et p # 2), N est donné par les formules
suivantes :

q»-i + qn/2 — g(/,/2)~S si (~l)n/2a1 ...anek*2

g""1 - q"72 + g(w/2)_1 si (-l)"72^ a„ ^ fc*2 ;

qn~i -^(n/2)-1, si (-l)"72^ ...anek*2

g"-1 + <î("/2)~1, si — l)"72«! $k*2

On retrouve ainsi, et de manière plus naturelle, les résultats du chapitre 5,

section 4.3, (3) et (4).

3.2. On s'intéresse maintenant aux équations de la forme alXldl
+ a2X2d2 b, avec ax, ö2 et b ^ 0. Pour simplifier, on écrira X", F au
lieu de Xl9 X2, et on se limitera au cas où a1 a2 b 1 ; on supposera
d'autre part q — 1 divisible par et (on a toujours le droit de le faire:
voir chap. 4, sect. 1.3 et 3.1). Si alors on note Xi et %2 des caractères

multiplicatifs d'ordre d1 et d2 de k, et si J désigne l'ensemble des couples d'entiers

0*1,72) te^s fiue 1 — 1, 1 <7*2 < d2 — 1, le théorème 2 permet
d'énoncer:

Proposition 3. — Le nombre N de solutions sur k de l'équation Xdl
4- Yd2 — 1 est donné par

(3.2.1) N^q + Zn (x/W2).
je J

3.3. La proposition 3 permet notamment de calculer le nombre de

points rationnels sur k de certaines courbes de genre 11).

(1) La courbe Y2 1 — X3 (avec q 1 (mod 6)). Si (p désigne le caractère

de Legendre et si x est un caractère d'ordre 3 de k* (donc tel que x2

£), (3.2.1) donne

(3.3.1) iVi q+n(<p, y) +n(<P,

(ii) Sib#0 N

Les exemples ci-dessous resserviront aux chapitres 8 et 9.
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(2) La courbe Y2 1 — X4 (avec q 1 (mod 4)). Si cp désigne toujours
le caractère de Legendre, et si xj/ est un caractère d'ordre 4 de k* (donc
tel que \j/2 <p et ïj/3 ïp), (3.2.1) donne

(3.3.2) N2 q - 1 + n(q>9\p) + it(<p9}p)

(Se rappeler que n(ç, cp) — (p (— 1), et noter que cp — 1) 1, puisque

q 1 (mod 4), et que — 1 est donc un carré dans k).

(3) La courbe Y3 1 — X3 (avec q 1 (mod 3)). Si x désigne un caractère

d'ordre 3 de k* (donc tel que x2 — z)> (3.2.1) donne

(3.3.3) N3 q - 2 + n(x,x) + n(x,x).

(Noter que n (;x, x) x) - X (~ 1)* chap. 5, prop. 9, (i); et remarquer

que x(— 1) 1? puisque — 1 (—l)3).

3.4. Considérons maintenant la courbe VA d'équation Y2 X — X3;
elle est également de genre 1 (on suppose pour simplifier q 1 (mod 4));
l'équation, en revanche, n'est plus diagonale: on peut toutefois, grâce à

(3.3.2), calculer le nombre N4 de points de C4 rationnels sur en fait (et

avec les notations de la section 3.3, (2)):

(3.4.1) N4 q + 7i (<p,#) + n((p,\j/)

Un procédé de démonstration est le suivant (on laisse au lecteur le soin

de régler les détails); tout d'abord, la congruence q 1 (mod 4) entraîne

que — 1 est un carré dans k, et que — 4 est une puissance 4-ième dans k:

pour vérifier ce dernier point, appliquer les « lois complémentaires »

(_i)<*-n/\ Q (_i)o>2-i>/8

([17], p. 15), et se rappeler que q pf\ soient donc a et i deux éléments de k
tels que i2 — — 1, a4 — 4, et a2 2i. Soient d'autre part V29 V'2 et V4

les courbes d'équations respectives Y2 1 — X4, Y2 a4 — X4 et
2a2 Y2 X + X3, et soient N2, N2 et N4 leurs nombres de points rationnels

sur k (toutes ces courbes sont considérées comme affines). Il est clair que

N2 7^2, et comme la2 — Ai, on voit également sans peine que N4 — N4:

compte tenu de (3.3.2), il suffit alors de prouver que N4 N2 + 1, ce qui
se déduit facilement de l'existence d'une application birationnelle k : V2

V4, définie par

^ (*, J) (x2l(y + a2) +a2)).
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La relation (3.4.1) (c'est-à-dire l'égalité N4 N2 4- 1) peut aussi se

démontrer en appliquant aux deux polynômes P2 (2Q 1 — X4 et P4 (X)
X — X3 le lemme suivant (qui se prouve sans difficulté):

Lemme 1. — On suppose p ^ 2). Soit P (X) un polynôme à une variable

X et à coefficients dans k. Si (p désigne le caractère de Legendre de k, le

nombre NP de solutions sur k de l 'équation Y2 P (X) est donné par

(3.4.2) NP q + X (p (P (x))
xek

Au sujet de cette seconde méthode, voir Morlaye (1972).

3.5. Dans la section 3.3, on a supposé q congru à 1 modulo 6 (ou

modulo 4, ou modulo 3) pour pouvoir calculer Nu N2 et N3 par application
directe de la proposition 3. On laisse au lecteur le soin de vérifier (ce qui est

immédiat) les assertions suivantes:

si q - 1 (mod 6), on a N± q; si q - 1 (mod 4), on a N2 q

+ 1 ; si q — 1 (mod 3), on a N3 q; enfin, si q — 1 (mod 4), on a

N4 — q>

Notes sur le chapitre 6

§1-2: le lien entre nombre de solutions d'une congruence diagonale
modulo p et sommes de Gauss et de Jacobi avait déjà été remarqué par
Gauss et Jacobi eux-mêmes, notamment pour les congruences aX3 — b Y3

1 (mod p), aX4 — b Y4 1 (mod p), Y2 aX4 — b (mod p) ; à ce sujet,
voir Weil (1949), pp. 497-498. La congruence Xn + Yn + 1 0 (mod p)
a été étudiée par Libri (1832) pour n — 3, 4, puis, beaucoup plus tard, par
Pellet, Jacobsthal, ainsi que Dickson (1909), Hurwitz (1909), Schur (1916),

I Mordell (1922), etc., pour n quelconque, en relation avec le théorème de

Fermât. La congruence Xxk + + Xsk m (mod p) a été étudiée notam-
| ment par Hardy-Littlewood (1922) dans leurs travaux sur le problème de
j Waring. Le théorème 2, pour deux variables, est dû à Davenport-Hasse
j (1934), et, indépendamment, à Hua-Vandiver (1949, a; b) et Weil (1949)
| pour un nombre de variables quelconque.

§ 3: les propositions 1 et 2 (pour q p) figurent déjà dans Lebesgue
j (1837), où elles sont d'ailleurs démontrées d'une autre manière. La propo-
j sition 3 et les exemples de la section 3.3 sont empruntés à Davenport-Hasse
j (1934). Le lien entre nombre de solutions de Y2 X — X3 et de Y2 1

j — X4 semble avoir été remarqué (incidemment) pour la première fois par
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Jacobsthal (1907). Pour q p 1 (mod 4), la formule (3.4.1) peut, avec les

notations de l'appendice du chapitre 5 (sect. A.l, exemple 2) et compte de

la proposition 12 (ibid.), s'écrire 7V4 p — X — 1. Plus généralement, si

De Z, et si 7V4(D) désigne le nombre de solutions de la congruence Y2

DX — X3 (mod p) (ou, ce qui revient au même, de Y2 X3 — DX
(mod p)), on a

cette formule est due à Davenport-Hasse (1934), et a été redémontrée par
Rajwade (1970); Morlaye (1972) vient de donner une version élémentaire
de la démonstration de Davenport-Hasse. La courbe Y2 X3 — DX,
considérée comme variété abélienne de dimension 1 définie sur Q, a servi
de « banc d'essai » aux conjectures de Birch et Swinnerton-Dyer; voir Birch-
Swinnerton-Dyer (1965), ou Cassels-Fröhlich, Algebraic Number Theory,
chap. XII (Academic Press, 1967).

Le résultat central de ce chapitre est le théorème suivant, dû à Ax (1964),
et qui précise le théorème de Chevalley-Warning (chap. 3, sect. 1.1):

Théorème 1. — Soient k un corps fini à q pf éléments, F un polynôme
de degré d, à n variables et à coefficients dans k, et b le plus grand entier
strictement inférieur à njd. Si alors N désigne le nombre de zéros de F dans

kn, N est divisible par qb.

La démonstration de ce théorème est un peu analogue à celle du théorème

1 du chapitre 6 (ou plus précisément de son corollaire 1): elle consiste

(du moins en principe) : (1) à exprimer N à l'aide de sommes de Gauss, donc
d'entiers du corps L des racines p {q— l)-ièmes de l'unité; (2) à calculer la

« valeur absolue ^3-adique » de ces sommes en chaque idéal premier $ de

L au-dessus de p; (3) à en déduire enfin l'inégalité | N \p < | qb \p, où | \p

Chapitre 7

THÉORÈME D'AX
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