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Notes sur le chapitre 5

§ 1: le fait que F,* est en dualité avec lui-méme par (x,y) > e2™xyIP est
évident, et connu « depuis toujours ». Les caractéres multiplicatifs de F,
se sont introduits progressivement a partir du milieu du XVIIIe siécle avec
I’étude des restes quadratiques (Euler, Legendre, Gauss), cubiques (Gauss,
Jacobi, Eisenstein) et biquadratiques (Gauss, Jacobi).

§ 2: les sommes de Gauss apparaissent (sous la forme déguisée des
périodes cyclotomiques) dans la derniére section des Disquisitiones Arithme-
ticae: Gauss les utilise pour étudier, avant la lettre, le groupe de Galois de
’extension Q (e*™/?)/Q; a ce sujet, voir par exemple [8], pp. 453-460. Par
la suite, les sommes de Gauss reparaissent systématiquement dans les tra-
vaux arithmétiques de Gauss, Jacobi, Eisenstein, Kummer, Stickelberger,
en relation notamment avec 1’étude des lois de réciprocité, et avec la repré-
sentation des nombres premiers par des formes quadratiques binaires a
coefficients entiers; pour une synthése de ces travaux, voir le livre centenaire
de Bachmann (Die Lehre von der Kreistheilung, Teubner, Leipzig, 1872),
ainsi que Stickelberger (1890). (L’utilisation de la somme de Gauss 7

x . . r cor * :
= ¥ (_> e?™*/P pour démontrer la loi de réciprocité quadratique
x mod p\ P

est bien connue: voir [8], pp. 116-117, ou [17], chap. 1, sect. 3.3).

§ 3-4: les sommes de Jacobi apparaissent également dans les travaux
mentionnés ci-dessus; elles y sont définies a partir des sommes de Gauss par
une formule qui coincide avec la formule (3.3.2). Elles sont étudiées systé-
matiquement chez Stickelberger (1890), Davenport-Hasse (1934) et Weil

(1949) (ce dernier article contient d’ailleurs d’intéressantes indications
historiques).

CHAPITRE 6

EQUATIONS DIAGONALES (II)

Ce chapitre utilise les propositions 3 et 5 du chapitre 5 pour établir des
formules donnant le nombre exact N (b) de solutions dans k" d’une équation
diagonale a, X' + ... + a,X,%" = b a coefficients dans k (k désigne toujours
un corps fini & g éléments). Ces formules font intervenir des sommes de




Gauss et de Jacobi; si on sait calculer ces sommes, on obtient explicitement
N (b); sinon, I’évaluation du module des sommes de Gauss et de Jacobi
donnée au chapitre 5 (prop. 8, prop. 9, cor. 1 et prop. 10, cor. 1) permet
d’écrire une estimation approchée de N (b); cette estimation est (sauf dans
des cas exceptionnels) de la forme N (b) = ¢"~ ! + O (¢" ®/%), ¢ étant
considéré comme « infiniment grand », et la constante impliquée par le O
ne dépendant que du nombre de variables n et des degrés partiels d;: c’est
14 un type de résultat dont on a déja vu un exemple au chapitre 4 (th. 6,
cor. 1), et qu’on retrouvera systématiquement au chapitre 8.

Dans tout le présent chapitre, les notations sont les suivantes: k désigne
un corps fini & ¢ = pf éléments; n est un entier > 2; ay, ..., a, sont n élé-
ments de k, qu’on suppose tous différents de 0; d, ..., d, sont n entiers > 1;
F désigne le polyndome diagonal a; X, + ... + ¢,X,%*; b est un élément
quelconque de k; N (b) désigne le nombre de solutions dans k" de
I’équation F = b; si b = 0 (équation « sans second membre » ou « sans
terme constant »), on écrit N au lieu de N (0); enfin, pour i = 1, ..., n,
on pose 9; = (q—1,d;) et h; = (g—1)/9,.

§ 1. Equations diagonales sans terme constant.

On s’intéresse d’abord au cas ou b = 0, et on cherche a évaluer N
= N (0). La lettre  désigne un caractére additif non trivial de k, fixé une

fois pour toutes.

1.1. On aura besoin du résultat suivant:

LEMME 1. — Soient y un caractére additif non trivial de k, d un entier
> 1, et y un caractére multiplicatif de k, d’ordre 6 = (q—1, d). Alors
o—1
(1.1.1) L e =3 .
xX€ J=

Démonstration. — Si, pour tout a € k, m (a) désigne le nombre de solu-
tions dans k de ’équation X¢ = g, le membre de gauche de (1.1.1) peut
évidemment s’écrire Y. m (a) y (@); mais on a vu (chap. 5, prop. 5) que

ack
5-1 5—1
m (a) est égal & Z %’ (a); ledit membre de gauche vautdonc Y, ) ¥/ (a) y (a),
Jj=0 aeck

Jj=
ce qui se decompose en

Z (070 + ) X’@y@ + Z Y @)y (a);

ack* Jj=1 aeck*
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dans cette somme de trois termes, le premier vaut 1 (chap. 5, convention
(1.4.1)), et le second, qui est une somme de Gauss correspondant au carac-
tére multiplicatif trivial ¥° et au caractére additif non trivial y, vaut — 1
(chap. §, sect. 2.2, (i)). Seul reste donc le troisiéme terme, évidemment égal
au membre de droite de (1.1.1): le lemme est ainsi prouvé.

1.2. Calculons alors N; partons de la formule (1.3.1) du chapitre 5,
et isolons, dans la somme de droite, les g" termes (égaux a 1) correspondant
ay = 0; il vient

N=qg""+q" ) ¥ BOF®),
- yYek* xekn
ou encore, compte tenu de la définition de F et du fait que f est un caractére
additif,
(1.2.1) N=g""+4q7"Y [IB(GY),
1

yek* i=

avec par définition B (i, y) = ) B (ya,x*); le lemme 1, appliqué au carac-

x;ek
tére additif non trivial y = Pya;» €t la proposition 6 du chapitre 5, per-
mettent de transformer le second membre et d’écrire
6;—1

(1.2.2) By = T 7 () ().

Ji=
Désignons alors par 6 un caractére multiplicatif d’ordre g — 1 de k, fixé
une fois pour toutes (par exemple celui défini au chapitre 5 par (1.4.2)) et
faisons y; = 0"; (1.2.2) devient

6;—1
(1.2.3) B(i,y) = Y 0% (ya) (6t

Ji=1
Notons J I’ensemble des vecteurs entiers §J= (1) tels que 1<,
<9d;— 1 pour i =1,..,n; pour tout jeJ, posons s(j) = j, /6, + ...
+ Ju/04; désignons par I le sous-ensemble de J formé des J tels que s (j) soit
entier; enfin, pour tout i € J, posons
(1.2.4) CH =[] 0™ (a); TG = [] (0%,
i=1 '

i=1

Avec ces notations, (1.2.1) et (1.2.3) donnent

(1.2.5) N =g 447" ZJ SHCH TG,
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S (j) désignant (provisoirement) la quantité Y 0@~ s® (3); mais les
yek*
relations d’orthogonalité (1.1.1) (chap. 5, sect. 1.1) montrent que S(j) = O,

sauf si (q—1) s (j) est divisible par g — 1 (c’est-a-dire si s (j) est entier, donc |
par définition si je I) auquel cas S(j) = q — 1; cette remarque permet,
dans (1.2.5), de limiter la sommation aux je I, et de remplacer tous les
termes S (j) par ¢ — 1; on arrive ainsi au résultat suivant:

THEOREME 1. — L ’ensemble I et les quantités C(j) et T (j) étant définis
comme ci-dessus, le nombre N de solutions dans k" de [’équation diagonale
F = 0 est donné exactement par
(1.2.6) N=¢"+¢"@-D2LCOTW.

je

COROLLAIRE 1. — Si A, = card (1), on a l’inégalité

(1.2.7) IN —g"" 1 [ < A (g—-1D g™,

Démonstration. — 1l suffit de remarquer que, dans la formule (1.2.6),
chaque quantité C (j) est une racine de I'unité, donc un nombre complexe
de module 1, et que chaque quantité 7 (j) est un produit de » sommes de
Gauss non triviales relatives a k, donc un nombre complexe de module
q"'? (chap. 5, prop. 8).

COROLLAIRE 2. — Si A, = card (J) = (0,—1) ... (6,—1), on a [l’iné-
galité

(1.2.8) IN — g1 | < 4,q"7 .

Démonstration. — C’est une conséquence immédiate de (1.2.7), puisque
A; <A, (eneffet, ] =« J)et que g — 1 <gq.

La constante 4, ne dépend essentiellement que du degré d = sup d;
de F, et du nombre de variables » figurant dans F'; d’autre part, pour n > 3,
on a évidemment n/2 <n — (3/2); le corollaire 2 permet donc d’énoncer
ceci:

COROLLAIRE 3. — Il existe une constante A, ne dépendant que du degré et
du nombre de variables de F, et telle que (sin >3)

(1.2.9) IN — g" 1| < A,g"= G,

Ainsi, pour n > 3, U'hypersurface F = 0 (qui est alors absolument irré-
ductible, ce qui ne serait pas le cas pour n < 2) a un nombre N de points
rationnels sur k qui est voisin (en un sens bien précis) de ¢" " ': ce ¢"*
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est lui-méme le nombre de points rationnels sur k£ de n’importe quel hyper-
plan défini sur k. Ce corollaire 3 montre également que si g est supérieur a
une certaine constante ne dépendant que de d et »n, alors N > 1: I’équation
F = 0 admet donc une solution dés que g est assez grand.

Le corollaire 3 est un cas particulier d’un résultat trés général qui sera
démontré au chapitre 8 (th. 4): on examinera plus en détail a cette occasion
les conséquences qu’on peut tirer d’une inégalité telle que (1.2.9).

Revenons au corollaire 1; si [ est vide, on a 4, = 0; ainsi:

COROLLAIRE 4. — Si [’ensemble I est vide, on a N = q"~ 1.

Un cas ou 7 est vide est celui ot 'un des J; est égal a 1 (on a mé€me alors
A, = 0); mais dans cette situation, I’égalité N = ¢g"~ ! peut se prouver
directement: il suffit de remarquer (comme au chap. 4, sect. 3.1) qu'on
ne modifie pas N en remplagant dans F les d; par les J;, et de noter par
ailleurs que si dans une équation diagonale I’'un des exposants (disons d,)
est égal a 1, alors le nombre total de solutions de I’équation est ¢g"~!: car
on peut se fixer arbitrairement les valeurs de X,, ..., X, dans k (d’ou g" !
possibilités), et F = 0 devient alors une équation du premier degré en
I’'unique variable X;.

Un cas plus général ol [ est vide est celui oll 'un des entiers §; est
premier avec les n — 1 autres (on laisse au lecteur le soin de le vérifier);
ceci se produit notamment si I'un des d; est premier avec les n — 1 autres.
Exemple: quel que soit g, des équations telles que

X?4+Y34+2Z23=0; X?’4+Y24+2Z°5=0,

admettent exactement g* solutions sur k = F,.

Un autre cas ol [ est vide est celui ol n est impeir, et olt d; = 2 pour
i =1,..,n; ce cas a déja été vu au chapitre 4, section 4.3, (3), et sera
examiné a nouveau dans la section 3.1 ci-dessous.

§ 2. Eguations diagonales avec terme constant.

On suppose maintenant b # 0, et on cherche a évaluer N (b).

2.1. Deésignons par L (U) = L (Uy, ..., U,) la forme linéaire b~ 'a, U,
+ ... + b7 'a,U,, et pour tout i (1 <i<n) et tout u; ek, notons m; ()
le nombre de solutions dans k de I’équation & une variable U,: Ul =y,
(chap. 5, sect. 1.5); x; désignant un caractére multiplicatif de & d’ordre 0;
= (¢—1, d;), on a alors (loc. cit., prop. 5)




56 —

. 4;—1 N
(2.1.1) m(u) = ) %' (w);
Jji=0
par ailleurs, il est clair que
(2.1.2) N(b) = > my(uy)...m,(u,),

ueH

H désignant I’hyperplan affine de k" formé des points u = (uy, ..., 4,) tels
que L (u) = 1; (2.1.1) et (2.1.2) donnent alors

n 6;—1

(2.1.3) Ny =) JI X ' ).

ueH i=1 j;=0

Isolons dans le membre de droite les g"~ ! termes (égaux & 1) correspondant
aj = 0 (c’est-a-dire a (74, ..., j,) = (0, ..., 0)) et, pour les autres, interver-
tissons 'ordre des sommations; il vient

(2.1.4) N®) =q""+ ) 2 H ' (uy) .

170 ueH i=

Or, un raisonnement analogue a celui fait au chapitre 5, section 4.2, montre
que si j n’est pas nul, mais si I’'une au moins des composantes j; de j est nulle,
n
alors Y [] x”* (u) = 0; (2.1.4) se réduit donc a
ueH i=1

n

(2.1.5) NB) =¢7' + 3 T I o),

ieJ ueH i=

J ayant la mé€me signification qu’au paragraphe 1.

Effectuons alors le changement de variables u > x défini par x; =
= b™Yau; (1 <i < n), et désignons par H, I’hyperplan affine de k" formé
des x = (x, ..., x,,) tels que x; + ... + x, = 1; (2.1.5) devient

@1 NG =¢+ LI 207 a) ¥ T 1

ieJ i= er1

n

La quantité Y [] z/* (x;) n’est autre que la somme de Jacobi = (y,7%, ...,
xeH) i=1

¥ ™) (chap. 5, déf. 3), quon notera = (j) pour alléger Décriture;
convenons d’autre part, pour tout j € J, de poser

(2.1.7) C(b,)) = '=1—[12iji (b~'a));



(si on fait y; = 0" comme au paragraphe 1, on a en particulier C (1, i)
= C(j)); on arrive alors a ceci:.

THEOREME 2. — Le second membre b étant supposé non nul, et les quantités
C(b,]) et n(j) étant définies comme ci-dessus, le nombre N (b) de solutions
dans k" de 1’équation diagonale F = b est donné exactement par

(2.1.8) N@®) =4q""+ ) Ch, D).
jed
COROLLAIRE 1. — Posons (comme dans le corollaire 2 du théoréme 1)
A, = card (J) = (6,—1) ... (6,—1); on a alors l’inégalité
(2.1.9) IN(b) — g"* | < Apq® V72
Démonstration. — 11 suffit de remarquer que dans la formule (2.1.8),

chaque quantité C (b, j) est une racine de I'unité, donc un nombre complexe
de module 1, et que chaque quantité 7 (j) est une somme de Jacobi non
triviale a n caractéres relative a k, donc un nombre complexe de module au
plus égal & ¢‘*~ 1'% (chap. 5, prop. 10, cor. 1).

Pour n > 2, on a évidemment (n—1)/2 < n — (3/2); ainsi:

COROLLAIRE 2. — I] existe une constante A ,, ne dépendant que du degré
et du nombre de variables de F, et telle que (si n > 2)

(2.1.10) IN(b) —q" 1| < Ag"" G2,

Ce corollaire appelle naturellement les mémes remarques que le corol-
laire 3 du théoréme 1. '

2.2. Supposons toujours b # 0, et soit N, le nombre de solutions dans
k"*1 de I’équation diagonale sans second membre

(2.2.1) a X"+ ..+ a0, X - bX1T] =0;
on vérifie sans peine que N, N (b) et N, sont liés par
(2.2.2) Ny, =N+ (@—-1)N(b);

mais le théoréme 1 permet d’exprimer N et N, a 'aide de sommes de Gauss:
(2.2.2) permettrait donc également d’exprimer N (b) & I’aide de sommes de
Gauss; la formule qui en résulterait est peu maniable, et il est inutile de
Pécrire ici explicitement: signalons simplement que cette formule est iden-
tique & celle qu’on pourrait déduire de (2.1.8) en appliquant la proposition 10
du chapitre 5 & chacune des sommes de Jacobi 7 (j) qui y figurent.




58
§ 3. « Exemplis gaudeamus ».

A titre d’application des théorémes 1 et 2, on va calculer dans ce para-
graphe le nombre de solutions de certains types simples (et classiques)
d’équations diagonales.

3.1. On s’intéresse d’abord aux équations de la forme
a; X + ... +a,X,> =b;

on peut se limiter au cas oll p est impair; ¢ = p’ est alors impair, et on a
0; = 2 pour i = 1, ..., n; ’ensemble J des paragraphes 1 et 2 est formé
du seul élément j = (1, ..., 1); enfin, les caractéres y; = 0¥~ V/% sont tous
égaux & l'unique caractére d’ordre 2 de k*, c’est-a-dire au caractére de
Legendre de k, qu’on notera ¢ (voir chap. 5, sect. 1.5).

(1) Supposons d’abord »n impair. Si b = 0, on utilise le corollaire 1 du
théoréme 1, en remarquant que 7 est vide: on a donc N = ¢"~ 1. Si b # 0,
on utilise le théoréme 2, qui donne ici

(3.1.1) NOb =q" 4+ ™ay...a)n(p,...,0);

comme @" = @ #eetque d = @, on an(e,.., ¢) =1(p)" et (p)?
= gp (—1) (chap. 5, prop. 10, (ii) et prop. 7); ainsi,

(3.1.2) (@, ..y @) = (q@ (1)) 172,
le rapprochement de (3.1.1) et (3.1.2), et le fait que ¢ vaut 1 sur les carrés
et — 1 sur les non carrés de k*, permettent alors de conclure: |

PROPOSITION 1. — Pour n impair (et p # 2), le nombre N de solutions
dans k* de 1'équation a,X,*> + ... + a,X,> = b (ou les a; sont supposés
tous différents de Q) est donné par les formules suivantes :

@ Sib=0,N=q"".
g+ g2 s (=) D2, g,bek*?,

(i) Sib #0,N = { "t — g2 i (=)D a,b k.

(2) Supposons maintenant n pair. Si b = 0, on utilise le théoréme 1, en
remarquant que I = J; on trouve

N=q¢""+qgg-Dea...a)t(@);
mais 1 ()" = (t (¢)*)"* = (g (—1))"?; ainsi
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(3.1.3) N=gqg"'+q'@-Do((-D"%ay...a,)q"?.
Si b # 0, on utilise le théoreme 2, en remarquant que
(g, 0) = —@(=D1(e)> = —p(=D(qe(-1)"™>"

(chap. 5, prop. 10, (i) puis (ii), et prop. 7; noter que ¢" = &). Au total:

PROPOSITION 2. — Pour n pair (et p # 2), N est donné par les formules
suivantes :
. gl gt — gD i (=1 2ay ... a, €k*?,
1) Sib=0,N = -1 /2 (n/2)-1 : n/2 %2
A , si (=D ay ... a,¢k*;
{ gt —q®Dt i (=DYay ... a,ek*?,

g""t + gD si (=1)"%a ... a, Ek*2.

(i) Sib#0,N =

On retrouve ainsi, et de maniére plus naturelle, les résultats du chapitre 5,
section 4.3, (3) et (4).

3.2. On s’intéresse maintenant aux équations de la forme a,X ;"
+ a,X,® = b, avec a,, a, et b # 0. Pour simplifier, on écrira X, Y au
lieu de X, X,, et on se limitera aucas ot a; = a, = b = 1; on supposera
d’autre part ¢ — 1 divisible par d, et d, (on a toujours le droit de le faire:
voir chap. 4, sect. 1.3 et 3.1). Si alors on note y, et x, des caractéres multi-
plicatifs d’ordre d, et d, de k, et si J désigne I’ensemble des couples d’entiers
(i, 7o) tels que 1 <j;, <d; — 1, 1 <j, <d, — 1, le théoréme 2 permet
d’énoncer: |

PROPOSITION 3. — Le nombre N de solutions sur k de I’équation X*
+ Y% = 1 est donné par
(3.2.1) N =gq+ ) n(u' 0.
iedJ

3.3. La proposition 3 permet notamment de calculer le nombre de
points rationnels sur k de certaines courbes de genre 11).

(1) La courbe Y* = 1 — X3 (avec g = 1 (mod 6)). Si ¢ désigne le carac-
tére de Legendre et si y est un caractére d’ordre 3 de k* (donc tel que y?
= j), (3.2.1) donne

(3.3.1) Ni=q+n(e,0) +7n(p, ).

1) Les exemples ci-dessous resserviront aux chapitres 8 et 9.
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|

(2) La courbe Y?> = 1 — X* (avec ¢ = 1 (mod 4)). Si ¢ désigne toujours
le caractére de Legendre, et si i est un caractére d’ordre 4 de k* (donc
tel que Y* = ¢ et > = ), (3.2.1) donne

(3.3.2) N, =q—14+7a(p,¥) +n(p,¥).

(Se rappeler que 7 (¢, ) = — @ (—1), et noter que ¢ (—1) = 1, puisque
g = 1 (mod 4), et que — 1 est donc un carré dans k).

(3) La courbe Y*® =1 — X3 (avec ¢ = 1 (mod 3)). Si y désigne un carac-
tére d’ordre 3 de k* (donc tel que ¥* = %), (3.2.1) donne

(3.3.3) Ny =q—-2+7n(x) +n0, 0.

(Noter que 7 (x, 1) = n (%, x) = — x(—1): chap. 5, prop. 9, (i); et remar-
quer que y (—1) = 1, puisque — 1 = (=1)3).

3.4. Considérons maintenant la courbe V, d’équation Y* = X — X3;
elle est également de genre 1 (on suppose pour simplifier ¢ = 1 (mod 4));
I’équation, en revanche, n’est plus diagonale: on peut toutefois, griace a
(3.3.2), calculer le nombre N, de points de C, rationnels sur k; en fait (et
avec les notations de la section 3.3, (2)):

Un procédé de démonstration est le suivant (on laisse au lecteur le soin
de régler les détails); tout d’abord, la congruence ¢ = 1 (mod 4) entraine
que — 1 est un carré dans k, et que — 4 est une puissance 4-iéme dans k:
pour vérifier ce dernier point, appliquer les « lois complémentaires »

(:—__1.) - (__1)(1’—1)/2’ (;) — (_1)(;;2—1)/8
p

([17], p. 15), et se rappeler que g = p’; soient donc a et i deux éléments de k
tels que i2 = — 1, a* = — 4, et a*> = 2i. Soient d’autre part V,, V, et V
les courbes d’équations respectives Y% =1 — X*, Y? = g* — X* et
2a*Y? = X + X3, et soient N,, N, et N4 leurs nombres de points rationnels
sur k (toutes ces courbes sont considérées comme affines). Il est clair que
N, = N,, et comme 2a*> = 4i, on voit également sans peine que N, = N,:
compte tenu de (3.3.2), il suffit alors de prouver que N, = N, + 1, ce qui
se déduit facilement de Iexistence d’une application birationnelle A: V¥,
— V,, définie par

A(x,y) = (X*/(y+a?), x/(y+a?).
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La relation (3.4.1) (Cest-a-dire 1’égalité N, = N, + 1) peut aussi se
démontrer en appliquant aux deux polyndémes P, (X) = 1 — X et Py (X)
— X — X3 le lemme suivant (qui se prouve sans difficulté):

LEMME 1. — (On suppose p # 2). Soit P (X') un polynéme a une variable
X et a coefficients dans k. Si ¢ désigne le caractére de Legendre de k, le
nombre Np de solutions sur k de I’équation Y 2 = P(X) est donné par

(3.4.2) Np=q+ Y ¢(Px).

xek

Au sujet de cette seconde méthode, voir Morlaye (1972).

3.5. Dans la section 3.3, on a supposé ¢ congru 2 1 modulo 6 (ou

modulo 4, ou modulo 3) pour pouvoir calculer Ny, N, et N3 par application
- directe de la proposition 3. On laisse au lecteur le soin de vérifier (ce qui est
~ immédiat) les assertions suivantes:

sig= —1(mod 6),ona Ny =¢q;siqg= —1(mod4),ona N, =gq
‘} +1;5ig= —1 (mod 3), on a Ny = q; enfin, si g = — 1 (mod 4), on a
; N4=q.

Notes sur le chapitre 6

§ 1-2: le lien entre nombre de solutions d’une congruence diagonale

' modulo p et sommes de Gauss et de Jacobi avait déja été remarqué par
 Gauss et Jacobi eux-mémes, notamment pour les congruences aX>? — 5Y?

= 1(mod p), aX* — bY* =1 (mod p), Y?> = aX* — b (mod p); a ce sujet,

" voir Weil (1949), pp. 497-498. La congruence X" + Y" + 1 = 0 (mod p)

17 §
oy

i
{
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a été étudiée par Libri (1832) pour n = 3, 4, puis, beaucoup plus tard, par
Pellet, Jacobsthal, ainsi que Dickson (1909), Hurwitz (1909), Schur (1916),
Mordell (1922), etc., pour n quelconque, en relation avec le théoréme de
Fermat. La congruence X,* + ... + X} = m (mod p) a été étudiée notam-
ment par Hardy-Littlewood (1922) dans leurs travaux sur le probléme de
Waring. Le théoréme 2, pour deux variables, est dii & Davenport-Hasse
(1934), et, indépendamment, a Hua-Vandiver (1949, a; b) et Weil (1949)
pour un nombre de variables quelconque.

§ 3: les propositions 1 et 2 (pour g = p) figurent déja dans Lebesgue
(1837), ou elles sont d’ailleurs démontrées d’une autre maniére. La propo-

- sition 3 et les exemples de la section 3.3 sont empruntés & Davenport-Hasse
¢ (1934). Le lien entre nombre de solutionsde Y% = X — X3 et de Y? = 1

— X* semble avoir été remarqué (incidemment) pour la premiére fois par
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Jacobsthal (1907). Pour ¢ = p = 1 (mod 4), la formule (3.4.1) peut, avec les
notations de I’appendice du chapitre 5 (sect. A.1, exemple 2) et compte de
la proposition 12 (ibid.), s’écrire N, = p — ) — A. Plus généralement, si
DeZ, et si N,(D) désigne le nombre de solutions de la congruence Y?
= DX — X3 (mod p) (ou, ce qui revient au méme, de ¥Y? = X3 — DX

(mod p)), on a
N0 = —(2) 2= (2) 1.
. )—p_<i)4 _<Z>4 ’

cette formule est due a Davenport-Hasse (1934), et a été redémontrée par
Rajwade (1970); Morlaye (1972) vient de donner une version élémentaire
de la démonstration de Davenport-Hasse. La courbe Y? = X3 — DJX,
considérée comme variété abélienne de dimension 1 définie sur Q, a servi
de « banc d’essal » aux conjectures de Birch et Swinnerton-Dyer ; voir Birch-
Swinnerton-Dyer (1965), ou Cassels-Frohlich, Algebraic Number Theory,
chap. XII (Academic Press, 1967).

CHAPITRE 7

THEOREME D’AX

Le résultat central de ce chapitre est le théoréme suivant, di 2 Ax (1964),
et qui précise le théoreme de Chevalley-Warning (chap. 3, sect. 1.1):

THEOREME 1. — Soient k un corps fini @ q = p’ éléments, F un polynéme
de degré d, a n variables et a coefficients dans k, et b le plus grand entier
strictement inférieur a n/d. Si alors N désigne le nombre de zéros de F dans
k", N est divisible par q°.

La démonstration de ce théoréme est un peu analogue a celle du théo-
réme 1 du chapitre 6 (ou plus précisément de son corollaire 1): elle consiste
(du moins en principe): (1) a exprimer N a ’aide de sommes de Gauss, donc
d’entiers du corps L des racines p (¢—1)-iémes de I'unité; (2) a calculer la
« valeur absolue 3-adique » de ces sommes en chaque idéal premier 3 de
L au-dessus de p; (3) & en déduire enfin 'inégalité | N |, <| ¢”

p’Oﬁl'lp
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