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§ 4. Sommes de Jacobi a n caracteéres.

4.1. Soient n un entier >1, et yq, ..., X, # caractéres multiplicatifs
de k. Désignons par H 'ensemble des points X = (x, ..., X,,) de k" tels que
X; + ... + x, = 1; c’est un hyperplan affine de k", et on a en particulier
card (H) = ¢" L.

DEFINITION 3. — On appelle somme de Jacobi associée @ yq, ..., xn la
quantité :
(4.1.1) (At ver ) = ZHX1 (61) o L (%) -
Xe

C’est évidemment un entier du corps des racines (g — 1)-iémes de 1'unité.
Pour n =1, on a n(y,) = 1; pour n = 2, on retrouve les sommes de
Jacobi a deux caractéres étudiées au paragraphe précédent; dans ce qui suit,
on pourra donc supposer n > 3.

4.2. Siun au moins des caractéres y; est trivial, on a une somme de
Jacobi « triviale » qui se calcule explicitement:

n—1,.

(1) si tous les y; sont triviaux, on @ © (Y1, «r Xn) = " 3

(i) si la famille y; comporte au moins un caractére trivial et au moins un
caractere non trivial, on a 7 (x4, ..., x,) = O.

(Prouvons cette derniére égalité, qui n’est pas absolument évidente: quitte
eventuellement & renuméroter les caractéres, on peut supposer y, # &, ...,
Am # & MAIS Ypiy = ... = ¥, = &, avec 1 <m <n — 1; comme alors
Am+1(¥) = .. = x,(») = 1 pour tout élément y de k, et que le systéme
de m + 1 équations linéaires

Xi+..4+X, =1, X;{ =x4,..., X,, =X,,,

admet exactement ¢"~™~ ! solutions dans k" quels que soient les m éléments
Xy, ... X,y de k, on voit que

T o) = 47" (0 10GD) e (Yt s

Xiek Xmek

mais chacune des sommes du membre de droite est nulle (utiliser (1.1.1) et
(1.4.1)); en définitive, on a donc bien x (x4, ..., x,) = O, C.Q.F.D.)

4.3. Passons maintenant au cas non trivial.
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PrOPOSITION 10. — Supposons x; # € pour i = 1, ..., n. Alors
@A) Siy,..x,=¢ ona
(4.3.1) T(L1s oos Tn) = X (=D T(Uas ey Xnma) -

(i) Si au contraire ¥y ... %, # €, la somme de Jacobi 7 (xq, ..., Xn) Deut
s ‘exprimer a [’aide de sommes de Gauss non triviales par la formule

(4.3.2) (A1 wees ) = T - TOT 1 - X) -

(Les n + 1 sommes de Gauss figurant dans le membre de droite sont
supposées calculées a I’aide d’un méme caractére additif non trivial § de k).

Démonstration. — (i) Ecrivons pour abréger © = 7w ()Xy, ..., Xn)> €t
posons
(4.3.3) p = Z X1 (X1) e X1 (1)

(somme étendue a P’ensemble des points (xy, ..., x,_ ) de k"~ ' tels que
X, + ... +x,-4 =0), puis

(4.3.4) o =3 X1 (X1) .. X (x)

(somme étendue a ’ensemble des points (x4, ..., x,) de H tels que x, # 1).
Il est clair que @ = p + o, et il suffit donc, pour prouver I’égalité (4.3.1),
d’établir les deux égalités ci-dessous:

(435) p = 0; o = — Xn('—l)n(XIS-"a Xn—l)’

Démontrons la premiére. Comme y,-, (0) = 0, on peut, dans (4.3.3),
limiter la sommation aux points tels que x,_; # 0, puis faire le changement
de variables (xy, ..., X,_2, Xy 1) P> (V15 e Vu—2, t) défini par

L= —Xp—1, V1 = = Xg5 e W2 = — Xy 2.
(4.3.3) se transforme alors en

p = Xn—l (ﬂl)n(Xh eoey Xn—-Z) Z (Xl Xn—l)(t);
tek*
mais par hypothése, )i .. Xn—1 = ¥u - # €; compte tenu de (1.1.1), la
somme figurant dans le membre de droite est alors nulle, et on a bien
p = 0.
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Démontrons la seconde égalité (4.3.5). Faisons, dans le membre de
droite de (4.3.4), le changement de variables (Xy, ..., X,~ 1, X,) P (P15 o
Yn-1, t) défini par

yi = xl/(l _xn)a s Yn-1 = xn—l/(l —xn)> t = xn/(l _xn) .
(4.3.4) se transforme en

c=( Y %®) (Xt ta-1Gu-1)>

t#0, —1

Ja deuxiéme somme étant étendue aux points (¥4, ..., ¥, 1) de k"~ ! tels que
Yy + .. + yo—q = 0; cette deuxiéme somme est donc égale par définition
A 7 (%y, oo Xy—1); comme la premiére somme figurant dans le membre de
droite vaut — ¥, (—1) (utiliser (1.1.1)), on aboutit bien a la seconde égalité
(4.3.5), ce qui achéve de démontrer (i).

(i) Meéme méthode que pour la proposition 9, (ii) (qui correspond au cas
n = 2); on laisse au lecteur le soin d’effectuer le détail du calcul.

COROLLAIRE 1. — Mémes données que dans la proposition 10.
W Siy,..y,=¢ ona
(4.3.6) | (Xs s ) I = 0772
(i) Si au contraire Yy ... X, # € Oon a

(437) !R(Xb'--: Xn) 12 -

l
Q)

(iii) Dans les deux cas, on a pour la somme de Jacobi n (¥, ..., X.) la majo-
ration en module

(4.3.8) [ (teses ) | < q@7P2.

Démonstration. — (4.3.7) résulte de (4.3.2) et de (2.3.4); (4.3.6) résulte

alors de (4.3.1) et de (4.3.7); enfin, (4.3.8) est une conséquence immédiate de
(4.3.6) et (4.3.7).

Appendice. — Détermination effective des sommes de Gauss et de Jacobi.

A.1. Commengons par les sommes de Jacobi (et limitons-nous au cas
de deux caractéres). Le probléme est le suivant: étant donné un corps fini %,
et deux caractéres multiplicatifs y et  de k, donnés explicitement, déter-
miner directement (c’est-a-dire sans remonter & la définition) et sans ambi-
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guité la valeur de lentier algébrique 7 (y, ¥). Ce probléme est difficile en
général, mais, pour k = F, et y,  d’ordre peu élevé, il peut €tre résolu de
fagon élémentaire. Voyons-le sur deux exemples:

Exemple 1. — Posons p = e*™/3, 4 = Z [p]; soit p un nombre premier
= 1 (mod 3), et soit p = A1 sa décomposition en facteurs irréductibles dans
A, A et A étant entiérement déterminés (2 la conjugaison prés) par la condi-

tion A = 1 = 1 (mod 3). Posons k = 4/14 ~ F, et soit (7) le symbole
3
de restes cubiques modulo A dans A, défini pour tout x € 4 par

X
(A.1.1) (—/—1—> = 0, si x = 0 (mod A); une puissance de p, sinon;
3

(;) = x?~ D73 (mod 1) dans les deux cas.
3

Ce symbole s’identifie 2 un caractére multiplicatif d’ordre 3 de k, qu'on
notera y. On peut alors envisager la somme de Jacobi 7 (y, ¥), qui est un
¢lément parfaitement déterminé de A:

PropOSITION 11. — Ona n(y, y) = — A

Démonstration. — Posons 7 = 7 (x, x) . (A.1.1) et la définition de yx
permettent d’écrire w = Y y(x)x(1-x) = > P(x) (mod 1), avec

xek xek
P(X) = X@"DBA_x)»~D3: comme deg(P) =2(p—-1)/3 <p — 1,
cette somme est nulle (dans k = A/AA; voir chap. 3, th. 2), et © est donc
divisible par A; mais par ailleurs nt = p (prop. 9, cor. 1): = est donc un
facteur irréductible de p dans A. Au total, © est donc associé a A dans A4,
et on a © = ¢/, ¢ étant une racine 6-iéme de I'unité. Soient maintenant
une racine primitive p-iéme de I'unité dans C, f le caractére additif de k
défini par f(x) = {*(xek), et t la somme de Gauss 7 (x | B); on a 13
= pr (prop. 9, cor. 2), donc, puisque p = 1 (mod 3), 7 = 7> = ( ), x(x)¢%)?

xek¥*
=Y PP = ) 3* = — 1 (mod 3) (noter que *>(x) = 1 pour tout
xek* xek*
x € k* et que {3 est une racine primitive p-iéme de l'unité).
En résumé, on a donc 7 = g4 = — 1 (mo 3), avec 4 =1 (mod 3)
et ¢ = une racine 6-iéme de I'unité: ceci implique ¢ = — 1 (essayer les six

valeurs possibles de ¢), donc finalement n = — 4, C.Q.F.D.
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Exemple 2. — Posons i = / — 1,4 = Z [i]; soit p un nombre premier
= 1 (mod 4), et soit p = A4 sa décomposition en facteurs irréductibles dans
" A, J et 1 étant entiérement déterminés (3 la conjugaison prés) par la condi-
tion A = 1 = 1 (mod 2 + 2i). Posons (comme dans I'exemple 1) k = A/AA4

~ F,, soient (7) et <7> les symboles de restes quadratiques et biqua-
2 4

~ dratiques modulo A dans A (définis comme le symbole de restes cubiques
dans I’exemple 1), et soient ¢ et y les caractéres multiplicatifs de k& corres-

pondants.

ProOPOSITION 12. — On a n (@, Y) = — A

Démonstration. — Posons 7n = 7w (@, ). On vérifie immédiatement,
comme pour la proposition 11, que = = &/, ¢ étant maintenant une racine
4-itme de 'unité. On peut déterminer ¢ par un argument géométrique tres
élégant, dt & Jacobi, et dont on verra une autre application au chapitre 9
(sect. 5.2). Soit N le nombre de solutions dans k? de I’équation X* + Y2
= 1; comme p = 1 (mod 4), k contient quatre racines 4-i€mes de 1’unité
(chap. 1, prop. 7, (ii)), et cette équation admet deux solutions (x, y) telles
que x = 0, quatre solutions (x, y) telles que y = 0, les autres solutions
(x, y) (telles que xy # 0) se groupant huit par huit de fagon évidente; ainsi,
N = 6 (mod 8). D’autre part, on verra au chapitre 6 (sect. 3.3, formule
(3.3.2)) que

(A.1.2) N=p—-1+n(p,¥)+7n(o,¥) =p—1+4+n+7;

posons alors w = a + bi (a,be Z); (A.1.2) donne dans ces conditions
a =3 (mod 4) lorsque p = 1 (mod 8), et a = 1 (mod 4) lorsque p = 5
(mod 8); comme p = a® + b*, on voit d’autre part que b = 0 (mod 4)
lorsque p = 1 (mod 8), et que b = 2 (mod 4) lorsque p = 5 (mod 8); ainsi,

dans les deux cas, —n = —a — bi =1 (mod 2 + 2i), donc — ¢l = A
- (mod 2 + 2i), donc ¢ = — 1 (essayer les quatre valeurs possibles de ¢),
et finalement 7 = ¢4 = — 1, C.Q.F.D.

Pour d’autres exemples analogues, voir [8], pp. 465-469.

A.2. Passons aux sommes de Gauss. Le probléme est maintenant de
déterminer sans ambiguité une somme 7 (y | B), x et B étant deux caractéres
d’un corps fini k, 'un multiplicatif, Pautre additif, et supposés donnés expli-
citement. Si é est ordre de y, il est en général possible, au moins pour les

L’Enseignement mathém., t. XIX, fasc. 1-2. 4
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petites valeurs de J, de déterminer explicitement  (x | p) = t(x [ By a
l'aide de la formule (3.3.4) (prop. 9, cor. 2). On peut alors écrire 7 (x | B)
= &7, € €tant une racine J-icme de 'unité, et 7, étant un nombre complexe
enticrement défini par les deux conditions 7,° = o (¥ [ B), 0 <arg(ty)
< 27/é. Le probléme est donc de déterminer explicitement &: sauf pour
0 = 2, ce dernier probléme n’est pas résolu complétement a I’heure actuelle;
c’est ce qu’illustrent bien les deux exemples suivants:

Exemple 1. — Soient p un nombre premier impair, kK = F,, ¢ le caractére
de Legendre de k, et B le caractére additif de k défini par B (x) = e?™*/P
(xek). Posons t = 1 (¢ | f); T est un nombre complexe parfaitement
défini, et la proposition 7 montre que t* = ¢ (=1 p = (=1~ Y12 p d’ou

+ p'/?, si p = 1(mod 4),

(4.2.1) ¢ = ‘
+ ipl/2, si p = 3(mod 4).

Probléme (dit « du signe de la somme de Gauss »): dans les formules (A.2.1),
quel est, en fonction de p, le « bon » signe ? En fait, c’est toujours le signe + ;
mais, alors que le calcul de 72 est immédiat, la détermination du signe de t
est relativement difficile (Gauss lui-méme mit, parait-il, huit ans a trouver

une solution...). A ce sujet (et notamment pour une démonstration), voir
[8], pp. 469-478.

Exemple 2. — Reprenons les hypothéses et notations de I’exemple 1
(sect. A.1), et soit f le caractére additif de k défini par B (x) = e*™*/? (x e k).
Posons maintenant © = 7 (¥ | p) (cette somme de Gauss est dite tradition-
nellement « somme de Kummer »); c’est un nombre complexe parfaitement
défini, et la proposition 9 (cor. 2) montre que 1> = pn(x, y) = — Ap
(sect. A.1, prop. 11). Si alors 1, désigne la racine cubique de — Ap (dans C)
telle que 0 < arg(7y) < 27/3, on a

(4.2.2) T = ¢1,, avec & = 1, p ou p>.

Probléme (dit « de la somme de Kummer »): dans la formule (A.2.2), quelle
est la « bonne » valeur de ¢ ? Ce probléme, posé dans les années 1840/1850
par Kummer (entre autres) n’est toujours pas résolu (voir [8], pp. 478-489).
Cassels a formulé récemment une conjecture conforme aux valeurs numé-
riques de t effectivement calculées pour p <5000 (et p =1 (mod 3)),
mais cette conjecture reste a démontrer (voir Cassels (1970)).

Le cas 6 = 4 est également examiné (mais non résolu !) dans [8], pp. 489-
494,
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