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§ 4. Sommes de Jacobi à n caractères.

4.1. Soient n un entier > 1, et Xu •> Xn n caractères multiplicatifs
de k. Désignons par H l'ensemble des points x (xu xn) de kn tels que

x1 H- + xn 1 ; c'est un hyperplan affine de kn, et on a en particulier
card (H) qn~l.

Définition 3. — On appelle somme de Jacobi associée à Xi, •••, L 'a
quantité

(4.1.1) n{)(u...,Xn)Z Xl C^l) —
xeH

C'est évidemment un entier du corps des racines (q— l)-ièmes de l'unité.
Pour n — 1, on a n (%j) 1 ; pour n 2, on retrouve les sommes de

Jacobi à deux caractères étudiées au paragraphe précédent; dans ce qui suit,
on pourra donc supposer n > 3.

4.2. Si un au moins des caractères Xi est trivial, on a une somme de

Jacobi « triviale » qui se calcule explicitement:

(i) si tous les Xi sont triviaux, on a n(xi> •••> X«) — qn ll
(ii) si la famille Xi comporte au moins un caractère trivial et au moins un
caractère non trivial, on a n (xi> Xn) — 0.

(Prouvons cette dernière égalité, qui n'est pas absolument évidente: quitte
éventuellement à renuméroter les caractères, on peut supposer Xi £, .••?

Xm ¥* s, mais xm+i ••• Xn avec 1 < m < n — 1; comme alors
Xm+iO) ••• Xn (y) 1 pour tout élément, j; de k, et que le système
de m + 1 équations linéaires

X1 + + Xn 1 X± xl9 Xm xm,

admet exactement qn~m~1 solutions dans kn quels que soient les m éléments

xu xm de k, on voit que

n(Xi,-,Xn) Z XlM-( Z
XI ek xmek

mais chacune des sommes du membre de droite est nulle (utiliser (1.1.1) et
(1.4.1)); en définitive, on a donc bien n (xi, -, Xn) 0, C.Q.F.D.)

4.3. Passons maintenant au cas non trivial.
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Proposition 10. — Supposons /, # s pozzr z 1,.... n. Alors

(i) Si xi... Xn s, on a

(4-3.1) n(Xu~;Xn) Xn(-l)«(Xi,—,X,.-i)-

(ii) S1/ atz contraire /, x„ # e, la somme de Jacobi — » Xn) Peut
s 'exprimer à l 'aide de sommes de Gauss non triviales par la formule

(4.3.2) l(Xl,".,Xn) *(Xl)-T(Xn)MXl -Xn).

(Les w -f 1 sommes de Gauss figurant dans le membre de droite sont

supposées calculées à l'aide d'un même caractère additif non trivial ß de k).

Démonstration. — (i) Ecrivons pour abréger n n (xu —> Z«)»

posons

(4.3.3) P E Xi (*i) ••• i)

(somme étendue à l'ensemble des points (xj,..., xM_ j) de tels que

x± + + xn-1 0), puis

(4.3.4) er E Xi (*i) - X„

(somme étendue à l'ensemble des points (xu xn) de H tels que xn ^ 1).

Il est clair que n p + cr, et il suffit donc, pour prouver l'égalité (4.3.1),
d'établir les deux égalités ci-dessous:

(4.3.5) p 0 ; aXn 1) " (Xi> •••> Xn -1) •

Démontrons la première. Comme %n-1 (0) 0, on peut, dans (4.3.3),

limiter la sommation aux points tels que xn^1 =£ 0, puis faire le changement
de variables (x1? xn-2> xn-1) ^ (yu —• J/i-2? 0 défini par

t - Xn_1 - XU tyn — 2 ~ Xti — 2 •

(4.3.3) se transforme alors en

P Xn-l(-l)^(Xl> ->Xn-2) E (Xl —Xn-l)(0;
tek*

mais par hypothèse, Xi —Xn-iXn-1 ^ £i compte tenu de (1.1.1), la

somme figurant dans le membre de droite est alors nulle, et on a bien

p 0.
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Démontrons la seconde égalité (4.3.5). Faisons, dans le membre de

droite de (4.3.4), le changement de variables (xu x„_1; *„) K 0>i, •••>

7„_1; t) défini par

yl *l/(l — -O' •••' .Fn-1 xn-l/(l — *b)j ' •*!>/(! — Xn) •

(4.3.4) se transforme en

ff=( I Z«(0) ŒxiOi)-Z»-1(^-1)).
f=ÉO, -1

la deuxième somme étant étendue aux points (y1? J de fcn"1 tels que

yl + + yn_x 0; cette deuxième somme est donc égale par définition

à (xu •••> Z«-i)î comme la première somme figurant dans le membre de

droite vaut — %n — 1) (utiliser (1.1.1)), on aboutit bien à la seconde égalité

(4.3.5), ce qui achève de démontrer (i).

(ii) Même méthode que pour la proposition 9, (ii) (qui correspond au cas

n 2); on laisse au lecteur le soin d'effectuer le détail du calcul.

Corollaire 1. — Mêmes données que dans la proposition 10.

(i) Si Xi In on a

(4.3.6) |7l(Xi, I2 <f-2 •

(ii) Si au contraire Xi Xn ^ s> on a

(4.3.7) |t(Zx>---»Zn)|2 q""1

(iii) Dans les deux cas, on a pour la somme de Jacobi n (/1; ...,/„) la
majoration en module

(4.3.8) |7r(Zl,...,x„)l<4("-1)/2.

Démonstration. — (4.3.7) résulte de (4.3.2) et de (2.3.4); (4.3.6) résulte
alors de (4.3.1) et de (4.3.7); enfin, (4.3.8) est une conséquence immédiate de

(4.3.6) et (4.3.7).

Appendice. —- Détermination effective des sommes de Gauss et de Jacobi.

A.l. Commençons par les sommes de Jacobi (et limitons-nous au cas
de deux caractères). Le problème est le suivant: étant donné un corps fini k,
et deux caractères multiplicatifs ^ et de fc, donnés explicitement,
déterminer directement (c'est-à-dire sans remonter à la définition) et sans ambi-
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guïté la valeur de l'entier algébrique n (x, i/s). Ce problème est difficile en

général, mais, pour k Fp et x, ^ d'ordre peu élevé, il peut être résolu de

façon élémentaire. Voyons-le sur deux exemples:

Exemple 1. — Posons p e2ni/s, A Z [p]; soit p un nombre premier
1 (mod 3), et soit p — Il sa décomposition en facteurs irréductibles dans

A, X et 1 étant entièrement déterminés (à la conjugaison près) par la condition

1=1= 1 (mod 3). Posons k AjlA ~ Fp, et soit sYmbole

de restes cubiques modulo 1 dans A, défini pour tout xe A par

(A. 1.1) 0, si x 0 (mod 1); une puissance de p, sinon ;

^ x(p~1)/3 (mod 1) dans les deux cas.

Ce symbole s'identifie à un caractère multiplicatif d'ordre 3 de k, qu'on
notera x• On peut alors envisager la somme de Jacobi % (x, x)> qui est un
élément parfaitement déterminé de A :

Proposition 11. — On a n (x, x) ~ 1-

Démonstration. — Posons n n (x, x) • (A. 1.1) et la définition de x
permettent d'écrire n Y x (*) 1 (1~~ x) Y^(x^ (mod 1), avec

P(X) Z(p"1)/3(1-Z)(p-1)/3; comme deg(P) 2(p-l)/3 < p - 1,

cette somme est nulle (dans k A/1A; voir chap. 3, th. 2), et n est donc
divisible par 1; mais par ailleurs nn p (prop. 9, cor. 1): % est donc un
facteur irréductible de p dans A. Au total, % est donc associé à 1 dans A,
et on a 7r si, s étant une racine 6-ième de l'unité. Soient maintenant Ç

une racine primitive p-ième de l'unité dans C, ß le caractère additif de k
défini par ß (x) (x e k), et t la somme de Gauss x (x | ß)l on a t3

pit (prop. 9, cor. 2), donc, puisque p 1 (mod 3), n t3 Y x(*X*)3
X k*

EE Y x3 (x) C3x Y ^3x ~ ^ (m°d 3) (noter que x3 (*) 1 pour tout
xek* xek*

xek* et que C3 est une racine primitive p-ième de l'unité).
En résumé, on a donc % si — 1 (mo 3), avec 1=1 (mod 3)

et s une racine 6-ième de l'unité: ceci implique s — 1 (essayer les six

valeurs possibles de s), donc finalement n — 1, C.Q.F.D.



I — 49

Exemple 2. — Posons i J - 1, A Z [/]; soit /? un nombre premier
1 (mod 4), et soit p 21 sa décomposition en facteurs irréductibles dans

A-, 2 et I étant entièrement déterminés (à la conjugaison près) par la condition

1 1 1 (mod 2 + 2z). Posons (comme dans l'exemple 1 k A/1A

dratiques modulo 1 dans A (définis comme le symbole de restes cubiques
dans l'exemple 1), et soient (p et \j/ les caractères multiplicatifs de k
correspondants.

Proposition 12. — On a n (cp, \j/) — A.

Démonstration. — Posons n n (ç, \j/). On vérifie immédiatement,
comme pour la proposition 11, que % — si, s étant maintenant une racine
4-ième de l'unité. On peut déterminer s par un argument géométrique très

j élégant, dû à Jacobi, et dont on verra une autre application au chapitre 9

(sect. 5.2). Soit N le nombre de solutions dans k2 de l'équation X4 + Y2
1 ; comme p 1 (mod 4), k contient quatre racines 4-ièmes de l'unité

(chap. 1, prop. 7, (ii)), et cette équation admet deux solutions (x, y) telles

que x 0, quatre solutions (x, y) telles que y 0, les autres solutions
| (x, y) (telles que xy A 0) se groupant huit par huit de façon évidente ; ainsi,

N 6 (mod 8). D'autre part, on verra au chapitre 6 (sect. 3.3, formule
(3.3.2)) que

(A.1.2) N p - 1 + n(<p9\l/) + n((p,\j/) p — 1 + n + n ;

posons alors n a + bi (a,be Z); (A.1.2) donne dans ces conditions
a 3 (mod 4) lorsque p 1 (mod 8), et a 1 (mod 4) lorsque p 5

(mod 8); comme p a2 + b2, on voit d'autre part que b 0 (mod 4)
lorsque p 1 (mod 8), et que b 2 (mod 4) lorsque p 5 (mod 8) ; ainsi,
dans les deux cas, - n - a - bi 1 (mod 2 + 2/), donc - el 1

(mod 2 + 2/), donc s — 1 (essayer les quatre valeurs possibles de e),
et finalement n si — 1, C.Q.F.D.

Pour d'autres exemples analogues, voir [8], pp. 465-469.

A.2. Passons aux sommes de Gauss. Le problème est maintenant de
déterminer sans ambiguïté une somme t (x | ß), x et ß étant deux caractères
d'un corps fini k, l'un multiplicatif, l'autre additif, et supposés donnés
explicitement. Si ô est l'ordre de x, il est en général possible, au moins pour les

^ ~Fp, soient
A

les symboles de restes quadratiques et biqua-

L'Enseignement mathém., t. XIX, fasc. 1-2. a
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petites valeurs de ô, de déterminer explicitement co(x \ ß) (x\ ß)0 à

l'aide de la formule (3.3.4) (prop. 9, cor. 2). On peut alors écrire x (x | ß)

£T0, e étant une racine <5-ième de l'unité, et t0 étant un nombre complexe
entièrement défini par les deux conditions x0ô — œ (x | ß), 0 < arg (t0)
< In/ô. Le problème est donc de déterminer explicitement s: sauf pour

ô 2, ce dernier problème n'est pas résolu complètement à l'heure actuelle;
c'est ce qu'illustrent bien les deux exemples suivants:

Exemple 1. — Soientp un nombre premier impair, k Fp, (p le caractère
de Legendre de k, et ß le caractère additif de k défini par ß (x) e2nix/p

(x e k). Posons x t (cp | ß) ; x est un nombre complexe parfaitement
défini, et la proposition 7 montre que t2 cp (— \)p — — l)(p~1)/2 p, d'où

± P112, si p s 1 (mod 4)
(A.2.1) x — {

[ ± ip1/2, si p 3 (mod 4)

Problème (dit « du signe de la somme de Gauss »): dans les formules (A.2.1),
quel est, en fonction de p, le « bon » signe En fait, c'est toujours le signe + ;

mais, alors que le calcul de t2 est immédiat, la détermination du signe de x

est relativement difficile (Gauss lui-même mit, paraît-il, huit ans à trouver
une solution...). A ce sujet (et notamment pour une démonstration), voir
[8], pp. 469-478.

Exemple 2. — Reprenons les hypothèses et notations de l'exemple 1

(sect. A.l), et soit ß le caractère additif de k défini par ß (x) — e2ltlxlp (x e k).
Posons maintenant x x (x | ß) (cette somme de Gauss est dite
traditionnellement « somme de Kummer ») ; c'est un nombre complexe parfaitement
défini, et la proposition 9 (cor. 2) montre que x3 pn (x, x) _
(sect. A.l, prop. 11). Si alors x0 désigne la racine cubique de — Ap (dans C)
telle que 0 < arg (t0) < 2n/3, on a

(^4.2.2) x £Xq avec s 1, p ou p2

Problème (dit « de la somme de Kummer ») : dans la formule (A.2.2), quelle
est la « bonne » valeur de £ Ce problème, posé dans les années 1840/1850

par Kummer (entre autres) n'est toujours pas résolu (voir [8], pp. 478-489).
Cassels a formulé récemment une conjecture conforme aux valeurs numériques

de x effectivement calculées pour p < 5 000 (et p 1 (mod 3)),
mais cette conjecture reste à démontrer (voir Cassels (1970)).

Le cas ô 4 est également examiné (mais non résolu dans [8], pp. 489-

494.
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