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§ 3. Sommes de Jacobi a deux caracteres.

3.1. Soient maintenant y et ¥ deux caractéres multiplicatifs du corps
fini k. |

DEFINITION 2. — On appelle somme de Jacobi associée a y et  la quantité

(3.1.1) n(y) = 2 2@y A-x).

xek

Comme le second membre de (3.1.1) peut également s’écrire
Y. x() ¥ (p) on voit que 7 (y, ¥) = n (Y, x). 1l est clair d’autre part

x+y=1
que 7 (x, ¥) est un entier du corps des racines (g— 1)-iemes de I'unité.

3.2. Sil’'un des deux caractéres y et y est trivial, la somme de Jacobi
est également « triviale » et sa valeur se calcule immédiatement a I’aide des
relations d’orthogonalité (1.1.1) et de la convention (1.4.1):

) siy=vy=¢onan(yy) =gq;
() siy =¢cety # ¢ (oul’inverse), on an(y ) = 0.
3.3. Passons au cas non trivial.
PROPOSITION 9. — Supposons y et  non triviaux. Alors
(1) Siyp =¢e, 0na
(3.3.1) n(y) = —x(=1.

(11) Si au contraire y\ # ¢, la somme de Jacobi n (x, V) se calcule a l’aide
des sommes de Gauss non triviales T (x), T () et T (xy) par la formule

(3.3.2) n(¥) =TT/ .

(Les trois sommes de Gauss figurant dans le membre de droite sont supposées
calculées a I'aide d’'un méme caractére additif non trivial g de k).

Démonstration. — (i) Si y = ¢, on a y = ¥~ !, et on peut écrire
() = Y 1@ A=-x) = Y x(x/(1-x);
x#0,1 x#0,1

mais le quotient y = x/(1—x) est une fonction homographique réguliére
de x, et quand x prend toute valeur possible dans k, sauf 0 et 1, y prend
toute valeur possible dans k, sauf 0 et — 1; ainsi, 7 (x, ¥) = Y. x (»)

yek*
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— x (—=1) et (3.3.1) résulte alors de (1.1.1) appliqué au caractére multipli-
catif non trivial .

(1) La définition des sommes de Gauss et la convention (1.4.1) permettent
d’écrire

(0T = 2 2 xYMBE+);

xek yek

dans le second membre, faisons le changement de variables (x, y) b (z, t)
défini par z = x + yet ¢z = x (’apparition de la valeur 0 n’est pas génante,
du fait que x (0) = ¥ (0) = 0: on laisse au lecteur le soin d’examiner ce
point en détail); il vient

tTW) =) X 1@xO¥v@Q¥A-DB(2),

ou encore
t(T@) = ( Zk (x¥) (2) B (2)) (tz;‘ 1@y 1-1),

c’est-a-dire finalement, puisque (y¥) (0) = O,

t()tW) =) (. ¥),
C.Q.F.D.

COROLLAIRE 1. — Si les trois caractéres y, et y\y sont non triviaux, on a
(3.3.3) ln (L) 1> =q.

Démonstration. — Utiliser la proposition 9, (ii), puis la proposition 8.

COROLLAIRE 2. — Supposons toujours le caractére y non trivial, et notons
0 son ordre. On a alors

(3.3.4) () = ax (=D (72
Démonstration. — Pour 1 <{j << — 2, la proposition 9, (ii) donne

(1) = 1)t

en multipliant membre & membre ces 6 — 2 égalités, on obtient

ORI AV S IR A6 A IR A 0 M A s

1 1

mais y°~1 = x~1' = j; il suffit alors de multiplier les deux membres de
cette derniére égalité par 7 (x) t (§) = qx (—1) pour obtenir (3.3.4).



	§3. Sommes de Jacobi à deux caractères.

