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§ 3. Sommes de Jacobi à deux caractères.

3.1. Soient maintenant x et \j/ deux caractères multiplicatifs du corps
fini k.

Définition 2. — On appelle somme de Jacobi associée à x et iß la quantité

(3.1.1) 71 (x,iA) £ x(x)iKl-x).
xek

Comme le second membre de (3.1.1) peut également s'écrire

Yj X(x)ll/ (y) on v°iï <Jue 71 (x> *A) 71 x)- Il est c^v d'autre part
x + y- 1

que % (x, \j/) est un entier du corps des racines (q— l)-ièmes de l'unité.

3.2. Si l'un des deux caractères x et \j/ est trivial, la somme de Jacobi
est également « triviale » et sa valeur se calcule immédiatement à l'aide des

relations d'orthogonalité (1.1.1) et de la convention (1.4.1):

(i) si x & s, on an (x, \ß) qi

(ii) si x e et \ß # s (ou l'inverse), on a n (x, iß) 0-

3.3. Passons au cas non trivial.

Proposition 9. — Supposons x et iß non triviaux. Alors

(i) Si xi7 £, on a

(3-3.1) 7t(x»^) - Z(-l).
(ii) Si au contraire xiß ^ s, la somme de Jacobi n (x, iß) ^ calcule à l'aide
des sommes de Gauss non triviales t (x), t (i/0 x (x^) /a formule

(3.3.2) 7r (x, il7) t (x) ^ WO/t (#} •

(Les trois sommes de Gauss figurant dans le membre de droite sont supposées
calculées à l'aide d'un même caractère additif non trivial ß de k).

Démonstration. — (i) Si xi7 on a \ß x-1, et on peut écrire

£ zWfHt*-*) Z *(*/(!-*));
x*0, 1 *#0, 1

mais le quotient x/(l — x) est une fonction homographique régulière
de x, et quand x prend toute valeur possible dans k, sauf 0 et 1, y prend
toute valeur possible dans k, sauf 0 et — 1 ; ainsi, n(x,&)= ^ x 00

yek*
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— x(— 1) et (3.3.1) résulte alors de (1.1.1) appliqué au caractère multiplicatif

non trivial %.

(ii) La définition des sommes de Gauss et la convention (1.4.1) permettent
d'écrire

E X x(x)^(y)ß(x+y);
xek yek

dans le second membre, faisons le changement de variables (x, y) b> (z91)
défini par z x + yzttz x (l'apparition de la valeur 0 n'est pas gênante,
du fait que x (0) js (0) 0: on laisse au lecteur le soin d'examiner ce

point en détail) ; il vient

t0CM<A) X X %O)x(0"/'O)'/'(i-000),
zek tek

ou encore

t(XM«/0 E (#)O)0O)) E x(0*(i-0),
zefc ïefc

c'est-à-dire finalement, puisque (%i^) (0) 0,

T (x) -c (x«W 1 Oc, »/O

C.Q.F.D.

Corollaire 1. — Si les trois caractères x> Z$ sont non triviaux, ö« ö

(3.3.3) O(x,10) I2 3 •

Démonstration. — Utiliser la proposition 9, (ii), puis la proposition 8.

Corollaire 2. — Supposons toujours le caractère x non trivial, notons
ô son ordre. On a alors

(3.3.4) x{x)& 4Z(-l)rc(x>x)rc(X>X2)---rc (z,Zi_2)-

Démonstration. — Pour 1 <j <5 — 2, la proposition 9, (ii) donne

rc 0c, zJ) t (z) -r (zj')/t 0cj+1) ;

en multipliant membre à membre ces ô — 2 égalités, on obtient

rc (x> z)0c, x2) -n(x,/~2)t(z)ä_1/t(zä_1);

mais z<5~1=Z~1==Z;iï suffit alors de multiplier les deux membres de

cette dernière égalité par t (z) t (z) #z(~l) pour obtenir (3.3.4).
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