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AL TR

§ 2. Sommes de Gauss.
2.1. Soient y un caractére multiplicatif et 8 un caractére additif de k.

DEFINITION 1. — On appelle somme de Gauss associée a x et ff la quantité

(2.1.1) t(xIf) = Zk*X(X)ﬁ(x).
Les valeurs prises par B et x étant des racines p-iémes de I'unité, et O
- ou des racines (g—1)-iémes de 1'unité, 7 (x | B) est un entier du corps des
racines p (¢—1)-iémes de l'unité.
Si le caractére B est fixé une fois pour toutes (par exemple, si f (x)
= (Tr™ avec { = e2™/P: sect. 1.2), on écrit © (y) au lieu de © (x| B), et
(pour y e k) 7, () au lieu de 7 ( | B,) (sect. 1.2): on a donc

(2.1.2) T,(0) = Y, 2(x)B(xy).

xek*

2.2. Sil’un des caractéres y et § est trivial, la somme de Gauss associée
est également « triviale » et sa valeur se calcule immédiatement a I’aide des
relations d’orthogonalité (1.1.1) appliquées & y ou a f:

(1) iy est trivial, mais non B, on a 1 (x| p) = — 1;
(i) si B est trivial, mais non y, on a t (} I p) = 0;

(ii1) enfin, si y et B sont tous deux triviaux, on a T (x [ p) =q — 1.

2.3. Passons au cas non trivial. On suppose x # &, on fixe une fois pour

toutes un caractére additif non trivial f, et on met tous les caractéres

~ additifs non triviaux de k sous la forme g, (y € k*) (prop. 1); les sommes
- de Gauss non triviales associées a y sont alors les 7, () (y € k*).

PROPOSITION 6. — Si ) désigne le caractére conjugué de y (sect. 1.1),
on a

(2.3.1) (0 =1 -

| Démonstration. — Puisque y # 0, application x > xy est une permu-
tation de k*; il suffit alors d’écrire

(0 = LT MxENBEY =10 Y x(xy)B(xy)

xek* xek*

et de faire le changement de variable z = xy pour obtenir (2.3.1).
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PROPOSITION 7. — On a (toujours pour y # &)

(2.3.2) Tt = qx(=1).

Démonstration. — Par définition, t ()t (}) = >, > x(x) 1 () B (x)

xeck* yek*
B);maisy (x) () = x(x) ¢ ) = xxy~ D, et f(x) f() = B (x+Y).
si on fait le changement de variables (x, y) b (¥, z) défini par z = xy~ 1,
on obtient donc

(2.3.3) (0@ = 2 2 x(@B((z+1).

yek* zek*

Le second membre se fractionne en deux sommes partielles correspondant
respectivement a z = — 1 et 3 z # — 1; comme f(0) = 1, la premicre
somme vaut (g—1) y (—1); quant a la seconde, elle peut s’écrire

Y 1@ Y By (z+1);

z#F -1 yek*

mais la proposition 2, appliquée 2 a = z + 1, montre que pour tout
z # — 1, la somme portant sur y € k* vaut — f(0) = — 1; par ailleurs,
(1.1.1), appliqué au groupe k* et au caractére y, donne

EIX(Z) = —x(=1);

la deuxiéme somme partielle vaut donc y (—1); st alors on reporte dans
(2.3.3) les valeurs des deux sommes partielles, on obtient

(T =@-Dx(=1D +x(=1),
c’est-a-dire (2.3.2).

PROPOSITION 8. — On a (en supposant toujours y # ¢€)
(2.3.4) T 1* =4q.

Démonstration. — Par définition, | 7 (x) |* = 7 (x) 7 (x); on peut donc

écrie [t()P=Y X x®IMBE B(y); mais 1(3) =y ' =

xek* yek*

(¥~ 1), et de méme B(y) = B (—y); le terme général de la somme ci-dessus
est alors égal & y (xy~1!) B (x—y), ou encore (en remplagant y par — y, ce
qui ne change pas la somme) & ¥ (—1) x (xp~ 1) B (x+y): la proposition 8
résulte donc de la proposition 7, et du fait que y (—1)% = x ((=1)*) =
x(1) =1
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