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§ 2. Sommes de Gauss.

2.1. Soient x un caractère multiplicatif et ß un caractère additif de k.

Définition 1. — On appelle somme de Gauss associée à x et ß la quantité

(2.1.1) r(X\ß)£ X(x)ß(x)
xek*

Les valeurs prises par ß et x étant des racines /7-ièmes de l'unité, et 0

ou des racines (q — l)-ièmes de l'unité, x (x | fi) est un entier du corps des

racines p (q— l)-ièmes de l'unité.
Si le caractère ß est fixé une fois pour toutes (par exemple, si ß (x)

avec £ e2fp: sect. 1.2), on écrit t (%) au lieu de x (x | ß)>

(pour y ek) xy (x) au üeu de x (x | ßy) (sect. 1.2): on a donc

(2.1.2) ry(x) Z X (*) (xy)
xek*

2.2. Si l'un des caractères x et ß est trivial, la somme de Gauss associée

est également « triviale » et sa valeur se calcule immédiatement à l'aide des

relations d'orthogonalité (1.1.1) appliquées à x °u à ß:

(i) si x ^t trivial, mais non ß, on a x (x\ ß) — 1 ;

(ii) si ß est trivial, mais non x, on a x (x\ ß) ^ ;

(iii) enfin, si x et ß sont tous deux triviaux, on a x (x | ß) q ~ 1-

2.3. Passons au cas non trivial. On suppose x # s, on fixe une fois pour
toutes un caractère additif non trivial ß, et on met tous les caractères
additifs non triviaux de k sous ïa forme ßy(yek*) (prop. 1); les sommes
de Gauss non triviales associées à x s°nt alors les xy (%) (y e fc*).

Proposition 6. — Si x désigne le caractère conjugué de x (sect, l.l),
on a

\ (2.3.1) ty(x)

Démonstration. — Puisque y ^ 0, l'application x K xy est une permu-
tation de k*; il suffit alors d'écrire

h(x) Z X.~1(y)x(xy)ß(xy) x(v) Z X(xy)ß(xy)
\ xek* xek*

et de faire le changement de variable z xy pour obtenir (2.3.1).
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Proposition 7. — On a (toujours pour % ¥= z)

(2-3.2) T(X)T(X) gx(-l) •

Démonstration. —- Par définition, t (/) t (/) ^ V y (.v) / (j>) ß
x ek* yek*

ß (y); mais x (x)l(y) x(x) x"1 (y) x(xy~ v), et ß ß (y) ß (x+j).
si on fait le changement de variables (.x,y) h» (y, z) défini par z xy_1,
on obtient donc

(2.3.3) r(x)r(x) Z I z(z)jß(y(z +1)).
yek* zek*

Le second membre se fractionne en deux sommes partielles correspondant
respectivement à z — 1 et à z # - 1; comme ß (0) 1, la première
somme vaut (q — 1) % (—1); quant à la seconde, elle peut s'écrire

Z x(z) ^ ß(y(z +1));
z±-î yek*

mais la proposition 2, appliquée à a z + 1, montre que pour tout
z ^ — 1, la somme portant sur yek* vaut — ß (0) — 1; par ailleurs,
(1.1.1), appliqué au groupe k* et au caractère donne

Z x0) - z -1) ;

la deuxième somme partielle vaut donc %( — 1); si alors on reporte dans

(2.3.3) les valeurs des deux sommes partielles, on obtient

T(x)T(z) (4-l)x(-l) +x(-l),
c'est-à-dire (2.3.2).

Proposition 8. — On a (en supposant toujours x ^ s)

(2.3.4) |tG0|2=<ï.

Démonstration. — Par définition, | x (x) T ('/.)> on peut donc

écrire | r (x) |2 Z Z X (x) X (y) ß (x) ß (y); mais (y) X~1 (y)
xek* yek*

X (y~*)> et de même ß (y) ß (—y) ; le terme général de la somme ci-dessus

est alors égal à x (xy~1) ß (ou encore (en remplaçant y par - y, ce

qui ne change pas la somme) à x (~ 1) 1 Cxy"*) ß (x+y): proposition 8

résulte donc de la proposition 7, et du fait que x(—l)2 x(( — l)2)

Z(l) I-
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