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CHAPITRE 5

SOMMES DE GAUSS ET DE JACOBI

Le premier paragraphe de ce chapitre donne la description du groupe
des caracteres additifs et du groupe des caractéres multiplicatifs d’un corps
fini, et montre comment ces caractéres peuvent servir au calcul du nombre
de solutions d’une équation (prop. 3 et 5). Le reste du chapitre est consacré
a une étude élémentaire des sommes de Gauss et de Jacobi; ces sommes sont
des entiers algébriques, construits a ’aide de caractéres, et dont 'utilisation,
combinée avec les propositions 3 et 5, permettra notamment (1) de calculer
le nombre de solutions d’une équation diagonale quelconque (chap. 6);
(2) de calculer dans certains cas la fonction z€ta de ’ensemble algébrique
défini par une telle équation (chap. 9); (3) de démontrer le théoréme d’Ax,
c’est-a-dire la relation de divisibilité ¢° ! N annoncée au chapitre 3 (chap. 7).
Pour d’autres utilisations classiques des sommes de Gauss et de Jacobi
(étude des corps cyclotomiques, démonstration élémentaire des lois de réci-
procité, etc.), voir [8], § 20, [11], chap. IV, ou [3], chap. 5; voir également les
Notes en fin de chapitre.

On conserve ici encore les conventions et notations des chapitres précé-
dents; en particulier, k désigne toujours un corps fini & ¢ = p/ éléments.

§ 1. Caractéres additifs et caractéres multiplicatifs d’un corps fini.

1.1. Rappelons que si G est un groupe fini commutatif, on appelle
caractére de G tout homomorphisme y: G — C*, de G dans le groupe multi-

plicatif du corps des nombres complexes; les caracteéres de G forment de
N\
maniére naturelle un groupe multiplicatif, dit dual de G, et noté G (ou

X (G)); I’élément neutre de G est le caractére ¢ défini par ¢ (x) = 1 pour
N
tout x € G: on I'appelle caractére trivial (ou principal); si x € G, si y € G,

et si m désigne 'ordre de G, on a y (x)" = y(x™) = x(e) = 1 (e désignant
I’élément neutre de G); les valeurs d’un caractére y de G sont donc des
racines m-iémes de I'unité; en particulier, si ™' est I'inverse de y dans G,
et si xe G, alors y~ ' (x) = y (x) (complexe conjugué de y (x)): c’est pour-



— 37 —

quoi le caractére ' est généralement noté g, et appelé caractére conjugué
de y.
On aura besoin par la suite des deux résultats suivants (pour des démons-
trations, d’ailleurs immédiates, voir [17], pp. 103-107):
» /\ . " . .
(i) Les groupes G et G sont isomorphes (non canoniquement ) ; en particulier,

N
G a méme ordre que G.

(i) (Relations d’orthogonalité). — Si y est un caractére de G, on a
card(G), si x = ¢;
(1.1.1) Zx@={-,
xeG 0, si y #e¢.

De méme, si x est un élément de G, on a
{ card (G), si x = e;

1.1.2 x) =
( ) ZAX() 0, si x#e.

xeG

On va appliquer ce qui précéde au groupe additif k™ de k (sect. 1.2),
AN
puis au groupe multiplicatif k* (sect. 1.3); k™ sera dit dual additif de k, et
Ay N\ N
k*, dual multiplicatif; les €éléments de k¥ et de k* seront qualifiés respec-

tivement de caractéres additifs et de caractéres multiplicatifs de k.

1.2. Commengons par I’étude des caractéres additifs; on peut en
construire de la maniére suivante: soit 7r I’application trace relative a
I’extension k/F,, et soit { une racine primitive p-iéme de I'unité dans C
(par exemple ¢*™/P); pour tout élément x de k, posons

(1.2.1) B(x) = (T

(ce qui a un sens, puisque Tr (x) € F, est un entier rationnel modulo p);
alors f est évidemment un caractére additif de k, et ce caractére n’est pas
trivial (parce que la trace est surjective: chap. 1, prop. 9). Plus généralement,
si y €k, et si on pose B, (x) = B (xy) (x,y€k), B, est un caractére additif
de k, et ce caractére n’est trivial que si y = 0.

| Il se trouve que le procédé ci-dessus fournit tous les caractéres additifs
de k; de fagon précise:

AN

PROPOSITION 1. — Soit B un caractére additif non trivial de k (par exemple
celui défini par (1.2.1)) et, pour tout x et tout y dans k, posons
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(1.2.2) | By(x) = B(xy).
Alors I’application y > f, est un isomorphisme du groupe additif k™ sur
VS
son dual k*.
Démonstration. — Cette application est évidemment un homomor-

phisme de groupes; compte tenu de la propriété (i) (sect. 1.1), il suffit de
prouver que cet homomorphisme est injectif; mais par hypothése, B est
non trivial; il existe donc ae k tel que f(a) # 1; soit alors yek, y # 0;
si on pose x = ay~’, on a évidemment B, (x) = B (a) # 1, donc B, # ¢,
C.Q.F.D.

PROPOSITION 2. — Soient  un caractére additif non trivial de k et a un
élément quelconque de k. Alors

g, sia=0;
(1.2.3) p(ay) =
y‘eL_;c 0, sia#0.
Démonstration. — (1.2.3) résulte, soit de (1.1.1) appliqué au caractére
fixe B, et & élément y parcourant k™, soit de (1.1.2) appliqué a I’élément

VA
fixe a et au caractére f3, parcourant k™.

1.3. La proposition 2 donne un moyen de compter les solutions d’une
équation polynomiale:

PROPOSITION 3. — Soit F un polynéme a n variables et a coefficients dans
k. Si B désigne un caractére additif non trivial de k, le nombre N de solutions
dans k" de [’équation F = 0 est donné par

(1.3.1) N =q7 'Y B(YF (x1, ..., %0) 5

la sommation étant étendue a tous les points (y, X1, ..., X,) de k" L.

Démonstration. — Soit V < k" ’ensemble des solutions de F = 0. Si
x e V, donc si F(x) = 0, (1.2.3), appliqué a a = F (x), donne

Y B(YF(®) = q,

yek

et par conséquent

(1.3.2) > Y B(F®) =aN.

xeV yek
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Si au contraire x ¢ V, donc si F(x) # 0, (1.2.3) donne
2LBOF®) =0;

donc |
(1.3.3) ZV z?; ﬁ(yF(x)) = 0.

11 suffit alors d’additionner (1.3.2) et (1.3.3) et de multiplier les deux membres
par ¢~ ! pour obtenir la formule (1.3.1). Cette formule sera utilisée systé-
matiquement aux chapitres 6, 7 et 9.

1.4. Passons a I’étude des caractéres multiplicatifs de k. Notons
d’abord que si y: k* — C*, est un tel caractére, sa valeur en O n’est pas
définie; pour des raisons de commodité, on conviendra foujours de pro-
longer y en une application k - C*; en posant

(1.4.1) ©=]Sr=%
o * B 0, si y # ¢.
Avec cette convention, on a y (xy) = x (x) x (y) quels que soient x, y € k.

D’autre part, on peut construire un caractére multiplicatif d’ordre g — 1
N
(donc un générateur de k*: voir (i), sect. 1.1) de la fagon suivante: soit w une

racine primitive (g— 1)-iéme de I'unité dans C (par exemple e?™/(@~1)) et
soit g un générateur du groupe cyclique k*; pour tout x e k*, il existe
ieZ tel que x = g'; désignons par ind (x) la classe de ;i modulo g — 1
et posons

(1.4.2) 0(x) = o™,

alors 0 est bien un caractére multiplicatif d’ordre ¢ — 1 de k (c’est un iso-
morphisme de k* sur le groupe des racines (g —1)-iémes de I'unité dans C).
Enfin, on a évidemment le résultat suivant:

PROPOSITION 4. — Soit 0 un caractére multiplicatif d’ordre q — 1 de k
(par exemple celui défini par (1.4.2)). Alors I'application h > 0" définit de
maniére naturelle un isomorphisme du groupe cyclique Z/(q—1)Z sur le

-\
groupe k*, dual de k*.

1.5. Soit maintenant y un caractére multiplicatif quelconque de k,

N\
et soit 6 l'ordre de y (en tant qu’élément de k*). Si x e k*, on a y (x%) =
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x® (x) = 1, et x est trivial sur k*?; y définit donc un caractére (qu’on notera
encore x) du groupe quotient k*/k*°; mais & divise évidemment g — 1,
et ce quotient est d’ordre 6 (chap. 1, prop. 7, cor. 1); ainsi, le sous-groupe

N
(cyclique, d’ordre ) de k* engendré par y s’identifie au dual du groupe
(cyclique, d’ordre ) k*/k*°, et le noyau de y est exactement k*°.
Cela étant:

PROPOSITION 5. — Soit d un entier >1, et posons § = (q—1,d). Soit
d’autre part y un caractére multiplicatif d’ordre 5 de k (par exemple 09~ D/,
0 étant défini par (1.4.2) ), et soit a un élément non nul de k. Alors :

(1) Pour que a soit une puissance d-ieme dans k, il faut et il suffit que y (a)
= 1.

(ii) Le nombre m (a) de solutions dans k de 1’équation a une variable X* = a
est donné par

(1.5.1) m(a) = ;ZO ¥ (a).

(1) Avec la convention (1.4.1), l’égalité (1.5.1) reste vraie pour a = 0.

Démonstration. — La proposition 7 du chapitre 1 permet de supposer
que d = 4. (i) résulte alors du fait que le noyau de y est k*°. Prouvons (ii),
et notons a la classe de a (mod k*?); les relations d’orthogonalité (1.1.2),
appliquées & G = k*/k*°, 4 x = a, et aux caractéres ¥/ (0 <j <6 — 1)
qui forment le dual de G (voir ci-dessus) donnent

5, si aek*;

i—1 )

J —
pEag { 0, si agk*.
D’autre part, m (a) vaut 6 si a € k*° (k* contient J racines d-iémes de ’unité)
et 0 sinon; (ii) se trouve ainsi établi. Enfin (iii) est évident: car m (0) = 1,
%) =¢e(0) =1, et ¥ (0) = 0 pour 1 <<j <6 — 1, puisque, pour ces
valeurs de j, x/ # e.

La formule (1.5.1) sera utilisée au chapitre 6. La partie (i) de la propo-
sition 5 est essenticllement équivalente a l’extension du critére d’Euler
donnée au chapitre 1 (prop. 7, cor. 2). Si d’ailleurs on suppose p (donc g)
impair, et d = 2 (donc § = 2), le caractére ) de la proposition 5 est entie-
rement déterminé (il est égal 3 09~ 1)/2); ce caractére vaut 1 sur les carrés de
k*, et — 1 sur les non-carrés: on l’appelle caractére de Legendre; pour
q = p, il coincide évidemment avec le symbole de Legendre.
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§ 2. Sommes de Gauss.
2.1. Soient y un caractére multiplicatif et 8 un caractére additif de k.

DEFINITION 1. — On appelle somme de Gauss associée a x et ff la quantité

(2.1.1) t(xIf) = Zk*X(X)ﬁ(x).
Les valeurs prises par B et x étant des racines p-iémes de I'unité, et O
- ou des racines (g—1)-iémes de 1'unité, 7 (x | B) est un entier du corps des
racines p (¢—1)-iémes de l'unité.
Si le caractére B est fixé une fois pour toutes (par exemple, si f (x)
= (Tr™ avec { = e2™/P: sect. 1.2), on écrit © (y) au lieu de © (x| B), et
(pour y e k) 7, () au lieu de 7 ( | B,) (sect. 1.2): on a donc

(2.1.2) T,(0) = Y, 2(x)B(xy).

xek*

2.2. Sil’un des caractéres y et § est trivial, la somme de Gauss associée
est également « triviale » et sa valeur se calcule immédiatement a I’aide des
relations d’orthogonalité (1.1.1) appliquées & y ou a f:

(1) iy est trivial, mais non B, on a 1 (x| p) = — 1;
(i) si B est trivial, mais non y, on a t (} I p) = 0;

(ii1) enfin, si y et B sont tous deux triviaux, on a T (x [ p) =q — 1.

2.3. Passons au cas non trivial. On suppose x # &, on fixe une fois pour

toutes un caractére additif non trivial f, et on met tous les caractéres

~ additifs non triviaux de k sous la forme g, (y € k*) (prop. 1); les sommes
- de Gauss non triviales associées a y sont alors les 7, () (y € k*).

PROPOSITION 6. — Si ) désigne le caractére conjugué de y (sect. 1.1),
on a

(2.3.1) (0 =1 -

| Démonstration. — Puisque y # 0, application x > xy est une permu-
tation de k*; il suffit alors d’écrire

(0 = LT MxENBEY =10 Y x(xy)B(xy)

xek* xek*

et de faire le changement de variable z = xy pour obtenir (2.3.1).
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PROPOSITION 7. — On a (toujours pour y # &)

(2.3.2) Tt = qx(=1).

Démonstration. — Par définition, t ()t (}) = >, > x(x) 1 () B (x)

xeck* yek*
B);maisy (x) () = x(x) ¢ ) = xxy~ D, et f(x) f() = B (x+Y).
si on fait le changement de variables (x, y) b (¥, z) défini par z = xy~ 1,
on obtient donc

(2.3.3) (0@ = 2 2 x(@B((z+1).

yek* zek*

Le second membre se fractionne en deux sommes partielles correspondant
respectivement a z = — 1 et 3 z # — 1; comme f(0) = 1, la premicre
somme vaut (g—1) y (—1); quant a la seconde, elle peut s’écrire

Y 1@ Y By (z+1);

z#F -1 yek*

mais la proposition 2, appliquée 2 a = z + 1, montre que pour tout
z # — 1, la somme portant sur y € k* vaut — f(0) = — 1; par ailleurs,
(1.1.1), appliqué au groupe k* et au caractére y, donne

EIX(Z) = —x(=1);

la deuxiéme somme partielle vaut donc y (—1); st alors on reporte dans
(2.3.3) les valeurs des deux sommes partielles, on obtient

(T =@-Dx(=1D +x(=1),
c’est-a-dire (2.3.2).

PROPOSITION 8. — On a (en supposant toujours y # ¢€)
(2.3.4) T 1* =4q.

Démonstration. — Par définition, | 7 (x) |* = 7 (x) 7 (x); on peut donc

écrie [t()P=Y X x®IMBE B(y); mais 1(3) =y ' =

xek* yek*

(¥~ 1), et de méme B(y) = B (—y); le terme général de la somme ci-dessus
est alors égal & y (xy~1!) B (x—y), ou encore (en remplagant y par — y, ce
qui ne change pas la somme) & ¥ (—1) x (xp~ 1) B (x+y): la proposition 8
résulte donc de la proposition 7, et du fait que y (—1)% = x ((=1)*) =
x(1) =1
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§ 3. Sommes de Jacobi a deux caracteres.

3.1. Soient maintenant y et ¥ deux caractéres multiplicatifs du corps
fini k. |

DEFINITION 2. — On appelle somme de Jacobi associée a y et  la quantité

(3.1.1) n(y) = 2 2@y A-x).

xek

Comme le second membre de (3.1.1) peut également s’écrire
Y. x() ¥ (p) on voit que 7 (y, ¥) = n (Y, x). 1l est clair d’autre part

x+y=1
que 7 (x, ¥) est un entier du corps des racines (g— 1)-iemes de I'unité.

3.2. Sil’'un des deux caractéres y et y est trivial, la somme de Jacobi
est également « triviale » et sa valeur se calcule immédiatement a I’aide des
relations d’orthogonalité (1.1.1) et de la convention (1.4.1):

) siy=vy=¢onan(yy) =gq;
() siy =¢cety # ¢ (oul’inverse), on an(y ) = 0.
3.3. Passons au cas non trivial.
PROPOSITION 9. — Supposons y et  non triviaux. Alors
(1) Siyp =¢e, 0na
(3.3.1) n(y) = —x(=1.

(11) Si au contraire y\ # ¢, la somme de Jacobi n (x, V) se calcule a l’aide
des sommes de Gauss non triviales T (x), T () et T (xy) par la formule

(3.3.2) n(¥) =TT/ .

(Les trois sommes de Gauss figurant dans le membre de droite sont supposées
calculées a I'aide d’'un méme caractére additif non trivial g de k).

Démonstration. — (i) Si y = ¢, on a y = ¥~ !, et on peut écrire
() = Y 1@ A=-x) = Y x(x/(1-x);
x#0,1 x#0,1

mais le quotient y = x/(1—x) est une fonction homographique réguliére
de x, et quand x prend toute valeur possible dans k, sauf 0 et 1, y prend
toute valeur possible dans k, sauf 0 et — 1; ainsi, 7 (x, ¥) = Y. x (»)

yek*
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— x (—=1) et (3.3.1) résulte alors de (1.1.1) appliqué au caractére multipli-
catif non trivial .

(1) La définition des sommes de Gauss et la convention (1.4.1) permettent
d’écrire

(0T = 2 2 xYMBE+);

xek yek

dans le second membre, faisons le changement de variables (x, y) b (z, t)
défini par z = x + yet ¢z = x (’apparition de la valeur 0 n’est pas génante,
du fait que x (0) = ¥ (0) = 0: on laisse au lecteur le soin d’examiner ce
point en détail); il vient

tTW) =) X 1@xO¥v@Q¥A-DB(2),

ou encore
t(T@) = ( Zk (x¥) (2) B (2)) (tz;‘ 1@y 1-1),

c’est-a-dire finalement, puisque (y¥) (0) = O,

t()tW) =) (. ¥),
C.Q.F.D.

COROLLAIRE 1. — Si les trois caractéres y, et y\y sont non triviaux, on a
(3.3.3) ln (L) 1> =q.

Démonstration. — Utiliser la proposition 9, (ii), puis la proposition 8.

COROLLAIRE 2. — Supposons toujours le caractére y non trivial, et notons
0 son ordre. On a alors

(3.3.4) () = ax (=D (72
Démonstration. — Pour 1 <{j << — 2, la proposition 9, (ii) donne

(1) = 1)t

en multipliant membre & membre ces 6 — 2 égalités, on obtient

ORI AV S IR A6 A IR A 0 M A s

1 1

mais y°~1 = x~1' = j; il suffit alors de multiplier les deux membres de
cette derniére égalité par 7 (x) t (§) = qx (—1) pour obtenir (3.3.4).
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§ 4. Sommes de Jacobi a n caracteéres.

4.1. Soient n un entier >1, et yq, ..., X, # caractéres multiplicatifs
de k. Désignons par H 'ensemble des points X = (x, ..., X,,) de k" tels que
X; + ... + x, = 1; c’est un hyperplan affine de k", et on a en particulier
card (H) = ¢" L.

DEFINITION 3. — On appelle somme de Jacobi associée @ yq, ..., xn la
quantité :
(4.1.1) (At ver ) = ZHX1 (61) o L (%) -
Xe

C’est évidemment un entier du corps des racines (g — 1)-iémes de 1'unité.
Pour n =1, on a n(y,) = 1; pour n = 2, on retrouve les sommes de
Jacobi a deux caractéres étudiées au paragraphe précédent; dans ce qui suit,
on pourra donc supposer n > 3.

4.2. Siun au moins des caractéres y; est trivial, on a une somme de
Jacobi « triviale » qui se calcule explicitement:

n—1,.

(1) si tous les y; sont triviaux, on @ © (Y1, «r Xn) = " 3

(i) si la famille y; comporte au moins un caractére trivial et au moins un
caractere non trivial, on a 7 (x4, ..., x,) = O.

(Prouvons cette derniére égalité, qui n’est pas absolument évidente: quitte
eventuellement & renuméroter les caractéres, on peut supposer y, # &, ...,
Am # & MAIS Ypiy = ... = ¥, = &, avec 1 <m <n — 1; comme alors
Am+1(¥) = .. = x,(») = 1 pour tout élément y de k, et que le systéme
de m + 1 équations linéaires

Xi+..4+X, =1, X;{ =x4,..., X,, =X,,,

admet exactement ¢"~™~ ! solutions dans k" quels que soient les m éléments
Xy, ... X,y de k, on voit que

T o) = 47" (0 10GD) e (Yt s

Xiek Xmek

mais chacune des sommes du membre de droite est nulle (utiliser (1.1.1) et
(1.4.1)); en définitive, on a donc bien x (x4, ..., x,) = O, C.Q.F.D.)

4.3. Passons maintenant au cas non trivial.
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PrOPOSITION 10. — Supposons x; # € pour i = 1, ..., n. Alors
@A) Siy,..x,=¢ ona
(4.3.1) T(L1s oos Tn) = X (=D T(Uas ey Xnma) -

(i) Si au contraire ¥y ... %, # €, la somme de Jacobi 7 (xq, ..., Xn) Deut
s ‘exprimer a [’aide de sommes de Gauss non triviales par la formule

(4.3.2) (A1 wees ) = T - TOT 1 - X) -

(Les n + 1 sommes de Gauss figurant dans le membre de droite sont
supposées calculées a I’aide d’un méme caractére additif non trivial § de k).

Démonstration. — (i) Ecrivons pour abréger © = 7w ()Xy, ..., Xn)> €t
posons
(4.3.3) p = Z X1 (X1) e X1 (1)

(somme étendue a P’ensemble des points (xy, ..., x,_ ) de k"~ ' tels que
X, + ... +x,-4 =0), puis

(4.3.4) o =3 X1 (X1) .. X (x)

(somme étendue a ’ensemble des points (x4, ..., x,) de H tels que x, # 1).
Il est clair que @ = p + o, et il suffit donc, pour prouver I’égalité (4.3.1),
d’établir les deux égalités ci-dessous:

(435) p = 0; o = — Xn('—l)n(XIS-"a Xn—l)’

Démontrons la premiére. Comme y,-, (0) = 0, on peut, dans (4.3.3),
limiter la sommation aux points tels que x,_; # 0, puis faire le changement
de variables (xy, ..., X,_2, Xy 1) P> (V15 e Vu—2, t) défini par

L= —Xp—1, V1 = = Xg5 e W2 = — Xy 2.
(4.3.3) se transforme alors en

p = Xn—l (ﬂl)n(Xh eoey Xn—-Z) Z (Xl Xn—l)(t);
tek*
mais par hypothése, )i .. Xn—1 = ¥u - # €; compte tenu de (1.1.1), la
somme figurant dans le membre de droite est alors nulle, et on a bien
p = 0.
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Démontrons la seconde égalité (4.3.5). Faisons, dans le membre de
droite de (4.3.4), le changement de variables (Xy, ..., X,~ 1, X,) P (P15 o
Yn-1, t) défini par

yi = xl/(l _xn)a s Yn-1 = xn—l/(l —xn)> t = xn/(l _xn) .
(4.3.4) se transforme en

c=( Y %®) (Xt ta-1Gu-1)>

t#0, —1

Ja deuxiéme somme étant étendue aux points (¥4, ..., ¥, 1) de k"~ ! tels que
Yy + .. + yo—q = 0; cette deuxiéme somme est donc égale par définition
A 7 (%y, oo Xy—1); comme la premiére somme figurant dans le membre de
droite vaut — ¥, (—1) (utiliser (1.1.1)), on aboutit bien a la seconde égalité
(4.3.5), ce qui achéve de démontrer (i).

(i) Meéme méthode que pour la proposition 9, (ii) (qui correspond au cas
n = 2); on laisse au lecteur le soin d’effectuer le détail du calcul.

COROLLAIRE 1. — Mémes données que dans la proposition 10.
W Siy,..y,=¢ ona
(4.3.6) | (Xs s ) I = 0772
(i) Si au contraire Yy ... X, # € Oon a

(437) !R(Xb'--: Xn) 12 -

l
Q)

(iii) Dans les deux cas, on a pour la somme de Jacobi n (¥, ..., X.) la majo-
ration en module

(4.3.8) [ (teses ) | < q@7P2.

Démonstration. — (4.3.7) résulte de (4.3.2) et de (2.3.4); (4.3.6) résulte

alors de (4.3.1) et de (4.3.7); enfin, (4.3.8) est une conséquence immédiate de
(4.3.6) et (4.3.7).

Appendice. — Détermination effective des sommes de Gauss et de Jacobi.

A.1. Commengons par les sommes de Jacobi (et limitons-nous au cas
de deux caractéres). Le probléme est le suivant: étant donné un corps fini %,
et deux caractéres multiplicatifs y et  de k, donnés explicitement, déter-
miner directement (c’est-a-dire sans remonter & la définition) et sans ambi-
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guité la valeur de lentier algébrique 7 (y, ¥). Ce probléme est difficile en
général, mais, pour k = F, et y,  d’ordre peu élevé, il peut €tre résolu de
fagon élémentaire. Voyons-le sur deux exemples:

Exemple 1. — Posons p = e*™/3, 4 = Z [p]; soit p un nombre premier
= 1 (mod 3), et soit p = A1 sa décomposition en facteurs irréductibles dans
A, A et A étant entiérement déterminés (2 la conjugaison prés) par la condi-

tion A = 1 = 1 (mod 3). Posons k = 4/14 ~ F, et soit (7) le symbole
3
de restes cubiques modulo A dans A, défini pour tout x € 4 par

X
(A.1.1) (—/—1—> = 0, si x = 0 (mod A); une puissance de p, sinon;
3

(;) = x?~ D73 (mod 1) dans les deux cas.
3

Ce symbole s’identifie 2 un caractére multiplicatif d’ordre 3 de k, qu'on
notera y. On peut alors envisager la somme de Jacobi 7 (y, ¥), qui est un
¢lément parfaitement déterminé de A:

PropOSITION 11. — Ona n(y, y) = — A

Démonstration. — Posons 7 = 7 (x, x) . (A.1.1) et la définition de yx
permettent d’écrire w = Y y(x)x(1-x) = > P(x) (mod 1), avec

xek xek
P(X) = X@"DBA_x)»~D3: comme deg(P) =2(p—-1)/3 <p — 1,
cette somme est nulle (dans k = A/AA; voir chap. 3, th. 2), et © est donc
divisible par A; mais par ailleurs nt = p (prop. 9, cor. 1): = est donc un
facteur irréductible de p dans A. Au total, © est donc associé a A dans A4,
et on a © = ¢/, ¢ étant une racine 6-iéme de I'unité. Soient maintenant
une racine primitive p-iéme de I'unité dans C, f le caractére additif de k
défini par f(x) = {*(xek), et t la somme de Gauss 7 (x | B); on a 13
= pr (prop. 9, cor. 2), donc, puisque p = 1 (mod 3), 7 = 7> = ( ), x(x)¢%)?

xek¥*
=Y PP = ) 3* = — 1 (mod 3) (noter que *>(x) = 1 pour tout
xek* xek*
x € k* et que {3 est une racine primitive p-iéme de l'unité).
En résumé, on a donc 7 = g4 = — 1 (mo 3), avec 4 =1 (mod 3)
et ¢ = une racine 6-iéme de I'unité: ceci implique ¢ = — 1 (essayer les six

valeurs possibles de ¢), donc finalement n = — 4, C.Q.F.D.
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Exemple 2. — Posons i = / — 1,4 = Z [i]; soit p un nombre premier
= 1 (mod 4), et soit p = A4 sa décomposition en facteurs irréductibles dans
" A, J et 1 étant entiérement déterminés (3 la conjugaison prés) par la condi-
tion A = 1 = 1 (mod 2 + 2i). Posons (comme dans I'exemple 1) k = A/AA4

~ F,, soient (7) et <7> les symboles de restes quadratiques et biqua-
2 4

~ dratiques modulo A dans A (définis comme le symbole de restes cubiques
dans I’exemple 1), et soient ¢ et y les caractéres multiplicatifs de k& corres-

pondants.

ProOPOSITION 12. — On a n (@, Y) = — A

Démonstration. — Posons 7n = 7w (@, ). On vérifie immédiatement,
comme pour la proposition 11, que = = &/, ¢ étant maintenant une racine
4-itme de 'unité. On peut déterminer ¢ par un argument géométrique tres
élégant, dt & Jacobi, et dont on verra une autre application au chapitre 9
(sect. 5.2). Soit N le nombre de solutions dans k? de I’équation X* + Y2
= 1; comme p = 1 (mod 4), k contient quatre racines 4-i€mes de 1’unité
(chap. 1, prop. 7, (ii)), et cette équation admet deux solutions (x, y) telles
que x = 0, quatre solutions (x, y) telles que y = 0, les autres solutions
(x, y) (telles que xy # 0) se groupant huit par huit de fagon évidente; ainsi,
N = 6 (mod 8). D’autre part, on verra au chapitre 6 (sect. 3.3, formule
(3.3.2)) que

(A.1.2) N=p—-1+n(p,¥)+7n(o,¥) =p—1+4+n+7;

posons alors w = a + bi (a,be Z); (A.1.2) donne dans ces conditions
a =3 (mod 4) lorsque p = 1 (mod 8), et a = 1 (mod 4) lorsque p = 5
(mod 8); comme p = a® + b*, on voit d’autre part que b = 0 (mod 4)
lorsque p = 1 (mod 8), et que b = 2 (mod 4) lorsque p = 5 (mod 8); ainsi,

dans les deux cas, —n = —a — bi =1 (mod 2 + 2i), donc — ¢l = A
- (mod 2 + 2i), donc ¢ = — 1 (essayer les quatre valeurs possibles de ¢),
et finalement 7 = ¢4 = — 1, C.Q.F.D.

Pour d’autres exemples analogues, voir [8], pp. 465-469.

A.2. Passons aux sommes de Gauss. Le probléme est maintenant de
déterminer sans ambiguité une somme 7 (y | B), x et B étant deux caractéres
d’un corps fini k, 'un multiplicatif, Pautre additif, et supposés donnés expli-
citement. Si é est ordre de y, il est en général possible, au moins pour les

L’Enseignement mathém., t. XIX, fasc. 1-2. 4




— 50 —

petites valeurs de J, de déterminer explicitement  (x | p) = t(x [ By a
l'aide de la formule (3.3.4) (prop. 9, cor. 2). On peut alors écrire 7 (x | B)
= &7, € €tant une racine J-icme de 'unité, et 7, étant un nombre complexe
enticrement défini par les deux conditions 7,° = o (¥ [ B), 0 <arg(ty)
< 27/é. Le probléme est donc de déterminer explicitement &: sauf pour
0 = 2, ce dernier probléme n’est pas résolu complétement a I’heure actuelle;
c’est ce qu’illustrent bien les deux exemples suivants:

Exemple 1. — Soient p un nombre premier impair, kK = F,, ¢ le caractére
de Legendre de k, et B le caractére additif de k défini par B (x) = e?™*/P
(xek). Posons t = 1 (¢ | f); T est un nombre complexe parfaitement
défini, et la proposition 7 montre que t* = ¢ (=1 p = (=1~ Y12 p d’ou

+ p'/?, si p = 1(mod 4),

(4.2.1) ¢ = ‘
+ ipl/2, si p = 3(mod 4).

Probléme (dit « du signe de la somme de Gauss »): dans les formules (A.2.1),
quel est, en fonction de p, le « bon » signe ? En fait, c’est toujours le signe + ;
mais, alors que le calcul de 72 est immédiat, la détermination du signe de t
est relativement difficile (Gauss lui-méme mit, parait-il, huit ans a trouver

une solution...). A ce sujet (et notamment pour une démonstration), voir
[8], pp. 469-478.

Exemple 2. — Reprenons les hypothéses et notations de I’exemple 1
(sect. A.1), et soit f le caractére additif de k défini par B (x) = e*™*/? (x e k).
Posons maintenant © = 7 (¥ | p) (cette somme de Gauss est dite tradition-
nellement « somme de Kummer »); c’est un nombre complexe parfaitement
défini, et la proposition 9 (cor. 2) montre que 1> = pn(x, y) = — Ap
(sect. A.1, prop. 11). Si alors 1, désigne la racine cubique de — Ap (dans C)
telle que 0 < arg(7y) < 27/3, on a

(4.2.2) T = ¢1,, avec & = 1, p ou p>.

Probléme (dit « de la somme de Kummer »): dans la formule (A.2.2), quelle
est la « bonne » valeur de ¢ ? Ce probléme, posé dans les années 1840/1850
par Kummer (entre autres) n’est toujours pas résolu (voir [8], pp. 478-489).
Cassels a formulé récemment une conjecture conforme aux valeurs numé-
riques de t effectivement calculées pour p <5000 (et p =1 (mod 3)),
mais cette conjecture reste a démontrer (voir Cassels (1970)).

Le cas 6 = 4 est également examiné (mais non résolu !) dans [8], pp. 489-
494,
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Notes sur le chapitre 5

§ 1: le fait que F,* est en dualité avec lui-méme par (x,y) > e2™xyIP est
évident, et connu « depuis toujours ». Les caractéres multiplicatifs de F,
se sont introduits progressivement a partir du milieu du XVIIIe siécle avec
I’étude des restes quadratiques (Euler, Legendre, Gauss), cubiques (Gauss,
Jacobi, Eisenstein) et biquadratiques (Gauss, Jacobi).

§ 2: les sommes de Gauss apparaissent (sous la forme déguisée des
périodes cyclotomiques) dans la derniére section des Disquisitiones Arithme-
ticae: Gauss les utilise pour étudier, avant la lettre, le groupe de Galois de
’extension Q (e*™/?)/Q; a ce sujet, voir par exemple [8], pp. 453-460. Par
la suite, les sommes de Gauss reparaissent systématiquement dans les tra-
vaux arithmétiques de Gauss, Jacobi, Eisenstein, Kummer, Stickelberger,
en relation notamment avec 1’étude des lois de réciprocité, et avec la repré-
sentation des nombres premiers par des formes quadratiques binaires a
coefficients entiers; pour une synthése de ces travaux, voir le livre centenaire
de Bachmann (Die Lehre von der Kreistheilung, Teubner, Leipzig, 1872),
ainsi que Stickelberger (1890). (L’utilisation de la somme de Gauss 7

x . . r cor * :
= ¥ (_> e?™*/P pour démontrer la loi de réciprocité quadratique
x mod p\ P

est bien connue: voir [8], pp. 116-117, ou [17], chap. 1, sect. 3.3).

§ 3-4: les sommes de Jacobi apparaissent également dans les travaux
mentionnés ci-dessus; elles y sont définies a partir des sommes de Gauss par
une formule qui coincide avec la formule (3.3.2). Elles sont étudiées systé-
matiquement chez Stickelberger (1890), Davenport-Hasse (1934) et Weil

(1949) (ce dernier article contient d’ailleurs d’intéressantes indications
historiques).

CHAPITRE 6

EQUATIONS DIAGONALES (II)

Ce chapitre utilise les propositions 3 et 5 du chapitre 5 pour établir des
formules donnant le nombre exact N (b) de solutions dans k" d’une équation
diagonale a, X' + ... + a,X,%" = b a coefficients dans k (k désigne toujours
un corps fini & g éléments). Ces formules font intervenir des sommes de
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