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Chapitre 5

SOMMES DE GAUSS ET DE JACOBI

Le premier paragraphe de ce chapitre donne la description du groupe
des caractères additifs et du groupe des caractères multiplicatifs d'un corps
fini, et montre comment ces caractères peuvent servir au calcul du nombre
de solutions d'une équation (prop. 3 et 5). Le reste du chapitre est consacré
à une étude élémentaire des sommes de Gauss et de Jacobi ; ces sommes sont
des entiers algébriques, construits à l'aide de caractères, et dont l'utilisation,
combinée avec les propositions 3 et 5, permettra notamment (1) de calculer
le nombre de solutions d'une équation diagonale quelconque (chap. 6);
(2) de calculer dans certains cas la fonction zêta de l'ensemble algébrique
défini par une telle équation (chap. 9); (3) de démontrer le théorème d'Ax,
c'est-à-dire la relation de divisibilité qb | N annoncée au chapitre 3 (chap. 7).
Pour d'autres utilisations classiques des sommes de Gauss et de Jacobi

(étude des corps cyclotomiques, démonstration élémentaire des lois de

réciprocité, etc.), voir [8], § 20, [11], chap. IV, ou [3], chap. 5 ; voir également les

Notes en fin de chapitre.
On conserve ici encore les conventions et notations des chapitres

précédents; en particulier, k désigne toujours un corps fini à q pf éléments.

§ 1. Caractères additifs et caractères multiplicatifs d'un corps fini.

1.1. Rappelons que si G est un groupe fini commutatif, on appelle
caractère de G tout homomorphisme x'> G -» C*, de G dans le groupe
multiplicatif du corps des nombres complexes; les caractères de G forment de

manière naturelle un groupe multiplicatif, dit dual de G, et noté G (ou
X (G)) ; l'élément neutre de G est le caractère s défini par e (x) 1 pour

S
tout xe G : on l'appelle caractère trivial (ou principal); si xe G, si %e G,

et si m désigne l'ordre de G, on a x (x)m X (*m) X (e) 1 (ß désignant
l'élément neutre de G); les valeurs d'un caractère x de G sont donc des

racines ra-ièmes de l'unité; en particulier, si x-1 est l'inverse de x dans G,

et si x e G, alors x~1 (*) X (x) (complexe conjugué de x (*)): c'est pour-
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quoi le caractère x'1est généralement noté x, et appelé caractère conjugué

de x-
On aura besoin par la suite des deux résultats suivants (pour des démonstrations,

d'ailleurs immédiates, voir [17], pp. 103-107):

S
(i) Les groupes G et G sont isomorphes (non canoniquement) ; en particulier,

G a même ordre que G.

(ii) (Relations d'orthogonalité). — Si x est un caractère de G, on a

I
card (G), si x 8 l

n p0, si x *£ e •

De même, si x est un élément de G, on a

I
card (G), si x e;
n • *0, si # e.

On va appliquer ce qui précède au groupe additif k+ de k (sect. 1.2),
N

puis au groupe multiplicatif k* (sect. 1.3); k+ sera dit dual additif de k, et

fe*, dual multiplicatif; les éléments de k+ et de A:* seront qualifiés
respectivement de caractères additifs et de caractères multiplicatifs de k.

1.2. Commençons par l'étude des caractères additifs; on peut en

construire de la manière suivante: soit Tr l'application trace relative à

l'extension k/Fp, et soit Ç une racine primitive /7-ième de l'unité dans C

(par exemple e2ui,p); pour tout élément x de k, posons

(1.2.1) ß(x) - CTr(x)

(ce qui a un sens, puisque Tr (x) e Fp est un entier rationnel modulo p) ;

alors ß est évidemment un caractère additif de k, et ce caractère n'est pas
trivial (parce que la trace est surjective: chap. 1, prop. 9). Plus généralement,
si y ek, et si on pose ßy (x) ß (xj) (x, y e k), ßy est un caractère additif
de k, et ce caractère n'est trivial que si y 0.

Il se trouve que le procédé ci-dessus fournit tous les caractères additifs
de k\ de façon précise:

Proposition 1. — Soit ß un caractère additifnon trivial de k (par exemple
celui défini par (Î.2.Î)) et, pour tout x et tout y dans k, posons
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(12.2) ßy(x)=ß(xy).
Alors l'application y ßy est un isomorphisme du groupe additif k+ sur

/s
son dual k*.

Démonstration. — Cette application est évidemment un homomor-
phisme de groupes; compte tenu de la propriété (i) (sect. 1.1), il suffit de

prouver que cet homomorphisme est injectif; mais par hypothèse, ß est

non trivial; il existe donc a e k tel que ß (a) ^ 1 ; soit alors y ek, y ^ 0;
si on pose x — ay'1, on a évidemment ßy (x) ß (a) ^ 1, donc ßy ^ e,

C.Q.F.D.

Proposition 2. — Soient ß un caractère additif non trivial de k et a un

élément quelconque de k. Alors

^ \ q si a 0 ;
(1-2.3) E ß(ay) |

yek [ 0 SI a / 0

Démonstration. — (1.2.3) résulte, soit de (1.1.1) appliqué au caractère

fixe ßa et à l'élément y parcourant k+, soit de (1.1.2) appliqué à l'élément

fixe a et au caractère ßy parcourant k+.

1.3. La proposition 2 donne un moyen de compter les solutions d'une

équation polynomiale:

Proposition 3. — Soit F un polynôme à n variables et à coefficients dans

k. Si ß désigne un caractère additif non trivial de k, le nombre N de solutions

dans kn de l'équation F — 0 est donné par

(1-3.1) Nf1^(yF(x1,...,x„)),
y y x

la sommation étant étendue à tous les points (y, xu x„) de kn+1.

Démonstration. — Soit V ak"l'ensembledes solutions de 0. Si

xe V,donc si F (x) 0, (1.2.3), appliqué à F (x), donne

E ß (yp(x))i >

yek

et par conséquent

(1.3.2) E E ß(yF(x))
xe V yek
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Si au contraire x £ V,doncsi F (x) y=- 0, (1.2.3) donne

ZßiyFix)) 0;

(1.3.3) E E ß(yF(*)0-
xeK yefc

Il suffit alors d'additionner (1.3.2) et (1.3.3) et de multiplier les deux membres

par q_1 pour obtenir la formule (1.3.1). Cette formule sera utilisée

systématiquement aux chapitres 6, 7 et 9.

1.4. Passons à l'étude des caractères multiplicatifs de k. Notons
d'abord que si k* C*, est un tel caractère, sa valeur en 0 n'est pas
définie; pour des raisons de commodité, on conviendra toujours de

prolonger x en une application k - C*, en posant

Avec cette convention, on a x {xy) l(x) x (y) quels que soient x, y e k.
D'autre part, on peut construire un caractère multiplicatif d'ordre q — 1

(donc un générateur de k* : voir (i), sect. 1.1) de la façon suivante : soit co une
racine primitive (q— l)-ième de l'unité dans C (par exemple et
soit g un générateur du groupe cyclique k*; pour tout xek*, il existe

ie Z tel que x g1; désignons par ind (x) la classe de i modulo q — 1

et posons

alors 6 est bien un caractère multiplicatif d'ordre q — 1 de k (c'est un iso-
morphisme de k* sur le groupe des racines (#-l)-ièmes de l'unité dans C).

Enfin, on a évidemment le résultat suivant:

Proposition 4. — Soit 6 un caractère multiplicatif d'ordre q — 1 de k
(par exemple celui défini par (XA.2)). Alors l'application h K 6h définit de
manière naturelle un isomorphisme du groupe cyclique Z/(q—l) Z sur le

groupe fc*, dual de k*.

1.5. Soit maintenant x un caractère multiplicatif quelconque de k,

et soit <5 l'ordre de x (en tant qu'élément de k*). Si x e k*, on a x (xô)

(1.4.1)

(1.4.2) 0(x) œindix);



— 40 —

Xô (x) 1, et x est trivial sur k*0; x définit donc un caractère (qu'on notera
encore x) du groupe quotient k*/k*s; mais ô divise évidemment q — 1,

et ce quotient est d'ordre S (chap. 1, prop. 7, cor. 1); ainsi, le sous-groupe

(cyclique, d'ordre <5) de k* engendré par x s'identifie au dual du groupe
(cyclique, d'ordre <5) k*/k*0, et le noyau de x est exactement k*0.

Cela étant:

Proposition 5. — Soit d un entier >1, et posons ô (q—l,d). Soit
d'autre part x un caractère multiplicatifd'ordre d de k (par exemple ö(*~1)/<5,

0 étant défini par (1A.2) )9 et soit a un élément non nul de k. Alors :

(i) Pour que a soit une puissance d-ième dans k, il faut et il suffit que x (fi)
1.

(ii) Le nombre m (à) de solutions dans k del 'équation à une variable Xd — a

est donné par

(1.5.1) m (a) Ô~^xj(a).
j=o

(iii) Avec la convention (1.4.1), l'égalité (1.5A) reste vraie pour a 0.

Démonstration. — La proposition 7 du chapitre 1 permet de supposer
que d ô. (i) résulte alors du fait que le noyau de x est k*0. Prouvons (ii),
et notons ä la classe de a (mod k*ô)\ les relations d'orthogonalité (1.1.2),
appliquées à G k*/k*0, à x a, et aux caractères xJ (0 <j < <5 - 1)

qui forment le dual de G (voir ci-dessus) donnent

ô~1 f ö si a e k*ô ;

Z XJ(a)
j=o 0 si a $ k*5

D'autre part, m (a) vaut ô si a g k*0 (k* contient <5 racines <5-ièmes de l'unité)
et 0 sinon; (ii) se trouve ainsi établi. Enfin (iii) est évident: car m (0) 1,

yf (0) s (0) 1, et xJ (0) 0 pour 1 < y < <5 — 1, puisque, pour ces

valeurs de y, xJ ^
La formule (1.5.1) sera utilisée au chapitre 6. La partie (i) de la proposition

5 est essentiellement équivalente à l'extension du critère d'Euler
donnée au chapitre 1 (prop. 7, cor. 2). Si d'ailleurs on suppose p (donc q)

impair, et d — 2 (donc 5 2), le caractère x de la proposition 5 est

entièrement déterminé (il est égal à 6(q~1)/2); ce caractère vaut 1 sur les carrés de

k*, et — 1 sur les non-carrés: on l'appelle caractère de Legendre; pour
q p, il coïncide évidemment avec le symbole de Legendre.



§ 2. Sommes de Gauss.

2.1. Soient x un caractère multiplicatif et ß un caractère additif de k.

Définition 1. — On appelle somme de Gauss associée à x et ß la quantité

(2.1.1) r(X\ß)£ X(x)ß(x)
xek*

Les valeurs prises par ß et x étant des racines /7-ièmes de l'unité, et 0

ou des racines (q — l)-ièmes de l'unité, x (x | fi) est un entier du corps des

racines p (q— l)-ièmes de l'unité.
Si le caractère ß est fixé une fois pour toutes (par exemple, si ß (x)

avec £ e2fp: sect. 1.2), on écrit t (%) au lieu de x (x | ß)>

(pour y ek) xy (x) au üeu de x (x | ßy) (sect. 1.2): on a donc

(2.1.2) ry(x) Z X (*) (xy)
xek*

2.2. Si l'un des caractères x et ß est trivial, la somme de Gauss associée

est également « triviale » et sa valeur se calcule immédiatement à l'aide des

relations d'orthogonalité (1.1.1) appliquées à x °u à ß:

(i) si x ^t trivial, mais non ß, on a x (x\ ß) — 1 ;

(ii) si ß est trivial, mais non x, on a x (x\ ß) ^ ;

(iii) enfin, si x et ß sont tous deux triviaux, on a x (x | ß) q ~ 1-

2.3. Passons au cas non trivial. On suppose x # s, on fixe une fois pour
toutes un caractère additif non trivial ß, et on met tous les caractères
additifs non triviaux de k sous ïa forme ßy(yek*) (prop. 1); les sommes
de Gauss non triviales associées à x s°nt alors les xy (%) (y e fc*).

Proposition 6. — Si x désigne le caractère conjugué de x (sect, l.l),
on a

\ (2.3.1) ty(x)

Démonstration. — Puisque y ^ 0, l'application x K xy est une permu-
tation de k*; il suffit alors d'écrire

h(x) Z X.~1(y)x(xy)ß(xy) x(v) Z X(xy)ß(xy)
\ xek* xek*

et de faire le changement de variable z xy pour obtenir (2.3.1).
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Proposition 7. — On a (toujours pour % ¥= z)

(2-3.2) T(X)T(X) gx(-l) •

Démonstration. —- Par définition, t (/) t (/) ^ V y (.v) / (j>) ß
x ek* yek*

ß (y); mais x (x)l(y) x(x) x"1 (y) x(xy~ v), et ß ß (y) ß (x+j).
si on fait le changement de variables (.x,y) h» (y, z) défini par z xy_1,
on obtient donc

(2.3.3) r(x)r(x) Z I z(z)jß(y(z +1)).
yek* zek*

Le second membre se fractionne en deux sommes partielles correspondant
respectivement à z — 1 et à z # - 1; comme ß (0) 1, la première
somme vaut (q — 1) % (—1); quant à la seconde, elle peut s'écrire

Z x(z) ^ ß(y(z +1));
z±-î yek*

mais la proposition 2, appliquée à a z + 1, montre que pour tout
z ^ — 1, la somme portant sur yek* vaut — ß (0) — 1; par ailleurs,
(1.1.1), appliqué au groupe k* et au caractère donne

Z x0) - z -1) ;

la deuxième somme partielle vaut donc %( — 1); si alors on reporte dans

(2.3.3) les valeurs des deux sommes partielles, on obtient

T(x)T(z) (4-l)x(-l) +x(-l),
c'est-à-dire (2.3.2).

Proposition 8. — On a (en supposant toujours x ^ s)

(2.3.4) |tG0|2=<ï.

Démonstration. — Par définition, | x (x) T ('/.)> on peut donc

écrire | r (x) |2 Z Z X (x) X (y) ß (x) ß (y); mais (y) X~1 (y)
xek* yek*

X (y~*)> et de même ß (y) ß (—y) ; le terme général de la somme ci-dessus

est alors égal à x (xy~1) ß (ou encore (en remplaçant y par - y, ce

qui ne change pas la somme) à x (~ 1) 1 Cxy"*) ß (x+y): proposition 8

résulte donc de la proposition 7, et du fait que x(—l)2 x(( — l)2)

Z(l) I-
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§ 3. Sommes de Jacobi à deux caractères.

3.1. Soient maintenant x et \j/ deux caractères multiplicatifs du corps
fini k.

Définition 2. — On appelle somme de Jacobi associée à x et iß la quantité

(3.1.1) 71 (x,iA) £ x(x)iKl-x).
xek

Comme le second membre de (3.1.1) peut également s'écrire

Yj X(x)ll/ (y) on v°iï <Jue 71 (x> *A) 71 x)- Il est c^v d'autre part
x + y- 1

que % (x, \j/) est un entier du corps des racines (q— l)-ièmes de l'unité.

3.2. Si l'un des deux caractères x et \j/ est trivial, la somme de Jacobi
est également « triviale » et sa valeur se calcule immédiatement à l'aide des

relations d'orthogonalité (1.1.1) et de la convention (1.4.1):

(i) si x & s, on an (x, \ß) qi

(ii) si x e et \ß # s (ou l'inverse), on a n (x, iß) 0-

3.3. Passons au cas non trivial.

Proposition 9. — Supposons x et iß non triviaux. Alors

(i) Si xi7 £, on a

(3-3.1) 7t(x»^) - Z(-l).
(ii) Si au contraire xiß ^ s, la somme de Jacobi n (x, iß) ^ calcule à l'aide
des sommes de Gauss non triviales t (x), t (i/0 x (x^) /a formule

(3.3.2) 7r (x, il7) t (x) ^ WO/t (#} •

(Les trois sommes de Gauss figurant dans le membre de droite sont supposées
calculées à l'aide d'un même caractère additif non trivial ß de k).

Démonstration. — (i) Si xi7 on a \ß x-1, et on peut écrire

£ zWfHt*-*) Z *(*/(!-*));
x*0, 1 *#0, 1

mais le quotient x/(l — x) est une fonction homographique régulière
de x, et quand x prend toute valeur possible dans k, sauf 0 et 1, y prend
toute valeur possible dans k, sauf 0 et — 1 ; ainsi, n(x,&)= ^ x 00

yek*
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— x(— 1) et (3.3.1) résulte alors de (1.1.1) appliqué au caractère multiplicatif

non trivial %.

(ii) La définition des sommes de Gauss et la convention (1.4.1) permettent
d'écrire

E X x(x)^(y)ß(x+y);
xek yek

dans le second membre, faisons le changement de variables (x, y) b> (z91)
défini par z x + yzttz x (l'apparition de la valeur 0 n'est pas gênante,
du fait que x (0) js (0) 0: on laisse au lecteur le soin d'examiner ce

point en détail) ; il vient

t0CM<A) X X %O)x(0"/'O)'/'(i-000),
zek tek

ou encore

t(XM«/0 E (#)O)0O)) E x(0*(i-0),
zefc ïefc

c'est-à-dire finalement, puisque (%i^) (0) 0,

T (x) -c (x«W 1 Oc, »/O

C.Q.F.D.

Corollaire 1. — Si les trois caractères x> Z$ sont non triviaux, ö« ö

(3.3.3) O(x,10) I2 3 •

Démonstration. — Utiliser la proposition 9, (ii), puis la proposition 8.

Corollaire 2. — Supposons toujours le caractère x non trivial, notons
ô son ordre. On a alors

(3.3.4) x{x)& 4Z(-l)rc(x>x)rc(X>X2)---rc (z,Zi_2)-

Démonstration. — Pour 1 <j <5 — 2, la proposition 9, (ii) donne

rc 0c, zJ) t (z) -r (zj')/t 0cj+1) ;

en multipliant membre à membre ces ô — 2 égalités, on obtient

rc (x> z)0c, x2) -n(x,/~2)t(z)ä_1/t(zä_1);

mais z<5~1=Z~1==Z;iï suffit alors de multiplier les deux membres de

cette dernière égalité par t (z) t (z) #z(~l) pour obtenir (3.3.4).



— 45 —

§ 4. Sommes de Jacobi à n caractères.

4.1. Soient n un entier > 1, et Xu •> Xn n caractères multiplicatifs
de k. Désignons par H l'ensemble des points x (xu xn) de kn tels que

x1 H- + xn 1 ; c'est un hyperplan affine de kn, et on a en particulier
card (H) qn~l.

Définition 3. — On appelle somme de Jacobi associée à Xi, •••, L 'a
quantité

(4.1.1) n{)(u...,Xn)Z Xl C^l) —
xeH

C'est évidemment un entier du corps des racines (q— l)-ièmes de l'unité.
Pour n — 1, on a n (%j) 1 ; pour n 2, on retrouve les sommes de

Jacobi à deux caractères étudiées au paragraphe précédent; dans ce qui suit,
on pourra donc supposer n > 3.

4.2. Si un au moins des caractères Xi est trivial, on a une somme de

Jacobi « triviale » qui se calcule explicitement:

(i) si tous les Xi sont triviaux, on a n(xi> •••> X«) — qn ll
(ii) si la famille Xi comporte au moins un caractère trivial et au moins un
caractère non trivial, on a n (xi> Xn) — 0.

(Prouvons cette dernière égalité, qui n'est pas absolument évidente: quitte
éventuellement à renuméroter les caractères, on peut supposer Xi £, .••?

Xm ¥* s, mais xm+i ••• Xn avec 1 < m < n — 1; comme alors
Xm+iO) ••• Xn (y) 1 pour tout élément, j; de k, et que le système
de m + 1 équations linéaires

X1 + + Xn 1 X± xl9 Xm xm,

admet exactement qn~m~1 solutions dans kn quels que soient les m éléments

xu xm de k, on voit que

n(Xi,-,Xn) Z XlM-( Z
XI ek xmek

mais chacune des sommes du membre de droite est nulle (utiliser (1.1.1) et
(1.4.1)); en définitive, on a donc bien n (xi, -, Xn) 0, C.Q.F.D.)

4.3. Passons maintenant au cas non trivial.
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Proposition 10. — Supposons /, # s pozzr z 1,.... n. Alors

(i) Si xi... Xn s, on a

(4-3.1) n(Xu~;Xn) Xn(-l)«(Xi,—,X,.-i)-

(ii) S1/ atz contraire /, x„ # e, la somme de Jacobi — » Xn) Peut
s 'exprimer à l 'aide de sommes de Gauss non triviales par la formule

(4.3.2) l(Xl,".,Xn) *(Xl)-T(Xn)MXl -Xn).

(Les w -f 1 sommes de Gauss figurant dans le membre de droite sont

supposées calculées à l'aide d'un même caractère additif non trivial ß de k).

Démonstration. — (i) Ecrivons pour abréger n n (xu —> Z«)»

posons

(4.3.3) P E Xi (*i) ••• i)

(somme étendue à l'ensemble des points (xj,..., xM_ j) de tels que

x± + + xn-1 0), puis

(4.3.4) er E Xi (*i) - X„

(somme étendue à l'ensemble des points (xu xn) de H tels que xn ^ 1).

Il est clair que n p + cr, et il suffit donc, pour prouver l'égalité (4.3.1),
d'établir les deux égalités ci-dessous:

(4.3.5) p 0 ; aXn 1) " (Xi> •••> Xn -1) •

Démontrons la première. Comme %n-1 (0) 0, on peut, dans (4.3.3),

limiter la sommation aux points tels que xn^1 =£ 0, puis faire le changement
de variables (x1? xn-2> xn-1) ^ (yu —• J/i-2? 0 défini par

t - Xn_1 - XU tyn — 2 ~ Xti — 2 •

(4.3.3) se transforme alors en

P Xn-l(-l)^(Xl> ->Xn-2) E (Xl —Xn-l)(0;
tek*

mais par hypothèse, Xi —Xn-iXn-1 ^ £i compte tenu de (1.1.1), la

somme figurant dans le membre de droite est alors nulle, et on a bien

p 0.
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Démontrons la seconde égalité (4.3.5). Faisons, dans le membre de

droite de (4.3.4), le changement de variables (xu x„_1; *„) K 0>i, •••>

7„_1; t) défini par

yl *l/(l — -O' •••' .Fn-1 xn-l/(l — *b)j ' •*!>/(! — Xn) •

(4.3.4) se transforme en

ff=( I Z«(0) ŒxiOi)-Z»-1(^-1)).
f=ÉO, -1

la deuxième somme étant étendue aux points (y1? J de fcn"1 tels que

yl + + yn_x 0; cette deuxième somme est donc égale par définition

à (xu •••> Z«-i)î comme la première somme figurant dans le membre de

droite vaut — %n — 1) (utiliser (1.1.1)), on aboutit bien à la seconde égalité

(4.3.5), ce qui achève de démontrer (i).

(ii) Même méthode que pour la proposition 9, (ii) (qui correspond au cas

n 2); on laisse au lecteur le soin d'effectuer le détail du calcul.

Corollaire 1. — Mêmes données que dans la proposition 10.

(i) Si Xi In on a

(4.3.6) |7l(Xi, I2 <f-2 •

(ii) Si au contraire Xi Xn ^ s> on a

(4.3.7) |t(Zx>---»Zn)|2 q""1

(iii) Dans les deux cas, on a pour la somme de Jacobi n (/1; ...,/„) la
majoration en module

(4.3.8) |7r(Zl,...,x„)l<4("-1)/2.

Démonstration. — (4.3.7) résulte de (4.3.2) et de (2.3.4); (4.3.6) résulte
alors de (4.3.1) et de (4.3.7); enfin, (4.3.8) est une conséquence immédiate de

(4.3.6) et (4.3.7).

Appendice. —- Détermination effective des sommes de Gauss et de Jacobi.

A.l. Commençons par les sommes de Jacobi (et limitons-nous au cas
de deux caractères). Le problème est le suivant: étant donné un corps fini k,
et deux caractères multiplicatifs ^ et de fc, donnés explicitement,
déterminer directement (c'est-à-dire sans remonter à la définition) et sans ambi-
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guïté la valeur de l'entier algébrique n (x, i/s). Ce problème est difficile en

général, mais, pour k Fp et x, ^ d'ordre peu élevé, il peut être résolu de

façon élémentaire. Voyons-le sur deux exemples:

Exemple 1. — Posons p e2ni/s, A Z [p]; soit p un nombre premier
1 (mod 3), et soit p — Il sa décomposition en facteurs irréductibles dans

A, X et 1 étant entièrement déterminés (à la conjugaison près) par la condition

1=1= 1 (mod 3). Posons k AjlA ~ Fp, et soit sYmbole

de restes cubiques modulo 1 dans A, défini pour tout xe A par

(A. 1.1) 0, si x 0 (mod 1); une puissance de p, sinon ;

^ x(p~1)/3 (mod 1) dans les deux cas.

Ce symbole s'identifie à un caractère multiplicatif d'ordre 3 de k, qu'on
notera x• On peut alors envisager la somme de Jacobi % (x, x)> qui est un
élément parfaitement déterminé de A :

Proposition 11. — On a n (x, x) ~ 1-

Démonstration. — Posons n n (x, x) • (A. 1.1) et la définition de x
permettent d'écrire n Y x (*) 1 (1~~ x) Y^(x^ (mod 1), avec

P(X) Z(p"1)/3(1-Z)(p-1)/3; comme deg(P) 2(p-l)/3 < p - 1,

cette somme est nulle (dans k A/1A; voir chap. 3, th. 2), et n est donc
divisible par 1; mais par ailleurs nn p (prop. 9, cor. 1): % est donc un
facteur irréductible de p dans A. Au total, % est donc associé à 1 dans A,
et on a 7r si, s étant une racine 6-ième de l'unité. Soient maintenant Ç

une racine primitive p-ième de l'unité dans C, ß le caractère additif de k
défini par ß (x) (x e k), et t la somme de Gauss x (x | ß)l on a t3

pit (prop. 9, cor. 2), donc, puisque p 1 (mod 3), n t3 Y x(*X*)3
X k*

EE Y x3 (x) C3x Y ^3x ~ ^ (m°d 3) (noter que x3 (*) 1 pour tout
xek* xek*

xek* et que C3 est une racine primitive p-ième de l'unité).
En résumé, on a donc % si — 1 (mo 3), avec 1=1 (mod 3)

et s une racine 6-ième de l'unité: ceci implique s — 1 (essayer les six

valeurs possibles de s), donc finalement n — 1, C.Q.F.D.
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Exemple 2. — Posons i J - 1, A Z [/]; soit /? un nombre premier
1 (mod 4), et soit p 21 sa décomposition en facteurs irréductibles dans

A-, 2 et I étant entièrement déterminés (à la conjugaison près) par la condition

1 1 1 (mod 2 + 2z). Posons (comme dans l'exemple 1 k A/1A

dratiques modulo 1 dans A (définis comme le symbole de restes cubiques
dans l'exemple 1), et soient (p et \j/ les caractères multiplicatifs de k
correspondants.

Proposition 12. — On a n (cp, \j/) — A.

Démonstration. — Posons n n (ç, \j/). On vérifie immédiatement,
comme pour la proposition 11, que % — si, s étant maintenant une racine
4-ième de l'unité. On peut déterminer s par un argument géométrique très

j élégant, dû à Jacobi, et dont on verra une autre application au chapitre 9

(sect. 5.2). Soit N le nombre de solutions dans k2 de l'équation X4 + Y2
1 ; comme p 1 (mod 4), k contient quatre racines 4-ièmes de l'unité

(chap. 1, prop. 7, (ii)), et cette équation admet deux solutions (x, y) telles

que x 0, quatre solutions (x, y) telles que y 0, les autres solutions
| (x, y) (telles que xy A 0) se groupant huit par huit de façon évidente ; ainsi,

N 6 (mod 8). D'autre part, on verra au chapitre 6 (sect. 3.3, formule
(3.3.2)) que

(A.1.2) N p - 1 + n(<p9\l/) + n((p,\j/) p — 1 + n + n ;

posons alors n a + bi (a,be Z); (A.1.2) donne dans ces conditions
a 3 (mod 4) lorsque p 1 (mod 8), et a 1 (mod 4) lorsque p 5

(mod 8); comme p a2 + b2, on voit d'autre part que b 0 (mod 4)
lorsque p 1 (mod 8), et que b 2 (mod 4) lorsque p 5 (mod 8) ; ainsi,
dans les deux cas, - n - a - bi 1 (mod 2 + 2/), donc - el 1

(mod 2 + 2/), donc s — 1 (essayer les quatre valeurs possibles de e),
et finalement n si — 1, C.Q.F.D.

Pour d'autres exemples analogues, voir [8], pp. 465-469.

A.2. Passons aux sommes de Gauss. Le problème est maintenant de
déterminer sans ambiguïté une somme t (x | ß), x et ß étant deux caractères
d'un corps fini k, l'un multiplicatif, l'autre additif, et supposés donnés
explicitement. Si ô est l'ordre de x, il est en général possible, au moins pour les

^ ~Fp, soient
A

les symboles de restes quadratiques et biqua-

L'Enseignement mathém., t. XIX, fasc. 1-2. a
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petites valeurs de ô, de déterminer explicitement co(x \ ß) (x\ ß)0 à

l'aide de la formule (3.3.4) (prop. 9, cor. 2). On peut alors écrire x (x | ß)

£T0, e étant une racine <5-ième de l'unité, et t0 étant un nombre complexe
entièrement défini par les deux conditions x0ô — œ (x | ß), 0 < arg (t0)
< In/ô. Le problème est donc de déterminer explicitement s: sauf pour

ô 2, ce dernier problème n'est pas résolu complètement à l'heure actuelle;
c'est ce qu'illustrent bien les deux exemples suivants:

Exemple 1. — Soientp un nombre premier impair, k Fp, (p le caractère
de Legendre de k, et ß le caractère additif de k défini par ß (x) e2nix/p

(x e k). Posons x t (cp | ß) ; x est un nombre complexe parfaitement
défini, et la proposition 7 montre que t2 cp (— \)p — — l)(p~1)/2 p, d'où

± P112, si p s 1 (mod 4)
(A.2.1) x — {

[ ± ip1/2, si p 3 (mod 4)

Problème (dit « du signe de la somme de Gauss »): dans les formules (A.2.1),
quel est, en fonction de p, le « bon » signe En fait, c'est toujours le signe + ;

mais, alors que le calcul de t2 est immédiat, la détermination du signe de x

est relativement difficile (Gauss lui-même mit, paraît-il, huit ans à trouver
une solution...). A ce sujet (et notamment pour une démonstration), voir
[8], pp. 469-478.

Exemple 2. — Reprenons les hypothèses et notations de l'exemple 1

(sect. A.l), et soit ß le caractère additif de k défini par ß (x) — e2ltlxlp (x e k).
Posons maintenant x x (x | ß) (cette somme de Gauss est dite
traditionnellement « somme de Kummer ») ; c'est un nombre complexe parfaitement
défini, et la proposition 9 (cor. 2) montre que x3 pn (x, x) _
(sect. A.l, prop. 11). Si alors x0 désigne la racine cubique de — Ap (dans C)
telle que 0 < arg (t0) < 2n/3, on a

(^4.2.2) x £Xq avec s 1, p ou p2

Problème (dit « de la somme de Kummer ») : dans la formule (A.2.2), quelle
est la « bonne » valeur de £ Ce problème, posé dans les années 1840/1850

par Kummer (entre autres) n'est toujours pas résolu (voir [8], pp. 478-489).
Cassels a formulé récemment une conjecture conforme aux valeurs numériques

de x effectivement calculées pour p < 5 000 (et p 1 (mod 3)),
mais cette conjecture reste à démontrer (voir Cassels (1970)).

Le cas ô 4 est également examiné (mais non résolu dans [8], pp. 489-

494.



— 51 —

Notes sur le chapitre 5

§ 1: le fait que Fp+ est en dualité avec lui-même par (x,y) H» e2nlxylp est

évident, et connu « depuis toujours ». Les caractères multiplicatifs de ¥p

se sont introduits progressivement à partir du milieu du XVIIIe siècle avec

l'étude des restes quadratiques (Euler, Legendre, Gauss), cubiques (Gauss,

Jacobi, Eisenstein) et biquadratiques (Gauss, Jacobi).

§2: les sommes de Gauss apparaissent (sous la forme déguisée des

périodes cyclotomiques) dans la dernière section des Disquisitiones Arithme-
ticae : Gauss les utilise pour étudier, avant la lettre, le groupe de Galois de

l'extension Q(e2ni/p)/Q; à ce sujet, voir par exemple [8], pp. 453-460. Par
la suite, les sommes de Gauss reparaissent systématiquement dans les

travaux arithmétiques de Gauss, Jacobi, Eisenstein, Kummer, Stickelberger,
en relation notamment avec l'étude des lois de réciprocité, et avec la
représentation des nombres premiers par des formes quadratiques binaires à

coefficients entiers ; pour une synthèse de ces travaux, voir le livre centenaire
de Bachmann (Die Lehre von der Kreistheilung, Teubner, Leipzig, 1872),
ainsi que Stickelberger (1890). (L'utilisation de la somme de Gauss t

e2^lp p0ur démontrer la loi de réciprocité quadratique

est bien connue: voir [8], pp. 116-117, ou [17], chap. 1, sect. 3.3).

§ 3-4: les sommes de Jacobi apparaissent également dans les travaux
mentionnés ci-dessus ; elles y sont définies à partir des sommes de Gauss par
une formule qui coïncide avec la formule (3.3.2). Elles sont étudiées
systématiquement chez Stickelberger (1890), Davenport-Hasse (1934) et Weil
(1949) (ce dernier article contient d'ailleurs d'intéressantes indications
historiques).

Ce chapitre utilise les propositions 3 et 5 du chapitre 5 pour établir des
formules donnant le nombre exact N (b) de solutions dans kn d'une équation
diagonale alX1dl + + anXndn bk coefficients dans k (k désigne toujours
un corps fini à q éléments). Ces formules font intervenir des sommes de

Chapitre 6

ÉQUATIONS DIAGONALES (II)
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