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valable pour tout entier m > 1 (la notation [...] signifie: partie entiére de ..
cette estimation se déduit immédiatement de I’écriture de m en base p)
Dans le cas homogene, le théoréme 4 peut s’énoncer: |

THEOREME 5. — Soit F = a, X;* + ... + a,X,* une forme diagonale
homogéne de degré d a n variables ; posons 6 = (q—1, d); alors, sin = 0, et
si 0 divise p — 1, la forme F représente tout élément non nul de k.

Ce résultat étend le théoréme 2 a des formes F non isotropes; signalons
que le théoréme 5 reste vrai si on remplace ’hypothése (H4) par I’hypotheése
plus faible: 6 <<p — 1 (voir Schwarz (1950)); en revanche, si 0 > p, le
théoréme 5 peut tomber en défaut: ainsi, dans ’exemple donné a la fin du
paragraphe 2, la forme X, + X,? + X3 surk = F, (avec n=d=06=¢g—1
=3) représente seulement les éléments de F,; et de fait, 0 = 3 >p = 2.

Notons enfin que si ¢ = p, les conditions: §; divise p — 1, 6 divise
p — 1, sont automatiquement vérifiées: sur un corps fini premier, les théo-
rémes 4 et 5 sont donc valables sans restriction.

§ 4. Equations multilinéaires.

4.1. Soit toujours k un corps fini & ¢ = p’ éléments, soient r et d
deux entiers > 1, et soit n = rd. On se propose dans cette section de cal-
culer le nombre N (F, b) de solutions dans k" de I’équation F = b (b € k),
le polyndme F étant de la forme

(4.1.1) F —_— ale "'Xd + a2Xd+1 “'X2d + cee + aan_d+1 ...Xn

(un tel polyndme est parfois dit abusivement multilinéaire). 1l est clair qu’on
peut supposer tous les a; non nuls (chap. 3, th. 5) et qu’on peut méme
(quitte éventuellement & multiplier les deux membres de I’équation par
b~ 1, et a faire une « homothétie » sur certaines variables) supposer a;
.=a, = 1,eth = 0ou l. On est ainsi ramené a calculer les nombres
de solutlons dans k" des deux équations F, ; = O et F, ; = 1, avec

(4.1.2) Ff,d — X1 “‘Xd + Xd+1 "‘XZd + S "‘I" Xn—d+1 ...Xn 5
nombres qu’on notera respectivement N (r, d) et Ny (r, d).

4.2. THEOREME 6. — Les nombres N (r, d) et N, (r, d) sont donnés par
(4.2.1) N(@r,d) =q" ' +(@-1q" " 4",
(4.2.2) Ny(r,d) = q""' —q"" 1 A(q,d),
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avec par définition A (q,d) = ¢~ — (g—1)*"1.

Démonstration. — On établit les deux formules simultanément par
récurrence sur Uentier 7. Si r = 1, et donc n = d, on voit directement que
N(,d) = q" — (g—1)", et que N;(1,d) = (g—1""", ce qui coincide
bien avec les valeurs données dans ce cas par (4.2.1) et (4.2.2). Supposons
alors ces formules prouvées jusqu’a un entier r — 1 > 1, et démontrons-les
pour lentier r. En classant les solutions de I’équation F, ; = O selon la
valeur prise par le mondéme X,_,;, ... X,, on obtient

N(r,d) = Z N(Fy-1,4¢0) N(Fy4, —c)

cek

= N(r—-1,d)N(1,d) + (q—1)N,(r—1,d)N,(1,4d)

(voir sect. 4.1). L’hypothése de récurrence donne la valeur des quatre termes
N(r—1,d), N(1,d), Ny (r—1,d) et N;(1,d), et on vérifie, aprés calcul,
que la valeur ainsi obtenue pour N (r, d) coincide bien avec celle fournie
par (4.2.1). Raisonnement analogue pour (4.2.2). (On peut aussi déduire
directement (4.2.2) de (4.2.1) en remarquant que, puisque toutes les équations
F. ; = b (bek*) ont méme nombre de solutions, N, (r, d), on a évidem-
ment ¢" = N(r,d) + (g—1) N, (r, d)).

COROLLAIRE 1. — Si, dans [’équation F = b (voir (4.1.1) ), les coefficients
a; sont tous différents de O (et si en outre, quand r = 1, b est également
différent de 0), alors N (F, b) est un polynéme en q, a coefficients entiers
rationnels, de terme dominant q"~'. En particulier, si on considére q comme
« infiniment grand », on peut écrire

N(F,b) =¢"' +0(¢"™?.
On reviendra longuement sur ce genre de résultat aux chapitres 6, 7,

8etO.

4.3. Le théoréme 6 permet en particulier de déterminer le nombre N
de solutions dans k" d’une équation diagonale homogéne de degré 2,

(4.3.1) a1X12 + . + aanz == b s

(ay, ..., a,, bek); on peut naturellement supposer tous les coefficients a;
- différents de 0; on peut également supposer p # 2 (en caractéristique 2, on
~a N = q""); comme la détermination de N sera effectuée ultérieurement
(chap. 6, sect. 1.3) par un autre procédé, on se bornera ici a indiquer la
- démarche du calcul, en laissant au lecteur le soin d’en expliciter les détails.

L’Enseignement mathém., t. XIX, fasc. 1-2. ) 3
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(1) Pour n =1, on a évidemment N = 1 si b = 0; sinon, on a N
= 2 ou O selon que a;b € k** ou que a,b ¢ k*2.

(2) Pour n = 2, on vérifie sans peine, soit par le calcul, soit par un
raisonnement géométrique, que N est donné par les formules ci-dessous:

pour b =0,N

I

{ 2q — 1, si — aya, €k*?,

. 2.
1, si —aja,¢k*;

{q——l, si — aja, ek*?*,

pour b # O,N = '
q+1,si —aja,¢k**.

Supposons maintenant #» > 3. Comme toute forme quadratique a trois
variables ou plus sur k est isotrope (théoréme de Chevalley: chap. 3, th. 1,
cor. 1), la théorie générale de la réduction des formes quadratiques (voir [17],
chap. IV, notamment pp. 60-62) montre qu’on peut (par une transformation
linéaire inversible a coefficients dans k, ce qui n’affecte pas la valeur de N)
mettre le premier membre de (4.3.1) sous 'une des deux formes suivantes:

(4.3.2) Y, Y, + . + Y5, 1 Yo, +aY,2,

avecn = 2r + leta = (—1)a, ... a,, si n est impair;

(4.3.3) Y, Y, + ... + Yoo Yo, + Y2, +aY,?,

avecn = 2r + 2 et a = (—1)%ay ... a,, si n est pair.
(La valeur de a s’obtient en écrivant I'invariance du discriminant).

(3) Calculons alors N quand » est impair, n = 2r + 1. En classant
(comme dans la démonstration du théoréme 6) les solutions de F = b
(F étant mis sous la forme (4.3.2)) suivant la valeur prise par le mondme
aY,?, on obtient, avec les notations de la section 4.1,

(434 N= > N 2)N@Y?c)+N(@F,2)N(aY,? b).

cek,c¥*b
N (r, 2) et N, (r, 2) sont donnés par le théoréme 6, N (aY,?, c¢) et N (aY,?, b)
sont donnés par (1); si on remarque que k* contient (g—1)/2 carrés et
autant de non-carrés, on arrive finalement a ceci:

n—1

pour b =0,N =4""";

b 2 G = gt 4 g2 i (=D D24, abek*?,
pour 5 # 8,7 = gl — g D2 S (—D)@V2 g ab¢ k¥,
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(4) Le calcul de N quand n est pair se fait de la méme maniere: on
réécrit la formule (4.3.4) en y remplagant aY,” par Y, 2,, + aY,?, on utilise
le théoréme 6 et les formules de (2), et on obtient finalement ceci:

pour b O,N =

7= g gD i (1) ay .. a, ¢k
gt — g si (=12 ay ... a,ek*?,

gl 4+ g™ si (=1 ay.a, ¢ k¥

{ gt 4 g — gD i (=1 ay ... a, e k*?,

pour b = O,N = {

Notes sur le chapitre 4

§ 1: la méthode de démonstration du théoréme 1 est empruntée a
Demyanov (1956). Cette méthode s’applique également aux équations dia-
gonales homogénes sur un corps p-adique; a ce sujet, voir également Schwarz

(1956), Davenport-Lewis (1963), et surtout [7], pp. 101-138, et [13], pp. 17-22
et 40-52.

§ 2: le théoréme 3, (ii) et son corollaire 1 sont dus a Tornheim (1938);
voir aussi Schwarz (1948, a). Pour l'application du théoréme 3, (i) au
probléme de Waring dans un anneau d’entiers algébriques, voir Bateman-

Stemmler (1962) pour un exposant d premier, et Joly (1968) pour un expo-
sant d quelconque.

§ 3: les théoremes 4 et 5 sont dus a Morlaye (1971); voir également
Schwarz (1948, b; 1950) et Carlitz (1956, b).

§ 4: pour une autre démonstration du théoréme 7, voir Porter (1966, e).

Les équations diagonales sur un corps fini ont suscité une vaste litté-
rature; mentionnons seulement ici (en dehors des articles déja cités, et de
ceux qui le seront au chapitre 6) Cohen (1956), Chowla-Mann-Straus (1959),
Gray (1960), Chowla (1961), Tietdvidinen (1968), et Lewis (1960).
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