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valable pour tout entier m > 1 (la notation [...] signifie: partie entière de.... ;

cette estimation se déduit immédiatement de l'écriture de m en base p).
Dans le cas homogène, le théorème 4 peut s'énoncer:

Théorème 5. — Soit F axXf + + anXnd une forme diagonale
homogène de degré d à n variables ; posons 3 {q — 1, d) ; alors, si n ô, et
si ô divise p — 1, la forme F représente tout élément non nul de k.

Ce résultat étend le théorème 2 à des formes F non isotropes ; signalons

que le théorème 5 reste vrai si on remplace l'hypothèse (H4) par l'hypothèse
plus faible: ô <p — 1 (voir Schwarz (1950)); en revanche, si ô >p, le

théorème 5 peut tomber en défaut: ainsi, dans l'exemple donné à la fin du

paragraphe 2, la forme X±3 + X23 + X33 sur k F4 (avec n d=ô q— 1

3) représente seulement les éléments de F2 ; et de fait, ô 3 > p 2.

Notons enfin que si q p, les conditions: ôt divise p — 1, Ô divise

p — 1, sont automatiquement vérifiées: sur un corps fini premier, les

théorèmes 4 et 5 sont donc valables sans restriction.

§ 4. Equations multilinéaires.

4.1. Soit toujours k un corps fini à q pf éléments, soient r et d

deux entiers > 1, et soit n rd. On se propose dans cette section de

calculer le nombre N (F, b) de solutions dans kn de l'équation F — b (b e k),
le polynôme F étant de la forme

(4.1.1) F — a1X1 ...Xd + a2Xd+1 ...X2d + + arXn_d+1 ...Xn

(un tel polynôme est parfois dit abusivement multilinéaire). Il est clair qu'on
peut supposer tous les aj non nuls (chap. 3, th. 5) et qu'on peut même

(quitte éventuellement à multiplier les deux membres de l'équation par
b"1, et à faire une « homothétie » sur certaines variables) supposer ax

ar 1, et b 0 ou 1. On est ainsi ramené à calculer les nombres
de solutions dans kn des deux équations Fr d 0 et Fr d 1, avec

(4.1.2) Fr d X1 ...Xd + Xd+1 X2d + + Xn_d+1 Xn

nombres qu'on notera respectivement N (r, d) et Ni (r, d).

4.2. Théorème 6. — Les nombres N (r, d) et Nl (r, d) sont donnés par

(4.2.1) N(r,d) q"-1 + (q - 1) q'~l A(q, d)',

(4.2.2) N, (r,d) q"'1- q'"1 A(q,d)r,
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avec par définition A (<q, d) qd 1
— (q—l)d l.

Démonstration. — On établit les deux formules simultanément par
récurrence sur l'entier r. Si r 1, et donc n dr, on voit directement que

N(l, d) qn - (q-l)n, et que N1(l,d) (#-l)n_1, ce qui coïncide

bien avec les valeurs données dans ce cas par (4.2.1) et (4.2.2). Supposons
alors ces formules prouvées jusqu'à un entier r — 1 > 1, et démontrons-les

pour l'entier r. En classant les solutions de l'équation Fr d — 0 selon la

valeur prise par le monôme Xn_d+1 Xn, on obtient

N(r,d)£ JV(Fr_M,c)iV(FM, -c)
cek

N(r-l,d)N(l,d) + (q -1)N± (r-1, d)N1 (1,d)

(voir sect. 4.1). L'hypothèse de récurrence donne la valeur des quatre termes

N(r — l,d), N(1, d), N1(r—l,d) et Nx (1, d), et on vérifie, après calcul,

que la valeur ainsi obtenue pour N (r, d) coïncide bien avec celle fournie

par (4.2.1). Raisonnement analogue pour (4.2.2). (On peut aussi déduire
directement (4.2.2) de (4.2.1) en remarquant que, puisque toutes les équations

d ^ (b e k*) onl: même nombre de solutions, Nt (r, d), on a évidemment

qn N (r, d) + (# — 1) N1 (r, d)).

Corollaire 1. — Si, dans l 'équation F b (voir (4.1 A les coefficients

aj sont tous différents de 0 (et si en outre, quand r — 1, b est également
différent de 0), alors N (F, b) est un polynôme en q, à coefficients entiers
rationnels, de terme dominant qn~x. En particulier, si on considère q comme
« infiniment grand », on peut écrire

N (F, b) q"-1 +0(qn~2).

On reviendra longuement sur ce genre de résultat aux chapitres 6, 7,
8 et 9.

4.3. Le théorème 6 permet en particulier de déterminer le nombre N
de solutions dans kn d'une équation diagonale homogène de degré 2,

(4.3.1) a^Xff + + anXn2 — b

(au an, b g k); on peut naturellement supposer tous les coefficients at
différents de 0; on peut également supposer p ^ 2 (en caractéristique 2, on
a N q"'1); comme la détermination de N sera effectuée ultérieurement
(chap. 6, sect. 1.3) par un autre procédé, on se bornera ici à indiquer la
démarche du calcul, en laissant au lecteur le soin d'en expliciter les détails.

L'Enseignement mathém., t. XIX, fasc. 1-2. 3
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(1) Pour n 1, on a évidemment JV 1 si b 0; sinon, ona#
2 ou 0 selon que aj) e k*2 ou que atb £ k*2.

(2) Pour n — 2, on vérifie sans peine, soit par le calcul, soit par un
raisonnement géométrique, que N est donné par les formules ci-dessous:

12q
— 1, si — aAa2 ek*2

1, si — ata2 $ k* ;

Iq
— 1, si — aid? efc*212

q + 1, si — ala2 $ k*

Supposons maintenant n > 3. Comme toute forme quadratique à trois
variables ou plus sur k est isotrope (théorème de Chevalley: chap. 3, th. 1,

cor. 1), la théorie générale de la réduction des formes quadratiques (voir [17],

chap. IV, notamment pp. 60-62) montre qu'on peut (par une transformation
linéaire inversible à coefficients dans k, ce qui n'affecte pas la valeur de N)
mettre le premier membre de (4.3.1) sous l'une des deux formes suivantes:

(4.3.2) YxY2 + + Y2f-1Y2r +aYn2,

avec n 2r + 1 et a ~ (—1 )ra1 an, si n est impair;

(4.3.3) Y±Y2 + + Y2r^Y2r+ Yni± + aY„2

avec n 2r + 2 et a — 1 )2a1 a„, si n est pair.
(La valeur de a s'obtient en écrivant l'invariance du discriminant).

(3) Calculons alors N quand n est impair, n 2r + 1. En classant

(comme dans la démonstration du théorème 6) les solutions de F b

(F étant mis sous la forme (4.3.2)) suivant la valeur prise par le monôme
aYn2, on obtient, avec les notations de la section 4.1,

(4.3.4) N E Ni (r, 2) N (a Y„2, (r, 2) N (a Y„2, b)
cek, c^b

N (r, 2) et N± (r, 2) sont donnés par le théorème 6, N (<a Y2, c) et N {a Y2, b)

sont donnés par (1); si on remarque que k* contient (q—1)/2 carrés et

autant de non-carrés, on arrive finalement à ceci:

pour b 0 AT qW_1 ;

J qn~1 + g("~1)/2, si — l)(n~1)/2ai ...anbek*2
^ ^ j qn_1 — g(n-1)/2, si — l)^"1^2 ax anb $ k*2
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(4) Le calcul de N quand nest pair se fait de la même manière: on

réécrit la formule (4.3.4) en y remplaçant apar Y„l1, + aY„2, on utilise

le théorème 6 et les formules de (2), et on obtient finalement ceci:

[ q""1+ q"'2 -qsi(-1
pour h 0 ,N | ^n l_ q«/2+q(«si(_iy/2

f q"'1 -g<n/2)_1, si —1)"/2 e
VOmb -O'" i «- + 4«>-, si

Notes sur le chapitre 4

§ 1 : la méthode de démonstration du théorème 1 est empruntée à

Demyanov (1956). Cette méthode s'applique également aux équations
diagonales homogènes sur un corps ^-adique ; à ce sujet, voir également Schwarz

(1956), Davenport-Lewis (1963), et surtout [7], pp. 101-138, et [13], pp. 17-22

et 40-52.

§ 2: le théorème 3, (ii) et son corollaire 1 sont dus à Tornheim (1938);
voir aussi Schwarz (1948, a). Pour l'application du théorème 3, (i) au

problème de Waring dans un anneau d'entiers algébriques, voir Bateman-
Stemmler (1962) pour un exposant d premier, et Joly (1968) pour un exposant

d quelconque.

§3: les théorèmes 4 et 5 sont dus à Morlaye (1971); voir également
Schwarz (1948, b; 1950) et Carlitz (1956, b).

§ 4: pour une autre démonstration du théorème 7, voir Porter (1966, e).

Les équations diagonales sur un corps fini ont suscité une vaste
littérature; mentionnons seulement ici (en dehors des articles déjà cités, et de

ceux qui le seront au chapitre 6) Cohen (1956), Chowla-Mann-Straus (1959),
Gray (1960), Chowla (1961), Tietäväinen (1968), et Lewis (1960).
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