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tement, puisque, pour tout x € k, x? est dans ce cas la norme de x dans
I'extension k/F,: chap. I, sect. 3.3). Ainsi:

COROLLAIRE 2. — Soit k = F,, ¢ = p’. Si f>2, il existe au moins
un exposant d tel que k; # k.

(Il en existe méme une infinité: car si d est tel que k; # k, la méme pro-
priété est vraie pour tout multiple de d; mais ceci n’a pas grande signifi-
cation, car d intervient en réalité par I'intermédiaire de 6 = (¢—1, d), qui
ne peut prendre qu’un nombre fini de valeurs). '

Supposons toujours & fixé, avec f > 2, et soit d un entier tel que k, # k
avec les notations du théoréme 2, on a k; = F,; st b € k¥, on aura donc
b € k, si et seulement si #2~1 = 1; les parties (i) et (ii) du théoréme donnent
alors: '

COROLLAIRE 3. — Si b1~ 1 = 1, et si n >, I"équation diagonale X 1dv
+ ... + X,* = b admet une solution dans k"
(ii) S7au contraire b~ % 1, alors, si grand que soit n, ’équation X,*
+ X2 = b n’admet aucune solution dans k". |

Exemple: k =F,,d = 3;onak; =F, # k;sibeF,, b # 0, 1, ’équation
X + ...+ X,> = bn’apas de solution sur F,, si grand que soit le nombre
d’inconnues, 7.

§ 3. Equations diagonales quelconques.

3.1. Passons maintenant aux équations diagonales quelconques, donc
de la forme F = b, avec

F =aX"+..+aX0,

les d; > 1, les a;€ k (on les supposera tous différents de zéro, ce qui ne
diminue pas la généralité) et b € k (et éventuellement nul). Désignons par
N le nombre de solutions de I’équation F = b dans k", et par N le reste de
division de N par p (ou encore, ’élément N.1 de k = F,). Enfin, pour
simplifier les calculs, posons §; = (¢—1, d,) (i=1, ..., n), puis

®=aX"+..4+aX’",

adp = — b, et G = ay + ®. 1l est clair alors que le nombre de solutions
dans k" de I’équation G = 0 est égal au nombre de solutions dans k" de
F = b, donc a N (voir chap. 1, sect. 2.3; bien entendu, les ensembles de
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solutions de ces deux équations sont en général distincts). En outre, dans le
polyndme G, chaque exposant divise ¢ — 1.

3.2. On peut alors évaluer N par la « méthode de Lebesgue » (chap. 3,
§ 2 et Notes). On a en effet (loc. cit.)
(3.2.1) N=>)Y({l-6x""H)=-)Y "',

xekn xekn
Ecrivons G (x) = ag + a;x;°! + ... + a,x,°", et développons G (x)"‘l;‘
il vient
(3.2.2) N = — 3 (Y ag% " ...a/"x U . x0mn,
xekn j

la seconde sommation portant sur I’ensemble des vecteurs entiers

j = (o i telsque(l) j; >0pouri=0,..,n;2)jo + ... +jp=¢g—1,
et le symbole (‘1}1) désignant le « coefficient multinomial » (g—1) !/‘

Jo !...jn ! Mais (chap. 3, sect. 21) ona ) x* = — 1siu>Oetsig—1

xek ‘

divise u, et Y x* = 0 sinon; ceci permet de simplifier la formule (3.2.2)
xek

et d’énoncer:

LEMME 2. — Soit J I’ensemble des vecteurs entiers j = (jo, ..., ju) tels que
(1) jo=0,j,>0pouri=1,..n;

@ jotjit+ . tip=9q-1;
(3) (g—1)/d,; divise j;, pour i = 1, ..., n;

alors N est donné par la formule

(3.2.3) N = (=" Y (7Y ag’at ...a".
iedJ

3.3. Premiére conséquence de ce lemme:

THEOREME 3. — Si les entiers 0; satisfont a la condition
(H1)) 1/6y + ... + 1/, > 1,
le nombre N de solutions de F = b dans k" est divisible par p.

Démonstration. — Si la condition (H1) est vérifice, I’ensemble J défini
dans le lemme 2 est vide, et on a bien N = 0.

Ce théoréme montre notamment que si les exposants de F satisfont a la
condition
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(H2) 1/d, + ... + 1)d, > 1,

le nombre N est divisible par p. Si d; = ... = d, = d (cas homogéne),
(H2) se réduit a I'inégalité n > d, et on retombe sur un cas particulier du
théoréme de Chevalley-Warning (chap. 3, th. 1). En revanche, dans le cas
non homogene, la condition (H2) peut €tre réalisée en méme temps que
I'inégalité n < d:

Exemple: des équations diagonales telles que

X2+X2+X54+1=0; X2+X2+X,°+x,°5=0,

ont, sur un corps fini quelconque %, un nombre de solutions divisible par la
caractéristique p de k (ce nombre est d’ailleurs non nul, donc > p, car la
premiere équation a pour solution (1, —1, 0), la seconde, (1, —1, 0, 0));
or, pour la premiére équation, n = 3 <d = 5; pour la seconde, n = 4
<d = 6.

3.4. Autre conséquénce du lemme 2:

THEOREME 4. — Supposons réalisées les deux conditions suivantes :
(H3) 1/64 + ... + 1/, = 1;
(H4) Chaque 6; (1 <i <n) divise p — 1.

Alors, quel que soit bek, I’équation a; X, + ... + a, X% = b admet
au moins une solution dans k".

Démonstration. — Avec les notations des sections 3.1 et 3.2, il suffit
de prouver que, dans le lemme 2, N # 0. Mais la condition (H3) entraine
que Jest réduit au seul élément h = (0, k4, ..., h,), avec h; = (g—1)/5; pour
[ = 1,..,n; le lemme donne donc

N =(=-0)"t@ Ya,M.. alm;

n >

comme les a; ont €t€ supposés non nuls, il reste & prouver que, sous I’hypo-

thése (H4), le coefficient (?;,') n’est pas divisible par p, ou encore, v,
désignant la valuation p-adique, que

v,((@=D) =v,(h ) + ... + v, (h,Y);
mais ceci résulte facilement de I’estimation bien connue

v,(m!) = [m/p] + [m/p*] + ...
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valable pour tout entier m > 1 (la notation [...] signifie: partie entiére de ..
cette estimation se déduit immédiatement de I’écriture de m en base p)
Dans le cas homogene, le théoréme 4 peut s’énoncer: |

THEOREME 5. — Soit F = a, X;* + ... + a,X,* une forme diagonale
homogéne de degré d a n variables ; posons 6 = (q—1, d); alors, sin = 0, et
si 0 divise p — 1, la forme F représente tout élément non nul de k.

Ce résultat étend le théoréme 2 a des formes F non isotropes; signalons
que le théoréme 5 reste vrai si on remplace ’hypothése (H4) par I’hypotheése
plus faible: 6 <<p — 1 (voir Schwarz (1950)); en revanche, si 0 > p, le
théoréme 5 peut tomber en défaut: ainsi, dans ’exemple donné a la fin du
paragraphe 2, la forme X, + X,? + X3 surk = F, (avec n=d=06=¢g—1
=3) représente seulement les éléments de F,; et de fait, 0 = 3 >p = 2.

Notons enfin que si ¢ = p, les conditions: §; divise p — 1, 6 divise
p — 1, sont automatiquement vérifiées: sur un corps fini premier, les théo-
rémes 4 et 5 sont donc valables sans restriction.

§ 4. Equations multilinéaires.

4.1. Soit toujours k un corps fini & ¢ = p’ éléments, soient r et d
deux entiers > 1, et soit n = rd. On se propose dans cette section de cal-
culer le nombre N (F, b) de solutions dans k" de I’équation F = b (b € k),
le polyndme F étant de la forme

(4.1.1) F —_— ale "'Xd + a2Xd+1 “'X2d + cee + aan_d+1 ...Xn

(un tel polyndme est parfois dit abusivement multilinéaire). 1l est clair qu’on
peut supposer tous les a; non nuls (chap. 3, th. 5) et qu’on peut méme
(quitte éventuellement & multiplier les deux membres de I’équation par
b~ 1, et a faire une « homothétie » sur certaines variables) supposer a;
.=a, = 1,eth = 0ou l. On est ainsi ramené a calculer les nombres
de solutlons dans k" des deux équations F, ; = O et F, ; = 1, avec

(4.1.2) Ff,d — X1 “‘Xd + Xd+1 "‘XZd + S "‘I" Xn—d+1 ...Xn 5
nombres qu’on notera respectivement N (r, d) et Ny (r, d).

4.2. THEOREME 6. — Les nombres N (r, d) et N, (r, d) sont donnés par
(4.2.1) N(@r,d) =q" ' +(@-1q" " 4",
(4.2.2) Ny(r,d) = q""' —q"" 1 A(q,d),
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