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tement, puisque, pour tout x ek, xd est dans ce cas la norme de x dans

l'extension k/Fp: chap. 1, sect. 3.3). Ainsi:

Corollaire 2. — Soit k Fq, q pf. Si /> 2, z7 existe au moins

un exposant d tel que kd ^ k.

(Il en existe même une infinité: car si d est tel que kd A k, la même

propriété est vraie pour tout multiple de d; mais ceci n'a pas grande signification,

car d intervient en réalité par l'intermédiaire de <5 (q — 1, d), qui
ne peut prendre qu'un nombre fini de valeurs).

Supposons toujours k fixé, avec/ > 2, et soit d un entier tel que kd # k;
avec les notations du théorème 2, on a kd F ; si b e k*, on aura donc
b ekd si et seulement si ègl"1 1 ; les parties (i) et (ii) du théorème donnent
alors :

Corollaire 3. — Si bql~1 1, et si n ><5, l'équation diagonale Xd
+ + X/ b admet une solution dans kn.

(ii) *SÏ au contraire bql~1A 1? a/or^, sz grand que soit n, l'équation Xd +
+ X/ b n 'admet aucune solution dans kn.

Exemple: k F4, d 3; on a kd F2 ^ fc; si b e F4, b ^ 0, 1, l'équation
Xx3 + + X„3 Z? n'a pas de solution sur F4, si grand que soit le nombre
d'inconnues, n.

§ 3. Equations diagonales quelconques.

3.1. Passons maintenant aux équations diagonales quelconques, donc
de la forme F — b, avec

F u1X1dl + + anXndn,

les dt > 1, les atek (on les supposera tous différents de zéro, ce qui ne
diminue pas la généralité) et b e k (et éventuellement nul). Désignons par
N le nombre de solutions de l'équation F b dans k", et par N le reste de
division de N par p (ou encore, l'élément N.l de k Fq). Enfin, pour
simplifier les calculs, posons St (q-1, dt) (i= 1, n), puis

$.= ayX^ + + anXnä",

ao - b, et G a0 + <P. Il est clair alors que le nombre de solutions
dans k" de l'équation G0 est égal au nombre de solutions dans de
F b, donc à N (voir chap. 1, sect. 2.3; bien entendu, les ensembles de
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solutions de ces deux équations sont en général distincts). En outre, dans le

polynôme G, chaque exposant divise q — 1.

3.2. On peut alors évaluer N par la « méthode de Lebesgue » (chap. 3,

§ 2 et Notes). On a en effet (loc. cit.)

(3.2.1) N£ (l-GCx)«-1) - £ G(x),_1.
xekn xekn

Ecrivons G (x) a0 + a^f1 + + anxnôn, et développons G(x)^"1;
il vient

(3.2.2) iV - £
xefc" j

la seconde sommation portant sur l'ensemble des vecteurs entiers

J Oo, ».J«) tels que (1) ^ > 0 pour i 0, n; (2)j0 + + jtt q - 1,

et le symbole (*~[1) désignant le «coefficient multinomial» (q— 1) !/

y0 ..../„ Mais (chap. 3, sect. 2.1) ona^/= — 1 si u > 0 et si q — 1

xek
divise w, et £ xu 0 sinon; ceci permet de simplifier la formule (3.2.2)

xek
et d'énoncer:

Lemme 2. — Soit J l'ensemble des vecteurs entiers j (j0, tels que

(1) j0 > 0, ji > 0 pour i 1, n;

(2) j'o + 7i + ••• + in — y — i i
(3) {q—Vjjdi divise j\pour i 1, n;

alors N est donné par la formule

(3.2.3) N =(- 1)B+1 Z («71) •••«/" •

je J

3.3. Première conséquence de ce lemme:

Théorème 3. — Si les entiers ôt satisfont à la condition

(Hl) l/ô1 + + l/ôn > 1,

le nombre N de solutions de F b dans kn est divisible par p.

Démonstration. — Si la condition (Hl) est vérifiée, l'ensemble J défini
dans le lemme 2 est vide, et on a bien N 0.

Ce théorème montre notamment que si les exposants de F satisfont à la
condition
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(H2) 1/^1 ~t~ ••• 1/^n ^

le nombre N est divisible par p. Si dl dn d (cas homogène),

(H2) se réduit à l'inégalité n > d, et on retombe sur un cas particulier du
théorème de Chevalley-Warning (chap. 3, th. 1). En revanche, dans le cas

non homogène, la condition (H2) peut être réalisée en même temps que

l'inégalité n < d:

Exemple: des équations diagonales telles que

Xi2 +X23 +X35 + 1 0 ; Xi2 + X23 + X36 + X46 0,

ont, sur un corps fini quelconque k, un nombre de solutions divisible par la
caractéristique p de k (ce nombre est d'ailleurs non nul, donc > p, car la
première équation a pour solution (1, —1,0), la seconde, (1, —1,0,0));
or, pour la première équation, n 3 < d 5 ; pour la seconde, n 4

< d 6.

3.4. Autre conséquence du lemme 2:

Théorème 4. — Supposons réalisées les deux conditions suivantes :

(H3) 1/5, + + l/ôn 1;

(H4) Chaque St (1 < i < n) divise p — 1.

Alors, #we/ #we sozY g k, l'équation aiX1dl + -f anXndn Z? aJmef
aw moww wwe solution dans kn.

Démonstration. — Avec les notations des sections 3.1 et 3.2, il suffit
de prouver que, dans le lemme 2, N # 0. Mais la condition (H3) entraîne
que Jest réduit au seul élément h (0, hu A„), avec ht (#-1)/5. pour
z 1,..., n; le lemme donne donc

N

comme les a; ont été supposés non nuls, il reste à prouver que, sous l'hypothèse

(H4), le coefficient C^1) n'est pas divisible par p, ou encore,
désignant la valuation p-adique, que

»,((«-!) 0 vp(hi!)+ „!);

mais ceci résulte facilement de l'estimation bien connue

vp(m\) [m/p] + [m/p2] +
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valable pour tout entier m > 1 (la notation [...] signifie: partie entière de.... ;

cette estimation se déduit immédiatement de l'écriture de m en base p).
Dans le cas homogène, le théorème 4 peut s'énoncer:

Théorème 5. — Soit F axXf + + anXnd une forme diagonale
homogène de degré d à n variables ; posons 3 {q — 1, d) ; alors, si n ô, et
si ô divise p — 1, la forme F représente tout élément non nul de k.

Ce résultat étend le théorème 2 à des formes F non isotropes ; signalons

que le théorème 5 reste vrai si on remplace l'hypothèse (H4) par l'hypothèse
plus faible: ô <p — 1 (voir Schwarz (1950)); en revanche, si ô >p, le

théorème 5 peut tomber en défaut: ainsi, dans l'exemple donné à la fin du

paragraphe 2, la forme X±3 + X23 + X33 sur k F4 (avec n d=ô q— 1

3) représente seulement les éléments de F2 ; et de fait, ô 3 > p 2.

Notons enfin que si q p, les conditions: ôt divise p — 1, Ô divise

p — 1, sont automatiquement vérifiées: sur un corps fini premier, les

théorèmes 4 et 5 sont donc valables sans restriction.

§ 4. Equations multilinéaires.

4.1. Soit toujours k un corps fini à q pf éléments, soient r et d

deux entiers > 1, et soit n rd. On se propose dans cette section de

calculer le nombre N (F, b) de solutions dans kn de l'équation F — b (b e k),
le polynôme F étant de la forme

(4.1.1) F — a1X1 ...Xd + a2Xd+1 ...X2d + + arXn_d+1 ...Xn

(un tel polynôme est parfois dit abusivement multilinéaire). Il est clair qu'on
peut supposer tous les aj non nuls (chap. 3, th. 5) et qu'on peut même

(quitte éventuellement à multiplier les deux membres de l'équation par
b"1, et à faire une « homothétie » sur certaines variables) supposer ax

ar 1, et b 0 ou 1. On est ainsi ramené à calculer les nombres
de solutions dans kn des deux équations Fr d 0 et Fr d 1, avec

(4.1.2) Fr d X1 ...Xd + Xd+1 X2d + + Xn_d+1 Xn

nombres qu'on notera respectivement N (r, d) et Ni (r, d).

4.2. Théorème 6. — Les nombres N (r, d) et Nl (r, d) sont donnés par

(4.2.1) N(r,d) q"-1 + (q - 1) q'~l A(q, d)',

(4.2.2) N, (r,d) q"'1- q'"1 A(q,d)r,
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