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CHAPITRE 4

EQUATIONS DIAGONALES (I)

Une équation diagonale est une équation de la forme a,X % + ...
+ a,X =b;sid, =..=d, I'équation est (abusivement) dite romogéne;
ce chapitre est consacré a ’existence de solutions d’équations diagonales
homogeénes (§ 1) puis quelconques (§ 3) sur un corps fini k; le paragraphe 2
résout le « probléme de Waring » pour ., ce qui revient, pour un exposant d
fixé, a déterminer les entiers n et les éléments b de k tels que I’équation
X%+ ... + X,* = b admette une solution sur k; enfin, le paragraphe 4
donne quelques indications sur les équations multilinéaires (pour une défi-
nition, voir sect. 4.1), avec une application aux équations diagonales homo-
genes de degré 2. '

Les méthodes utilisées dans ce chapitre sont trés élémentaires: les
résultats obtenus sont en conséquence assez pauvres (et aussi assez dispa-
rates); pour des résultats plus précis sur les équations diagonales (et notam-
ment pour I’évaluation exacte ou approchée du nombre de solutions), se
reporter au chapitre 6; voir également les Notes en fin de chapitre. On
conserve 1ci les conventions en vigueur dans les chapitres 2 et 3: en par-
ticulier, k désigne toujours un corps fini & ¢ = p’ éléments.

§ 1. Equations diagonales homogénes.

1.1. Si Fek [X]est une forme (c’est-a-dire un polyndme homogéne) de
degré d > 1, il est clair que F (O, ..., 0) = 0; s’1l existe un point x de k"
autre que (0, ..., 0) tel que F (x) = 0, on dit que F est isotrope sur k, ou que
F représente (proprement) O sur k. Si d’autre part @ est un élément non nul
de k, et §’il existe un point x de k" tel que F (x) = a, on dit que F représente
a sur k; par homogénéité, F représente alors tout élément de la forme
ab® (b € k*); F représente donc en fait toute la classe de a (mod k*?) dans
le groupe multiplicatif k*.

THEOREME 1. — Soit F = a, X" + ... + a,X,* € k [X] une forme dia-
gonale de degré d > 1, a n variables. Si F n’est pas isotrope, elle représente
au moins n classes de k* (mod k*9).
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Démonstration. — On proceéde par récurrence sur n. Si n = 1, F repré-
sente a; (qui n’est pas nul, puisque F est non isotrope): F représente donc
une classe, celle de a;. Supposons alors le théoréme démontré pour n — 1
variables (n >2) et prouvons-le pour n variables. Posons G = a;X,*
+ ... + a,_; X,2,; en tant que forme & n — 1 variables, G est non isotrope,
et représente donc, par hypothése de récurrence, au moins n — 1 classes
(mod k*); soit C la réunion de ces classes. Comme toute classe représentée
par G est a fortiori représentée par F, il suffit de prouver qu’il existe dans
k* un élément b n’appartenant pas a C, et cependant représenté par F. On

distinguera deux cas:
(1) a, ¢ C: on peut alors prendre b = a,,.

(2) a,eC: il est clair dans ce cas que — a, ¢ C (si G représentait — a,,
F serait isotrope). Soit alors m I’entier ainsi défini:

la forme a, (X,*+...+ X,%) ne représente que des éléments de C, mais
la forme a, (X,*+...+X,%,) représente au moins un élément de k*
n’appartenant pas a C.

Un tel m existe effectivement; car si, pour tout r >1, on pose H,
= a,(X{°+...+ X,%), on voit que H, représente uniquement a,k*! < C,
mais que, pour r assez grand (par exemple, pour r > p — 1), H, représente
— a,¢ C (parce que — 1 = 19+ ... + 19(p — 1 fois): k est de caracté-
ristique p). Par définition de m, on peut trouver b appartenant 3 k* mais
non a C, et yq, ..., Vm» Vm+1 appartenant a k, tels que

(1.1.1) @y (Yt + o A Y+ Vmt1) = b,
mais que
a,(y4+...+y,HeC.
Par définition de C, il existe alors x4, ..., x,_; dans k tels que
aixs + oo+ 1% = 4, (0 )

Posons x, = y,,+4 €t ajoutons a,x,? aux deux membres de cette égalité;
compte tenu de (1.1.1), on obtient

ax? + ... +ax?=0b,

et F représente bien b ¢ C.
Ceci régle le deuxiéme cas et acheéve de prouver le théoreme 1.
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1.2. Le nombre total de classes de k* (mod k*?) est égala § = (g—1, d)
(chap. 1, prop. 7, cor. 1); le théoréme 1 admet donc les deux conséquences
suivantes:

COROLLAIRE 1. — Si F = a;X,* + ... + a,X,* est non isotrope, et si
n = 0, alors F représente tout élément de k.

COROLLAIRE 2. — Si F = a; X,* + ... + a,X,? est une forme diagonale
de degré d a n variables et si n > 0, alors F est certainement isotrope.

1.3. La section 2.3 du chapitre 1 montre que, dans ce qui précede, on
aurait pu remplacer partout d par §, ou, ce qui revient au méme, supposer
que 4 divise ¢ — 1, et remplacer  par d. Le corollaire 1 apparait alors
comme un cas particulier du théoréme 4 du chapitre 3, et le corollaire 2,
comme un cas particulier du théoréme de Chevalley (chap. 3, th. 1, cor. 1).
Quant au théoréme 1, il admet P'interprétation « probabiliste » suivante:
si bek*, sin <4, et sile premier membre de I’équation a; X;¢ + ... + a,X,°
= b est une forme non isotrope, la « probabilité » pour que I’équation
admette une solution dans k" est au moins égale a n/o.

Pour d’autres résultats sur les équations diagonales homogenes, voir les
sections 2.3, 3.4, 4.3, et les Notes en fin de chapitre.

§ 2. Sommes de puissances d-iemes.

2.1. Soient toujours k un corps fini & ¢ = p’ éléments, et d un entier
> 1; notons k, le sous-ensemble de k formé des sommes x;¢ + ... + x,°,
avec n > 1 quelconque et x, ..., x, € k; k; est évidemment un sous-corps
de k: en effet, il est stable pour I’addition et la multiplication; il contient
0,1, etaussi — 1 = 19+ ... + 14(p—1 fois); enfin, si x ek, et si x # 0,
alors x~ ' € k,, puisqu'on peut écrire x~ ! = x*7 ! (x 71, que (x ") ek,,
et que k, est stable pour la multiplication.

2.2. Le théoreme ci-dessous détermine explicitement k:

THEOREME 2. — Etant donné k = F et d, posons toujours 6 = (q—1, d),

et notons d’autre part q, la plus petite puissance p? de p telle que (1) g divise
f; ) le quotient (p’ —1)/(p? —1) divise d. Alors :

(1) ky est égal a ['unique sous-corps de k contenant q, éléments (ce qu’on
peut écrire ky = F, ).

(i) Tout élément de k, est somme d’au plus § puissances d-iémes.
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