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CHAPITRE 4

EQUATIONS DIAGONALES (I)

Une équation diagonale est une équation de la forme a,X % + ...
+ a,X =b;sid, =..=d, I'équation est (abusivement) dite romogéne;
ce chapitre est consacré a ’existence de solutions d’équations diagonales
homogeénes (§ 1) puis quelconques (§ 3) sur un corps fini k; le paragraphe 2
résout le « probléme de Waring » pour ., ce qui revient, pour un exposant d
fixé, a déterminer les entiers n et les éléments b de k tels que I’équation
X%+ ... + X,* = b admette une solution sur k; enfin, le paragraphe 4
donne quelques indications sur les équations multilinéaires (pour une défi-
nition, voir sect. 4.1), avec une application aux équations diagonales homo-
genes de degré 2. '

Les méthodes utilisées dans ce chapitre sont trés élémentaires: les
résultats obtenus sont en conséquence assez pauvres (et aussi assez dispa-
rates); pour des résultats plus précis sur les équations diagonales (et notam-
ment pour I’évaluation exacte ou approchée du nombre de solutions), se
reporter au chapitre 6; voir également les Notes en fin de chapitre. On
conserve 1ci les conventions en vigueur dans les chapitres 2 et 3: en par-
ticulier, k désigne toujours un corps fini & ¢ = p’ éléments.

§ 1. Equations diagonales homogénes.

1.1. Si Fek [X]est une forme (c’est-a-dire un polyndme homogéne) de
degré d > 1, il est clair que F (O, ..., 0) = 0; s’1l existe un point x de k"
autre que (0, ..., 0) tel que F (x) = 0, on dit que F est isotrope sur k, ou que
F représente (proprement) O sur k. Si d’autre part @ est un élément non nul
de k, et §’il existe un point x de k" tel que F (x) = a, on dit que F représente
a sur k; par homogénéité, F représente alors tout élément de la forme
ab® (b € k*); F représente donc en fait toute la classe de a (mod k*?) dans
le groupe multiplicatif k*.

THEOREME 1. — Soit F = a, X" + ... + a,X,* € k [X] une forme dia-
gonale de degré d > 1, a n variables. Si F n’est pas isotrope, elle représente
au moins n classes de k* (mod k*9).
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Démonstration. — On proceéde par récurrence sur n. Si n = 1, F repré-
sente a; (qui n’est pas nul, puisque F est non isotrope): F représente donc
une classe, celle de a;. Supposons alors le théoréme démontré pour n — 1
variables (n >2) et prouvons-le pour n variables. Posons G = a;X,*
+ ... + a,_; X,2,; en tant que forme & n — 1 variables, G est non isotrope,
et représente donc, par hypothése de récurrence, au moins n — 1 classes
(mod k*); soit C la réunion de ces classes. Comme toute classe représentée
par G est a fortiori représentée par F, il suffit de prouver qu’il existe dans
k* un élément b n’appartenant pas a C, et cependant représenté par F. On

distinguera deux cas:
(1) a, ¢ C: on peut alors prendre b = a,,.

(2) a,eC: il est clair dans ce cas que — a, ¢ C (si G représentait — a,,
F serait isotrope). Soit alors m I’entier ainsi défini:

la forme a, (X,*+...+ X,%) ne représente que des éléments de C, mais
la forme a, (X,*+...+X,%,) représente au moins un élément de k*
n’appartenant pas a C.

Un tel m existe effectivement; car si, pour tout r >1, on pose H,
= a,(X{°+...+ X,%), on voit que H, représente uniquement a,k*! < C,
mais que, pour r assez grand (par exemple, pour r > p — 1), H, représente
— a,¢ C (parce que — 1 = 19+ ... + 19(p — 1 fois): k est de caracté-
ristique p). Par définition de m, on peut trouver b appartenant 3 k* mais
non a C, et yq, ..., Vm» Vm+1 appartenant a k, tels que

(1.1.1) @y (Yt + o A Y+ Vmt1) = b,
mais que
a,(y4+...+y,HeC.
Par définition de C, il existe alors x4, ..., x,_; dans k tels que
aixs + oo+ 1% = 4, (0 )

Posons x, = y,,+4 €t ajoutons a,x,? aux deux membres de cette égalité;
compte tenu de (1.1.1), on obtient

ax? + ... +ax?=0b,

et F représente bien b ¢ C.
Ceci régle le deuxiéme cas et acheéve de prouver le théoreme 1.
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1.2. Le nombre total de classes de k* (mod k*?) est égala § = (g—1, d)
(chap. 1, prop. 7, cor. 1); le théoréme 1 admet donc les deux conséquences
suivantes:

COROLLAIRE 1. — Si F = a;X,* + ... + a,X,* est non isotrope, et si
n = 0, alors F représente tout élément de k.

COROLLAIRE 2. — Si F = a; X,* + ... + a,X,? est une forme diagonale
de degré d a n variables et si n > 0, alors F est certainement isotrope.

1.3. La section 2.3 du chapitre 1 montre que, dans ce qui précede, on
aurait pu remplacer partout d par §, ou, ce qui revient au méme, supposer
que 4 divise ¢ — 1, et remplacer  par d. Le corollaire 1 apparait alors
comme un cas particulier du théoréme 4 du chapitre 3, et le corollaire 2,
comme un cas particulier du théoréme de Chevalley (chap. 3, th. 1, cor. 1).
Quant au théoréme 1, il admet P'interprétation « probabiliste » suivante:
si bek*, sin <4, et sile premier membre de I’équation a; X;¢ + ... + a,X,°
= b est une forme non isotrope, la « probabilité » pour que I’équation
admette une solution dans k" est au moins égale a n/o.

Pour d’autres résultats sur les équations diagonales homogenes, voir les
sections 2.3, 3.4, 4.3, et les Notes en fin de chapitre.

§ 2. Sommes de puissances d-iemes.

2.1. Soient toujours k un corps fini & ¢ = p’ éléments, et d un entier
> 1; notons k, le sous-ensemble de k formé des sommes x;¢ + ... + x,°,
avec n > 1 quelconque et x, ..., x, € k; k; est évidemment un sous-corps
de k: en effet, il est stable pour I’addition et la multiplication; il contient
0,1, etaussi — 1 = 19+ ... + 14(p—1 fois); enfin, si x ek, et si x # 0,
alors x~ ' € k,, puisqu'on peut écrire x~ ! = x*7 ! (x 71, que (x ") ek,,
et que k, est stable pour la multiplication.

2.2. Le théoreme ci-dessous détermine explicitement k:

THEOREME 2. — Etant donné k = F et d, posons toujours 6 = (q—1, d),

et notons d’autre part q, la plus petite puissance p? de p telle que (1) g divise
f; ) le quotient (p’ —1)/(p? —1) divise d. Alors :

(1) ky est égal a ['unique sous-corps de k contenant q, éléments (ce qu’on
peut écrire ky = F, ).

(i) Tout élément de k, est somme d’au plus § puissances d-iémes.
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Démonstration. — (i) k* est un groupe cyclique d’ordre g — 1, et ses
sous-groupes correspondent bijectivement aux diviseurs positifs de g — 1;
par ailleurs, k étant un corps a p’ éléments, ses sous-corps correspondent
bijectivement aux diviseurs positifs de f'(chap. 1, prop. 4). Comme g divise
fsi et seulement si p? — 1 divise p/ — 1 (petit exercice d’arithmétique), on
peut énoncer:

LEMME 1. — Pour qu’un sous-groupe H de k* soit le groupe multiplicatif
d’un sous-corps de k, il faut et il suffit que [’ordre de H soit de la forme
p? — 1, g étant un diviseur de f.

Mais le groupe k*? est d’ordre (g— 1)/ (chap. 1, prop. 7); d’autre part,
k, est évidemment le plus petit sous-corps / de k tel que k*¢ = I*; si alors
on pose k; = F,, q, = p’1, le lemme 1 montre que f; est le plus petit
diviseur positif g de f tel que (¢—1)/6 divise p? — 1, c’est-a-dire (puisque
6 = (q—1,d) et que g = p’) tel que (p’ —1)/(p?—1) divise d, C.Q.F.D.

(1)) Pourtoutn > 1, notons S, ’ensemble des éléments de k* qui sont de la
forme x;* + ... + x,? (les x; € k, certains x; pouvant étre nuls); il est clair
que

(2.2.1) k* = S, S, c...cS, c8S,., ... <k*,

et que, dans k*, chaque S, est réunion d’un certain nombre de classes
(mod k*?); comme le nombre total de ces classes est égal 4 &, la suite (2.2.1)
comporte au maximum 6 — 1 inclusions strictes. D’autre part, il est évident

que si, pour une valeur n, de I'indice, on a §,, = S,,+, alors, pour tout
n >ngy, on a également S, = S,,,; dans la suite (2.2.1), les inclusions
strictes occupent donc nécessairement les premiéres places. Il résulte de ces
deux remarques qu’a partir du fang 0, toutes les inclusions de la suite (2.2.1)

sont en fait des égalités, et que k;* = S5, C.Q.F.D.

2.3. Tirons les conséquences de ce théoréme. Tout d’abord, pour d
fixé, on a « le plus souvent » k; = k; en effet, il résulte de la définition de g,
que si k; # k, alors p//? < d, ou encore ¢ < d*; en particulier:

COROLLAIRE 1. — Pour d fixé, il n’existe qu 'un nombre fini de corps k tels
que k; # k.

Supposons maintenant k fixé. Si f = 1,doncsik = F,, on a évidemment
k, = k quel que soit d. En revanche, si f > 2, on peut toujours trouver
d tel que k, # k, par exemple d = p/~* + ... + p + 1: le théoréme 2,
(i) donne alors f; = 1 et g, = p, donc k; = F, (ce qui est évident direc-



tement, puisque, pour tout x € k, x? est dans ce cas la norme de x dans
I'extension k/F,: chap. I, sect. 3.3). Ainsi:

COROLLAIRE 2. — Soit k = F,, ¢ = p’. Si f>2, il existe au moins
un exposant d tel que k; # k.

(Il en existe méme une infinité: car si d est tel que k; # k, la méme pro-
priété est vraie pour tout multiple de d; mais ceci n’a pas grande signifi-
cation, car d intervient en réalité par I'intermédiaire de 6 = (¢—1, d), qui
ne peut prendre qu’un nombre fini de valeurs). '

Supposons toujours & fixé, avec f > 2, et soit d un entier tel que k, # k
avec les notations du théoréme 2, on a k; = F,; st b € k¥, on aura donc
b € k, si et seulement si #2~1 = 1; les parties (i) et (ii) du théoréme donnent
alors: '

COROLLAIRE 3. — Si b1~ 1 = 1, et si n >, I"équation diagonale X 1dv
+ ... + X,* = b admet une solution dans k"
(ii) S7au contraire b~ % 1, alors, si grand que soit n, ’équation X,*
+ X2 = b n’admet aucune solution dans k". |

Exemple: k =F,,d = 3;onak; =F, # k;sibeF,, b # 0, 1, ’équation
X + ...+ X,> = bn’apas de solution sur F,, si grand que soit le nombre
d’inconnues, 7.

§ 3. Equations diagonales quelconques.

3.1. Passons maintenant aux équations diagonales quelconques, donc
de la forme F = b, avec

F =aX"+..+aX0,

les d; > 1, les a;€ k (on les supposera tous différents de zéro, ce qui ne
diminue pas la généralité) et b € k (et éventuellement nul). Désignons par
N le nombre de solutions de I’équation F = b dans k", et par N le reste de
division de N par p (ou encore, ’élément N.1 de k = F,). Enfin, pour
simplifier les calculs, posons §; = (¢—1, d,) (i=1, ..., n), puis

®=aX"+..4+aX’",

adp = — b, et G = ay + ®. 1l est clair alors que le nombre de solutions
dans k" de I’équation G = 0 est égal au nombre de solutions dans k" de
F = b, donc a N (voir chap. 1, sect. 2.3; bien entendu, les ensembles de
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solutions de ces deux équations sont en général distincts). En outre, dans le
polyndme G, chaque exposant divise ¢ — 1.

3.2. On peut alors évaluer N par la « méthode de Lebesgue » (chap. 3,
§ 2 et Notes). On a en effet (loc. cit.)
(3.2.1) N=>)Y({l-6x""H)=-)Y "',

xekn xekn
Ecrivons G (x) = ag + a;x;°! + ... + a,x,°", et développons G (x)"‘l;‘
il vient
(3.2.2) N = — 3 (Y ag% " ...a/"x U . x0mn,
xekn j

la seconde sommation portant sur I’ensemble des vecteurs entiers

j = (o i telsque(l) j; >0pouri=0,..,n;2)jo + ... +jp=¢g—1,
et le symbole (‘1}1) désignant le « coefficient multinomial » (g—1) !/‘

Jo !...jn ! Mais (chap. 3, sect. 21) ona ) x* = — 1siu>Oetsig—1

xek ‘

divise u, et Y x* = 0 sinon; ceci permet de simplifier la formule (3.2.2)
xek

et d’énoncer:

LEMME 2. — Soit J I’ensemble des vecteurs entiers j = (jo, ..., ju) tels que
(1) jo=0,j,>0pouri=1,..n;

@ jotjit+ . tip=9q-1;
(3) (g—1)/d,; divise j;, pour i = 1, ..., n;

alors N est donné par la formule

(3.2.3) N = (=" Y (7Y ag’at ...a".
iedJ

3.3. Premiére conséquence de ce lemme:

THEOREME 3. — Si les entiers 0; satisfont a la condition
(H1)) 1/6y + ... + 1/, > 1,
le nombre N de solutions de F = b dans k" est divisible par p.

Démonstration. — Si la condition (H1) est vérifice, I’ensemble J défini
dans le lemme 2 est vide, et on a bien N = 0.

Ce théoréme montre notamment que si les exposants de F satisfont a la
condition
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(H2) 1/d, + ... + 1)d, > 1,

le nombre N est divisible par p. Si d; = ... = d, = d (cas homogéne),
(H2) se réduit a I'inégalité n > d, et on retombe sur un cas particulier du
théoréme de Chevalley-Warning (chap. 3, th. 1). En revanche, dans le cas
non homogene, la condition (H2) peut €tre réalisée en méme temps que
I'inégalité n < d:

Exemple: des équations diagonales telles que

X2+X2+X54+1=0; X2+X2+X,°+x,°5=0,

ont, sur un corps fini quelconque %, un nombre de solutions divisible par la
caractéristique p de k (ce nombre est d’ailleurs non nul, donc > p, car la
premiere équation a pour solution (1, —1, 0), la seconde, (1, —1, 0, 0));
or, pour la premiére équation, n = 3 <d = 5; pour la seconde, n = 4
<d = 6.

3.4. Autre conséquénce du lemme 2:

THEOREME 4. — Supposons réalisées les deux conditions suivantes :
(H3) 1/64 + ... + 1/, = 1;
(H4) Chaque 6; (1 <i <n) divise p — 1.

Alors, quel que soit bek, I’équation a; X, + ... + a, X% = b admet
au moins une solution dans k".

Démonstration. — Avec les notations des sections 3.1 et 3.2, il suffit
de prouver que, dans le lemme 2, N # 0. Mais la condition (H3) entraine
que Jest réduit au seul élément h = (0, k4, ..., h,), avec h; = (g—1)/5; pour
[ = 1,..,n; le lemme donne donc

N =(=-0)"t@ Ya,M.. alm;

n >

comme les a; ont €t€ supposés non nuls, il reste & prouver que, sous I’hypo-

thése (H4), le coefficient (?;,') n’est pas divisible par p, ou encore, v,
désignant la valuation p-adique, que

v,((@=D) =v,(h ) + ... + v, (h,Y);
mais ceci résulte facilement de I’estimation bien connue

v,(m!) = [m/p] + [m/p*] + ...
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valable pour tout entier m > 1 (la notation [...] signifie: partie entiére de ..
cette estimation se déduit immédiatement de I’écriture de m en base p)
Dans le cas homogene, le théoréme 4 peut s’énoncer: |

THEOREME 5. — Soit F = a, X;* + ... + a,X,* une forme diagonale
homogéne de degré d a n variables ; posons 6 = (q—1, d); alors, sin = 0, et
si 0 divise p — 1, la forme F représente tout élément non nul de k.

Ce résultat étend le théoréme 2 a des formes F non isotropes; signalons
que le théoréme 5 reste vrai si on remplace ’hypothése (H4) par I’hypotheése
plus faible: 6 <<p — 1 (voir Schwarz (1950)); en revanche, si 0 > p, le
théoréme 5 peut tomber en défaut: ainsi, dans ’exemple donné a la fin du
paragraphe 2, la forme X, + X,? + X3 surk = F, (avec n=d=06=¢g—1
=3) représente seulement les éléments de F,; et de fait, 0 = 3 >p = 2.

Notons enfin que si ¢ = p, les conditions: §; divise p — 1, 6 divise
p — 1, sont automatiquement vérifiées: sur un corps fini premier, les théo-
rémes 4 et 5 sont donc valables sans restriction.

§ 4. Equations multilinéaires.

4.1. Soit toujours k un corps fini & ¢ = p’ éléments, soient r et d
deux entiers > 1, et soit n = rd. On se propose dans cette section de cal-
culer le nombre N (F, b) de solutions dans k" de I’équation F = b (b € k),
le polyndme F étant de la forme

(4.1.1) F —_— ale "'Xd + a2Xd+1 “'X2d + cee + aan_d+1 ...Xn

(un tel polyndme est parfois dit abusivement multilinéaire). 1l est clair qu’on
peut supposer tous les a; non nuls (chap. 3, th. 5) et qu’on peut méme
(quitte éventuellement & multiplier les deux membres de I’équation par
b~ 1, et a faire une « homothétie » sur certaines variables) supposer a;
.=a, = 1,eth = 0ou l. On est ainsi ramené a calculer les nombres
de solutlons dans k" des deux équations F, ; = O et F, ; = 1, avec

(4.1.2) Ff,d — X1 “‘Xd + Xd+1 "‘XZd + S "‘I" Xn—d+1 ...Xn 5
nombres qu’on notera respectivement N (r, d) et Ny (r, d).

4.2. THEOREME 6. — Les nombres N (r, d) et N, (r, d) sont donnés par
(4.2.1) N(@r,d) =q" ' +(@-1q" " 4",
(4.2.2) Ny(r,d) = q""' —q"" 1 A(q,d),
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avec par définition A (q,d) = ¢~ — (g—1)*"1.

Démonstration. — On établit les deux formules simultanément par
récurrence sur Uentier 7. Si r = 1, et donc n = d, on voit directement que
N(,d) = q" — (g—1)", et que N;(1,d) = (g—1""", ce qui coincide
bien avec les valeurs données dans ce cas par (4.2.1) et (4.2.2). Supposons
alors ces formules prouvées jusqu’a un entier r — 1 > 1, et démontrons-les
pour lentier r. En classant les solutions de I’équation F, ; = O selon la
valeur prise par le mondéme X,_,;, ... X,, on obtient

N(r,d) = Z N(Fy-1,4¢0) N(Fy4, —c)

cek

= N(r—-1,d)N(1,d) + (q—1)N,(r—1,d)N,(1,4d)

(voir sect. 4.1). L’hypothése de récurrence donne la valeur des quatre termes
N(r—1,d), N(1,d), Ny (r—1,d) et N;(1,d), et on vérifie, aprés calcul,
que la valeur ainsi obtenue pour N (r, d) coincide bien avec celle fournie
par (4.2.1). Raisonnement analogue pour (4.2.2). (On peut aussi déduire
directement (4.2.2) de (4.2.1) en remarquant que, puisque toutes les équations
F. ; = b (bek*) ont méme nombre de solutions, N, (r, d), on a évidem-
ment ¢" = N(r,d) + (g—1) N, (r, d)).

COROLLAIRE 1. — Si, dans [’équation F = b (voir (4.1.1) ), les coefficients
a; sont tous différents de O (et si en outre, quand r = 1, b est également
différent de 0), alors N (F, b) est un polynéme en q, a coefficients entiers
rationnels, de terme dominant q"~'. En particulier, si on considére q comme
« infiniment grand », on peut écrire

N(F,b) =¢"' +0(¢"™?.
On reviendra longuement sur ce genre de résultat aux chapitres 6, 7,

8etO.

4.3. Le théoréme 6 permet en particulier de déterminer le nombre N
de solutions dans k" d’une équation diagonale homogéne de degré 2,

(4.3.1) a1X12 + . + aanz == b s

(ay, ..., a,, bek); on peut naturellement supposer tous les coefficients a;
- différents de 0; on peut également supposer p # 2 (en caractéristique 2, on
~a N = q""); comme la détermination de N sera effectuée ultérieurement
(chap. 6, sect. 1.3) par un autre procédé, on se bornera ici a indiquer la
- démarche du calcul, en laissant au lecteur le soin d’en expliciter les détails.

L’Enseignement mathém., t. XIX, fasc. 1-2. ) 3
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(1) Pour n =1, on a évidemment N = 1 si b = 0; sinon, on a N
= 2 ou O selon que a;b € k** ou que a,b ¢ k*2.

(2) Pour n = 2, on vérifie sans peine, soit par le calcul, soit par un
raisonnement géométrique, que N est donné par les formules ci-dessous:

pour b =0,N

I

{ 2q — 1, si — aya, €k*?,

. 2.
1, si —aja,¢k*;

{q——l, si — aja, ek*?*,

pour b # O,N = '
q+1,si —aja,¢k**.

Supposons maintenant #» > 3. Comme toute forme quadratique a trois
variables ou plus sur k est isotrope (théoréme de Chevalley: chap. 3, th. 1,
cor. 1), la théorie générale de la réduction des formes quadratiques (voir [17],
chap. IV, notamment pp. 60-62) montre qu’on peut (par une transformation
linéaire inversible a coefficients dans k, ce qui n’affecte pas la valeur de N)
mettre le premier membre de (4.3.1) sous 'une des deux formes suivantes:

(4.3.2) Y, Y, + . + Y5, 1 Yo, +aY,2,

avecn = 2r + leta = (—1)a, ... a,, si n est impair;

(4.3.3) Y, Y, + ... + Yoo Yo, + Y2, +aY,?,

avecn = 2r + 2 et a = (—1)%ay ... a,, si n est pair.
(La valeur de a s’obtient en écrivant I'invariance du discriminant).

(3) Calculons alors N quand » est impair, n = 2r + 1. En classant
(comme dans la démonstration du théoréme 6) les solutions de F = b
(F étant mis sous la forme (4.3.2)) suivant la valeur prise par le mondme
aY,?, on obtient, avec les notations de la section 4.1,

(434 N= > N 2)N@Y?c)+N(@F,2)N(aY,? b).

cek,c¥*b
N (r, 2) et N, (r, 2) sont donnés par le théoréme 6, N (aY,?, c¢) et N (aY,?, b)
sont donnés par (1); si on remarque que k* contient (g—1)/2 carrés et
autant de non-carrés, on arrive finalement a ceci:

n—1

pour b =0,N =4""";

b 2 G = gt 4 g2 i (=D D24, abek*?,
pour 5 # 8,7 = gl — g D2 S (—D)@V2 g ab¢ k¥,




35 —

(4) Le calcul de N quand n est pair se fait de la méme maniere: on
réécrit la formule (4.3.4) en y remplagant aY,” par Y, 2,, + aY,?, on utilise
le théoréme 6 et les formules de (2), et on obtient finalement ceci:

pour b O,N =

7= g gD i (1) ay .. a, ¢k
gt — g si (=12 ay ... a,ek*?,

gl 4+ g™ si (=1 ay.a, ¢ k¥

{ gt 4 g — gD i (=1 ay ... a, e k*?,

pour b = O,N = {

Notes sur le chapitre 4

§ 1: la méthode de démonstration du théoréme 1 est empruntée a
Demyanov (1956). Cette méthode s’applique également aux équations dia-
gonales homogénes sur un corps p-adique; a ce sujet, voir également Schwarz

(1956), Davenport-Lewis (1963), et surtout [7], pp. 101-138, et [13], pp. 17-22
et 40-52.

§ 2: le théoréme 3, (ii) et son corollaire 1 sont dus a Tornheim (1938);
voir aussi Schwarz (1948, a). Pour l'application du théoréme 3, (i) au
probléme de Waring dans un anneau d’entiers algébriques, voir Bateman-

Stemmler (1962) pour un exposant d premier, et Joly (1968) pour un expo-
sant d quelconque.

§ 3: les théoremes 4 et 5 sont dus a Morlaye (1971); voir également
Schwarz (1948, b; 1950) et Carlitz (1956, b).

§ 4: pour une autre démonstration du théoréme 7, voir Porter (1966, e).

Les équations diagonales sur un corps fini ont suscité une vaste litté-
rature; mentionnons seulement ici (en dehors des articles déja cités, et de
ceux qui le seront au chapitre 6) Cohen (1956), Chowla-Mann-Straus (1959),
Gray (1960), Chowla (1961), Tietdvidinen (1968), et Lewis (1960).
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