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Chapitre 4

ÉQUATIONS DIAGONALES (I)

Une équation diagonale est une équation de la forme a1X1âl +
+ anXndn b; si d1 dm l'équation est (abusivement) dite homogène;

ce chapitre est consacré à l'existence de solutions d'équations diagonales

homogènes (§ 1) puis quelconques (§ 3) sur un corps fini k: le paragraphe 2

résout le « problème de Waring » pour k, ce qui revient, pour un exposant d

fixé, à déterminer les entiers n et les éléments h de k tels que l'équation
Xf + + Xnd b admette une solution sur k\ enfin, le paragraphe 4

donne quelques indications sur les équations multilinéaires (pour une
définition, voir sect. 4.1), avec une application aux équations diagonales homogènes

de degré 2.

Les méthodes utilisées dans ce chapitre sont très élémentaires: les

résultats obtenus sont en conséquence assez pauvres (et aussi assez disparates)

; pour des résultats plus précis sur les équations diagonales (et notamment

pour l'évaluation exacte ou approchée du nombre de solutions), se

reporter au chapitre 6; voir également les Notes en fin de chapitre. On

conserve ici les conventions en vigueur dans les chapitres 2 et 3 ; en
particulier, k désigne toujours un corps fini à q pf éléments.

§ 1. Equations diagonales homogènes.

1.1. Si Fe k [X] est une forme (c'est-à-dire un polynôme homogène) de

degré d > 1, il est clair que F(0, 0) 0; s'il existe un point x de kn

autre que (0, 0) tel que F (x) 0, on dit que Fest isotrope sur k9 ou que
F représente (proprement) 0 sur k. Si d'autre part a est un élément non nul
de k, et s'il existe un point x de k" tel que F (x) a, on dit que F représente
a sur k; par homogénéité, F représente alors tout élément de la forme
abd (b e k*); F représente donc en fait toute la classe de a (mod k*d) dans
le groupe multiplicatif k*.

Théorème L — Soit F a.Xf + + anXdek[X] une forme
diagonale de degré fi? > 1, à n variables. Si F n 'est pas isotrope, elle représente
au moins n classes de k* (mod k*d).
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Démonstration. — On procède par récurrence sur n. Si n — 1, F représente

(qui n'est pas nul, puisque Fest non isotrope): F représente donc
une classe, celle de av Supposons alors le théorème démontré pour n — 1

variables (n > 2) et prouvons-le pour n variables. Posons G — a1X1d

+ + an_1Xnd_1; en tant que forme à n — 1 variables, G est non isotrope,
et représente donc, par hypothèse de récurrence, au moins n — 1 classes

(mod k*d); soit C la réunion de ces classes. Comme toute classe représentée

par G est a fortiori représentée par F, il suffit de prouver qu'il existe dans

k* un élément b n'appartenant pas à C, et cependant représenté par F. On
distinguera deux cas:

(1) an<£ C: on peut alors prendre b an.

(2) ane C: il est clair dans ce cas que — an $ C (si G représentait — an9

F serait isotrope). Soit alors m l'entier ainsi défini:

la forme an (Xid + + Xmd) ne représente que des éléments de C, mais

la forme an (X1d + + Xm + 1) représente au moins un élément de k*
n'appartenant pas à C.

Un tel m existe effectivement; car si, pour tout r > on pose Hr
— an (X/ + + !"/), on voit que H1 représente uniquement ank*d c: C,

mais que, pour r assez grand (par exemple, pour r > p — 1), Hr représente
— an$ C (parce que — 1 ld + + ld (p — 1 fois): k est de caractéristique

p). Par définition de m, on peut trouver b appartenant à k* mais

non à C, et yu ym, ym+ x appartenant à k, tels que

(1.1.1) an(yi Fymd Fymd+ù b,

mais que

a„(yid + ...+ymd)eC.

Par définition de C, il existe alors xl9..., t dans k tels que

a+ -han^1xnd^1 an(yxd +... +ymd).

Posons xn ym+1 et ajoutons anxd aux deux membres de cette égalité;

compte tenu de (1.1.1), on obtient

+ + anxd b

et F représente bien b $ C.

Ceci règle le deuxième cas et achève de prouver le théorème 1.
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1.2. Le nombre total de classes de k* (mod k*d) est égal à ô (q—l, d)

(chap. 1, prop. 7, cor. 1); le théorème 1 admet donc les deux conséquences

suivantes :

Corollaire 1. — Si F a1Xid + + anXd est non isotrope, et si

n <5, ö/ors F représente tout élément de k.

Corollaire 2. — Si F a1X1d + + anXd est une forme diagonale
de degré d à n variables et si n > ô, alors F est certainement isotrope.

1.3. La section 2.3 du chapitre 1 montre que, dans ce qui précède, on
aurait pu remplacer partout d par S, ou, ce qui revient au même, supposer

que d divise q — 1, et remplacer ô par d. Le corollaire 1 apparaît alors

comme un cas particulier du théorème 4 du chapitre 3, et le corollaire 2,

comme un cas particulier du théorème de Chevalley (chap. 3, th. 1, cor. 1).

Quant au théorème 1, il admet l'interprétation « probabiliste » suivante:
si b e &*, si n < ô, et si le premier membre de l'équation a 1X1d + + anX„d

b est une forme non isotrope, la « probabilité » pour que l'équation
admette une solution dans kn est au moins égale à n/ô.

Pour d'autres résultats sur les équations diagonales homogènes, voir les

sections 2.3, 3.4, 4.3, et les Notes en fin de chapitre.

§ 2. Sommes de puissances d-ièmes.

2.1. Soient toujours k un corps fini à q pf éléments, et d un entier

> 1; notons kd le sous-ensemble de k formé des sommes xf + + xnd,

avec n > 1 quelconque et x1%..., xn e k; kd est évidemment un sous-corps
de k: en effet, il est stable pour l'addition et la multiplication; il contient
0, 1, et aussi — 1 ld + + ld(p — 1 fois); enfin, si x e kd et si x # 0,
alors x~1 ekdf puisqu'on peut écrire x'1 xd~x (A_1)d, que {x~x)d ekd,
et que kd est stable pour la multiplication.

2.2. Le théorème ci-dessous détermine explicitement kà\

Théorème 2. — Etant donné k Fq et d, posons toujours ô (q — 1, d),
et notons d'autre part q1 la plus petite puissance p9 de p telle que (1) g divise

/; (2) le quotient (pf - l)/(p9-1) divise d. Alors :

(i) kd est égal à l'unique sous-corps de k contenant q1 éléments (ce qu'on
peut écrire kd F^J.
(ii) Tout élément de kd est somme d'au plus ô puissances d-ièmes.
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Démonstration. — (i) k* est un groupe cyclique d'ordre q — 1, et ses

sous-groupes correspondent bijectivement aux diviseurs positifs de q — 1 ;

par ailleurs, k étant un corps à pf éléments, ses sous-corps correspondent
bijectivement aux diviseurs positifs de / (chap. 1, prop. 4). Comme g divise

/ si et seulement si ^ — 1 divise pf — 1 (petit exercice d'arithmétique), on
peut énoncer:

Lemme 1. — Pour qu'un sous-groupe H de k* soit le groupe multiplicatif
d'un sous-corps de k, il faut et il suffit que l'ordre de H soit de la forme
p9 — 1, g étant un diviseur de f

Mais le groupe k*d est d'ordre (q—1)/<5 (chap. 1, prop. 7); d'autre part,
kd est évidemment le plus petit sous-corps / de k tel que k*d cz /*; si alors

on pose kd — ¥qv qx pfl, le lemme 1 montre que f1 est le plus petit
diviseur positif g de / tel que (q— l)/ô divise p9 — 1, c'est-à-dire (puisque
ô — (q— 1, d) et que q pf) tel que (pf — l)/(p9— 1) divise <7, C.Q.F.D.

(ii) Pour tout n > 1, notons Sn l'ensemble des éléments de k* qui sont de la
forme xf + + xnd (les xt e k, certains xt pouvant être nuls); il est clair

que

(2.2.1) k*d S1 c S2 cz ...•<= Sn cz Sn+1 c: ci kd*

et que, dans k*9 chaque Sn est réunion d'un certain nombre de classes

(mod k*d); comme le nombre total de ces classes est égal à ô, la suite (2.2.1)

comporte au maximum <5 — 1 inclusions strictes. D'autre part, il est évident

que si, pour une valeur n0 de l'indice, on a SnQ SnQ+ u alors, pour tout
n > n0, on a également Sn Sn+l; dans la suite (2.2.1), les inclusions
strictes occupent donc nécessairement les premières places. Il résulte de ces

deux remarques qu'à partir du rang ô, toutes les inclusions de la suite (2.2.1)
sont en fait des égalités, et que kd* Sô, C.Q.F.D.

2.3. Tirons les conséquences de ce théorème. Tout d'abord, pour d

fixé, on a « le plus souvent » kd k; en effet, il résulte de la définition de q1

que si kd ^ k, alors pfl2 < d, ou encore q < d2; qn particulier:

Corollaire 1. — Pour dfixé, il n 'existe qu 'un nombre fini de corps k tels

que kd ^ k.

Supposons maintenant k fixé. Si/ 1, donc si k Fp, on a évidemment

kd — k quel que soit d. En revanche, si /> 2, on peut toujours trouver
d tel que kd # k, par exemple d — pf~1 + ...+/?+ 1: le théorème 2,

(i) donne alors fx 1 et qx p, donc kd Fp (ce qui est évident direc-
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tement, puisque, pour tout x ek, xd est dans ce cas la norme de x dans

l'extension k/Fp: chap. 1, sect. 3.3). Ainsi:

Corollaire 2. — Soit k Fq, q pf. Si /> 2, z7 existe au moins

un exposant d tel que kd ^ k.

(Il en existe même une infinité: car si d est tel que kd A k, la même

propriété est vraie pour tout multiple de d; mais ceci n'a pas grande signification,

car d intervient en réalité par l'intermédiaire de <5 (q — 1, d), qui
ne peut prendre qu'un nombre fini de valeurs).

Supposons toujours k fixé, avec/ > 2, et soit d un entier tel que kd # k;
avec les notations du théorème 2, on a kd F ; si b e k*, on aura donc
b ekd si et seulement si ègl"1 1 ; les parties (i) et (ii) du théorème donnent
alors :

Corollaire 3. — Si bql~1 1, et si n ><5, l'équation diagonale Xd
+ + X/ b admet une solution dans kn.

(ii) *SÏ au contraire bql~1A 1? a/or^, sz grand que soit n, l'équation Xd +
+ X/ b n 'admet aucune solution dans kn.

Exemple: k F4, d 3; on a kd F2 ^ fc; si b e F4, b ^ 0, 1, l'équation
Xx3 + + X„3 Z? n'a pas de solution sur F4, si grand que soit le nombre
d'inconnues, n.

§ 3. Equations diagonales quelconques.

3.1. Passons maintenant aux équations diagonales quelconques, donc
de la forme F — b, avec

F u1X1dl + + anXndn,

les dt > 1, les atek (on les supposera tous différents de zéro, ce qui ne
diminue pas la généralité) et b e k (et éventuellement nul). Désignons par
N le nombre de solutions de l'équation F b dans k", et par N le reste de
division de N par p (ou encore, l'élément N.l de k Fq). Enfin, pour
simplifier les calculs, posons St (q-1, dt) (i= 1, n), puis

$.= ayX^ + + anXnä",

ao - b, et G a0 + <P. Il est clair alors que le nombre de solutions
dans k" de l'équation G0 est égal au nombre de solutions dans de
F b, donc à N (voir chap. 1, sect. 2.3; bien entendu, les ensembles de
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solutions de ces deux équations sont en général distincts). En outre, dans le

polynôme G, chaque exposant divise q — 1.

3.2. On peut alors évaluer N par la « méthode de Lebesgue » (chap. 3,

§ 2 et Notes). On a en effet (loc. cit.)

(3.2.1) N£ (l-GCx)«-1) - £ G(x),_1.
xekn xekn

Ecrivons G (x) a0 + a^f1 + + anxnôn, et développons G(x)^"1;
il vient

(3.2.2) iV - £
xefc" j

la seconde sommation portant sur l'ensemble des vecteurs entiers

J Oo, ».J«) tels que (1) ^ > 0 pour i 0, n; (2)j0 + + jtt q - 1,

et le symbole (*~[1) désignant le «coefficient multinomial» (q— 1) !/

y0 ..../„ Mais (chap. 3, sect. 2.1) ona^/= — 1 si u > 0 et si q — 1

xek
divise w, et £ xu 0 sinon; ceci permet de simplifier la formule (3.2.2)

xek
et d'énoncer:

Lemme 2. — Soit J l'ensemble des vecteurs entiers j (j0, tels que

(1) j0 > 0, ji > 0 pour i 1, n;

(2) j'o + 7i + ••• + in — y — i i
(3) {q—Vjjdi divise j\pour i 1, n;

alors N est donné par la formule

(3.2.3) N =(- 1)B+1 Z («71) •••«/" •

je J

3.3. Première conséquence de ce lemme:

Théorème 3. — Si les entiers ôt satisfont à la condition

(Hl) l/ô1 + + l/ôn > 1,

le nombre N de solutions de F b dans kn est divisible par p.

Démonstration. — Si la condition (Hl) est vérifiée, l'ensemble J défini
dans le lemme 2 est vide, et on a bien N 0.

Ce théorème montre notamment que si les exposants de F satisfont à la
condition
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(H2) 1/^1 ~t~ ••• 1/^n ^

le nombre N est divisible par p. Si dl dn d (cas homogène),

(H2) se réduit à l'inégalité n > d, et on retombe sur un cas particulier du
théorème de Chevalley-Warning (chap. 3, th. 1). En revanche, dans le cas

non homogène, la condition (H2) peut être réalisée en même temps que

l'inégalité n < d:

Exemple: des équations diagonales telles que

Xi2 +X23 +X35 + 1 0 ; Xi2 + X23 + X36 + X46 0,

ont, sur un corps fini quelconque k, un nombre de solutions divisible par la
caractéristique p de k (ce nombre est d'ailleurs non nul, donc > p, car la
première équation a pour solution (1, —1,0), la seconde, (1, —1,0,0));
or, pour la première équation, n 3 < d 5 ; pour la seconde, n 4

< d 6.

3.4. Autre conséquence du lemme 2:

Théorème 4. — Supposons réalisées les deux conditions suivantes :

(H3) 1/5, + + l/ôn 1;

(H4) Chaque St (1 < i < n) divise p — 1.

Alors, #we/ #we sozY g k, l'équation aiX1dl + -f anXndn Z? aJmef
aw moww wwe solution dans kn.

Démonstration. — Avec les notations des sections 3.1 et 3.2, il suffit
de prouver que, dans le lemme 2, N # 0. Mais la condition (H3) entraîne
que Jest réduit au seul élément h (0, hu A„), avec ht (#-1)/5. pour
z 1,..., n; le lemme donne donc

N

comme les a; ont été supposés non nuls, il reste à prouver que, sous l'hypothèse

(H4), le coefficient C^1) n'est pas divisible par p, ou encore,
désignant la valuation p-adique, que

»,((«-!) 0 vp(hi!)+ „!);

mais ceci résulte facilement de l'estimation bien connue

vp(m\) [m/p] + [m/p2] +
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valable pour tout entier m > 1 (la notation [...] signifie: partie entière de.... ;

cette estimation se déduit immédiatement de l'écriture de m en base p).
Dans le cas homogène, le théorème 4 peut s'énoncer:

Théorème 5. — Soit F axXf + + anXnd une forme diagonale
homogène de degré d à n variables ; posons 3 {q — 1, d) ; alors, si n ô, et
si ô divise p — 1, la forme F représente tout élément non nul de k.

Ce résultat étend le théorème 2 à des formes F non isotropes ; signalons

que le théorème 5 reste vrai si on remplace l'hypothèse (H4) par l'hypothèse
plus faible: ô <p — 1 (voir Schwarz (1950)); en revanche, si ô >p, le

théorème 5 peut tomber en défaut: ainsi, dans l'exemple donné à la fin du

paragraphe 2, la forme X±3 + X23 + X33 sur k F4 (avec n d=ô q— 1

3) représente seulement les éléments de F2 ; et de fait, ô 3 > p 2.

Notons enfin que si q p, les conditions: ôt divise p — 1, Ô divise

p — 1, sont automatiquement vérifiées: sur un corps fini premier, les

théorèmes 4 et 5 sont donc valables sans restriction.

§ 4. Equations multilinéaires.

4.1. Soit toujours k un corps fini à q pf éléments, soient r et d

deux entiers > 1, et soit n rd. On se propose dans cette section de

calculer le nombre N (F, b) de solutions dans kn de l'équation F — b (b e k),
le polynôme F étant de la forme

(4.1.1) F — a1X1 ...Xd + a2Xd+1 ...X2d + + arXn_d+1 ...Xn

(un tel polynôme est parfois dit abusivement multilinéaire). Il est clair qu'on
peut supposer tous les aj non nuls (chap. 3, th. 5) et qu'on peut même

(quitte éventuellement à multiplier les deux membres de l'équation par
b"1, et à faire une « homothétie » sur certaines variables) supposer ax

ar 1, et b 0 ou 1. On est ainsi ramené à calculer les nombres
de solutions dans kn des deux équations Fr d 0 et Fr d 1, avec

(4.1.2) Fr d X1 ...Xd + Xd+1 X2d + + Xn_d+1 Xn

nombres qu'on notera respectivement N (r, d) et Ni (r, d).

4.2. Théorème 6. — Les nombres N (r, d) et Nl (r, d) sont donnés par

(4.2.1) N(r,d) q"-1 + (q - 1) q'~l A(q, d)',

(4.2.2) N, (r,d) q"'1- q'"1 A(q,d)r,
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avec par définition A (<q, d) qd 1
— (q—l)d l.

Démonstration. — On établit les deux formules simultanément par
récurrence sur l'entier r. Si r 1, et donc n dr, on voit directement que

N(l, d) qn - (q-l)n, et que N1(l,d) (#-l)n_1, ce qui coïncide

bien avec les valeurs données dans ce cas par (4.2.1) et (4.2.2). Supposons
alors ces formules prouvées jusqu'à un entier r — 1 > 1, et démontrons-les

pour l'entier r. En classant les solutions de l'équation Fr d — 0 selon la

valeur prise par le monôme Xn_d+1 Xn, on obtient

N(r,d)£ JV(Fr_M,c)iV(FM, -c)
cek

N(r-l,d)N(l,d) + (q -1)N± (r-1, d)N1 (1,d)

(voir sect. 4.1). L'hypothèse de récurrence donne la valeur des quatre termes

N(r — l,d), N(1, d), N1(r—l,d) et Nx (1, d), et on vérifie, après calcul,

que la valeur ainsi obtenue pour N (r, d) coïncide bien avec celle fournie

par (4.2.1). Raisonnement analogue pour (4.2.2). (On peut aussi déduire
directement (4.2.2) de (4.2.1) en remarquant que, puisque toutes les équations

d ^ (b e k*) onl: même nombre de solutions, Nt (r, d), on a évidemment

qn N (r, d) + (# — 1) N1 (r, d)).

Corollaire 1. — Si, dans l 'équation F b (voir (4.1 A les coefficients

aj sont tous différents de 0 (et si en outre, quand r — 1, b est également
différent de 0), alors N (F, b) est un polynôme en q, à coefficients entiers
rationnels, de terme dominant qn~x. En particulier, si on considère q comme
« infiniment grand », on peut écrire

N (F, b) q"-1 +0(qn~2).

On reviendra longuement sur ce genre de résultat aux chapitres 6, 7,
8 et 9.

4.3. Le théorème 6 permet en particulier de déterminer le nombre N
de solutions dans kn d'une équation diagonale homogène de degré 2,

(4.3.1) a^Xff + + anXn2 — b

(au an, b g k); on peut naturellement supposer tous les coefficients at
différents de 0; on peut également supposer p ^ 2 (en caractéristique 2, on
a N q"'1); comme la détermination de N sera effectuée ultérieurement
(chap. 6, sect. 1.3) par un autre procédé, on se bornera ici à indiquer la
démarche du calcul, en laissant au lecteur le soin d'en expliciter les détails.

L'Enseignement mathém., t. XIX, fasc. 1-2. 3
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(1) Pour n 1, on a évidemment JV 1 si b 0; sinon, ona#
2 ou 0 selon que aj) e k*2 ou que atb £ k*2.

(2) Pour n — 2, on vérifie sans peine, soit par le calcul, soit par un
raisonnement géométrique, que N est donné par les formules ci-dessous:

12q
— 1, si — aAa2 ek*2

1, si — ata2 $ k* ;

Iq
— 1, si — aid? efc*212

q + 1, si — ala2 $ k*

Supposons maintenant n > 3. Comme toute forme quadratique à trois
variables ou plus sur k est isotrope (théorème de Chevalley: chap. 3, th. 1,

cor. 1), la théorie générale de la réduction des formes quadratiques (voir [17],

chap. IV, notamment pp. 60-62) montre qu'on peut (par une transformation
linéaire inversible à coefficients dans k, ce qui n'affecte pas la valeur de N)
mettre le premier membre de (4.3.1) sous l'une des deux formes suivantes:

(4.3.2) YxY2 + + Y2f-1Y2r +aYn2,

avec n 2r + 1 et a ~ (—1 )ra1 an, si n est impair;

(4.3.3) Y±Y2 + + Y2r^Y2r+ Yni± + aY„2

avec n 2r + 2 et a — 1 )2a1 a„, si n est pair.
(La valeur de a s'obtient en écrivant l'invariance du discriminant).

(3) Calculons alors N quand n est impair, n 2r + 1. En classant

(comme dans la démonstration du théorème 6) les solutions de F b

(F étant mis sous la forme (4.3.2)) suivant la valeur prise par le monôme
aYn2, on obtient, avec les notations de la section 4.1,

(4.3.4) N E Ni (r, 2) N (a Y„2, (r, 2) N (a Y„2, b)
cek, c^b

N (r, 2) et N± (r, 2) sont donnés par le théorème 6, N (<a Y2, c) et N {a Y2, b)

sont donnés par (1); si on remarque que k* contient (q—1)/2 carrés et

autant de non-carrés, on arrive finalement à ceci:

pour b 0 AT qW_1 ;

J qn~1 + g("~1)/2, si — l)(n~1)/2ai ...anbek*2
^ ^ j qn_1 — g(n-1)/2, si — l)^"1^2 ax anb $ k*2
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(4) Le calcul de N quand nest pair se fait de la même manière: on

réécrit la formule (4.3.4) en y remplaçant apar Y„l1, + aY„2, on utilise

le théorème 6 et les formules de (2), et on obtient finalement ceci:

[ q""1+ q"'2 -qsi(-1
pour h 0 ,N | ^n l_ q«/2+q(«si(_iy/2

f q"'1 -g<n/2)_1, si —1)"/2 e
VOmb -O'" i «- + 4«>-, si

Notes sur le chapitre 4

§ 1 : la méthode de démonstration du théorème 1 est empruntée à

Demyanov (1956). Cette méthode s'applique également aux équations
diagonales homogènes sur un corps ^-adique ; à ce sujet, voir également Schwarz

(1956), Davenport-Lewis (1963), et surtout [7], pp. 101-138, et [13], pp. 17-22

et 40-52.

§ 2: le théorème 3, (ii) et son corollaire 1 sont dus à Tornheim (1938);
voir aussi Schwarz (1948, a). Pour l'application du théorème 3, (i) au

problème de Waring dans un anneau d'entiers algébriques, voir Bateman-
Stemmler (1962) pour un exposant d premier, et Joly (1968) pour un exposant

d quelconque.

§3: les théorèmes 4 et 5 sont dus à Morlaye (1971); voir également
Schwarz (1948, b; 1950) et Carlitz (1956, b).

§ 4: pour une autre démonstration du théorème 7, voir Porter (1966, e).

Les équations diagonales sur un corps fini ont suscité une vaste
littérature; mentionnons seulement ici (en dehors des articles déjà cités, et de

ceux qui le seront au chapitre 6) Cohen (1956), Chowla-Mann-Straus (1959),
Gray (1960), Chowla (1961), Tietäväinen (1968), et Lewis (1960).
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