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Notes sur le chapitre 3

§ 1: le théoréme de Chevalley-Warning a une histoire intéressante. En
1933, Tsen avait prouvé que le corps K = C (T) des fractions rationnelles
3 une variable 7 sur un corps algébriquement clos C posséde la propriété
(By) (autrement dit, a un groupe de Brauer nul: Tseun (1933)); Artin nota
que la démonstration de Tsen consistait: (1) & prouver que K posséde la
propriété (C,); puis (2) & déduire directement la propriété (B,) de la pro-
priété (C,), sans utiliser la définition particuliére de K; comme les corps finis
possedent la propriété (B,) (théoréme de Wedderburn !) et que par ailleurs
1ls « ne sont pas trop loin » de leur cloture algébrique (chap. 1, § 1), Artin
fut amené a conjecturer que les corps finis possédent la propriété (C,);
ce qui fut aussitdt démontré en caractéristique 2 par Voélsch, puis en carac-
téristique quelconque par Chevalley, sous une forme d’ailleurs plus forte
que celle prévue par Artin (Chevalley (1935)); c’est Warning qui, examinant
la démonstration de Chevalley, s’apergut que, pour les corps finis, la
« bonne » propriété n’était pas la propriété (C,), mais la divisibilité de N par
p (Warning (1935)): d’out finalement le nom de « théoréme de Chevalley-
Warning » attribué au théoreme 1. Ce théoréme a d’ailleurs été amélioré par
Ax (1964), qui a prouvé ceci (mé€mes notations que dans le th. 1): si b est
le plus grand entier strictement inférieur a n/d, N est divisible par ¢” (donc
par p’?). Ce résultat d’Ax a lui-méme été perfectionné récemment par Katz
(1971); a ce sujet, voir le chapitre 7.

Indiquons que 1’étude de la propriété (C,) (et plus généralement de la
propriété (C,)) a été reprise systématiquement dans les années cinquante par
Lang (1952) et Nagata (1957) et a connu depuis lors des développements
importants; a ce sujet, voir [7], ainsi que Terjanian (1972). Signalons par
ailleurs qu’il existe des corps possédant la propriété (B,), « trés proches »
de leur cloture algébrique (de fagon précise, quasi-finis), et ne possédant
pourtant pas la propriété (C,), ni méme la propriété (C,), si grand que soit r:
voir Ax (1965, a, b; 1968).

§ 2: le calcul modulo p de N par la formule (2.2.2) est parfois baptisé
« méthode de Kronecker » ou « méthode de Lebesgue » (voir Lebesgue
(1837, 1), th. 1); pour des généralisations de cette formule, voir Dwork
(1960, a; 1966, b); voir également les chapitres 7 et 9.

§ 3 et 4: comme indiqué dans le texte, les théorémes 3 et 4 sont dus
respectivement & Warning (1935) et Terjanian (1966). Pour des résultats
analogues au théoréme 5 (mais moins triviaux !), voir Carlitz (1953, b;
1954, b), et Redei (1946).
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