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Notes sur le chapitre 3

§ 1: le théorème de Chevalley-Warning a une histoire intéressante. En
1933, Tsen avait prouvé que le corps K — C(T) des fractions rationnelles
à une variable T sur un corps algébriquement clos C possède la propriété
(B0) (autrement dit, a un groupe de Brauer nul: Tsen (1933)); Artin nota
que la démonstration de Tsen consistait: (1) à prouver que K possède la
propriété (Cx); puis (2) à déduire directement la propriété (B0) de la
propriété (CJ, sans utiliser la définition particulière de K; comme les corps finis
possèdent la propriété (B0) (théorème de Wedderburn et que par ailleurs
ils « ne sont pas trop loin » de leur clôture algébrique (chap. 1, § 1), Artin
fut amené à conjecturer que les corps finis possèdent la propriété (Cx);
ce qui fut aussitôt démontré en caractéristique 2 par Volsch, puis en
caractéristique quelconque par Chevalley, sous une forme d'ailleurs plus forte

que celle prévue par Artin (Chevalley (1935)); c'est Warning qui, examinant
la démonstration de Chevalley, s'aperçut que, pour les corps finis, la
« bonne » propriété n'était pas la propriété (CJ, mais la divisibilité de N par
p (Warning (1935)): d'où finalement le nom de «théorème de Chevalley-
Warning » attribué au théorème 1. Ce théorème a d'ailleurs été amélioré par
Ax (1964), qui a prouvé ceci (mêmes notations que dans le th. 1): si b est

le plus grand entier strictement inférieur à njd, N est divisible par qb (donc

par pfb). Ce résultat d'Ax a lui-même été perfectionné récemment par Katz
(1971); à ce sujet, voir le chapitre 7.

Indiquons que l'étude de la propriété (Cx) (et plus généralement de la

propriété (CrJ) a été reprise systématiquement dans les années cinquante par
Lang (1952) et Nagata (1957) et a connu depuis lors des développements

importants; à ce sujet, voir [7], ainsi que Terjanian (1972). Signalons par
ailleurs qu'il existe des corps possédant la propriété (B0), « très proches »

de leur clôture algébrique (de façon précise, quasi-finis), et ne possédant

pourtant pas la propriété (Cx), ni même la propriété (Cr), si grand que soit r :

voir Ax (1965, a, b; 1968).

§ 2: le calcul modulo p de N par la formule (2.2.2) est parfois baptisé
« méthode de Kronecker » ou « méthode de Lebesgue » (voir Lebesgue

(1837, I), th. 1); pour des généralisations de cette formule, voir Dwork
(1960, a; 1966, b); voir également les chapitres 7 et 9.

§ 3 et 4: comme indiqué dans le texte, les théorèmes 3 et 4 sont dus

respectivement à Warning (1935) et Terjanian (1966). Pour des résultats

analogues au théorème 5 (mais moins triviaux voir Carlitz (1953, b;
1954, b), et Redei (1946).
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