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Passons & la démonstration du théoréme 3, et distinguons deux cas:

(1) 1 existe au moins une variété W de dimension d telle que card (W ' V)
= 0 (mod p): le lemme 1 montre alors que pour toute variété W' paralléle
3 W et de méme dimension d, on a également card (W' nV) = 0 (mod p);
comme il existe exactement g" ¢ telles variétés W' (W comprise), qu’elles
forment une partition de k", et que chacune d’elles contient évidemment au
moins un point de V, 'inégalité N > ¢"~¢ se trouve immédiatement établie
dans ce premier cas. | |

(2) Pour toute variété W de dimension d, on a card (WnV) = 0 (mod p);
puisque ¥ contient (par hypothése) au moins un point, on peut cependant
affirmer ceci: il existe un entier m (1 <m << d) possédant la propriété
suivante:

pour toute variété M de dimension m, on a card (M nV) = 0 (mod p),
mais il existe une variété L de dimension m — 1 telle que card (LnV)

= 0 (mod p).

Fixons une telle variété L, et désignons par a le reste de division de
card (LN V) par p; on a donc 1 << a <p — 1. Considérons maintenant les
variétés M de dimension m passant par L; il y en a exactement

(@ =Dlg-1D =q¢""+ ... +q+1

(nombre de points rationnels sur k dans I’espace projectif -de dimension
n — m); chacune de ces variétés M contient au moins a points de V (ceux
qui sont dans L n V), et comme par ailleurs card (MnV) = 0 (mod p),
chaque différence ensembliste M — L contient au moins p — a > 1 points
de V'; mais les différences M — L forment une partition de k" — L; ainsli,

N=card(V) >¢" ™+ ... + ¢+ 1> ¢4,

ce qui regle le second cas et achéve de prouver le théoréme 3.

3.2. On verra au paragraphe suivant (sect. 4.3) que, sous les hypothéses
du théoréme 3, I'inégalité N > ¢" ¢ est la meilleure possible.

§ 4. Polynémes normiques et théoréme de Terjanian.

4.1. Le théoréme 1 utilise de fagon essentielle I’hypothése n > d. Si
n < d, il tombe en défaut, comme on peut le voir sur I’exemple suivant (dans

cet exemple et dans tout le reste de ce chapitre, on se limite au cas d’un seul
polyndme: s = 1):



L,

soit # un entier > 1, et soit K 'unique extension de degré » de k, C’est-
a-dire le corps F,; soit oy, ..., w, une base de K sur k, et posons

n—1

(4.1.1) P(X) = [] (%X, +...+0,7X,);
j=0

les 0 (0 <j<n-— 1) étant les conjugués de w; dans ’extension galoi-
sienne K/k (chap. 1, prop. 8), P est a coefficients dans k; de plus, P est un
polyndome de degré n, a n variables (on a donc n = d, n étant d’ailleurs
quelconque); enfin, P n’admet dans k" que le zéro trivial x = (0, ..., 0):
en effet, si x = (x,, ..., x,) est un point de k", et si on pose & = wx;
+ ... + o,x,, 1l est évident (voir chap. 1, sect. 3.3) que P (x) est égal a la
norme de ¢ dans ’extension K/k; I’égalité P (x) = 0 ne peut donc avoir lieu
que st & = 0, cest-a-dire si x; = ... = x, = 0. Ainsi, si N désigne le
nombre de solutions dans k" de I’équation P = O, ona N = 1, et N =£0
(mod p), comme annoncé.

(Notons au passage que le théoréme 3 reste vrai si n < d, mais qu’il perd
alors tout intérét, puisqu’il se réduit & I’énoncé suivant: si N > 0, on a
N > 1/¢""".

4.2. D’exemple donné dans la section 4.1 justifie 1a définition ci-dessous:

DEFINITION 1. — On appelle polyndme normique de degré n sur k tout
polynéme F de degré n a n variables, a coefficients dans k, et ayant pour
seul zéro dans k" le point (0, ..., 0) (un polynéme normique est donc sans
terme constant).

Les polyndmes normiques possédent la propriété suivante, mise en évi-
dence par Terjanian:

THEOREME 4. — Soit F € k [X] un polynéme normique de degré n, et soit
Gek [X] un polynome (quelconque) de degré strictement inférieur a n.
Alors 1’équation

(4.2.1) F(X) = G(X)
admet au moins une solution dans k".

Démonstration. — Introduisons ng variables notées X;; (1 <i <n,
1 <j < ¢g), et, pour tout i, soit S; € k [X4, ..., X;,] un polyndme normique
de degré g (de tels S; existent effectivement: utiliser ’exemple donné dans
la section 4.1, avec n = g). Introduisons une variable supplémentaire Y,
et considérons le polyndme R a n(R) = ng + 1 variables défini par
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R = F(Sy,...,S,) — G(Sy, .0, Sp) Y271

Son degré d (R) est < ngq, d’ou n(R) > d(R); de plus, R n’a pas de terme
constant, puisque F et les S; n’en ont pas, et que G (Sy, ..., S,) se trouve
multiplié par Y?~!. Le théoréme de Chevalley montre alors que R admet
dans k™" ! un zéro non trivial (X{y, ..., X, ¥); Si on pose s5; = S; (X5, -y
X;,), On a

(4.2.2) F(SgyeesSy) — G(5q5 ey sy 1 =0.

Mais y n’est certainement pas nul: sinon, on aurait F (s, ..., s,) = 0, donc
(F étant normique) s; = ... = §, = 0, donc (les S; étant eux-mémes nor-
miques) X;; = ... = X,, = 0, et en définitive (X 1, ..., X0, ¥) = (0, ..., 0, 0)
dans k™*1, ce qui est exclu par hypothése. Or, cette propriété (y#0)
implique 2~ = 1; il résulte alors de (4.2.2) que (54, ..., §,) est une solution
de (4.2.1) dans k", et le théoréme 4 est démontré.

COROLLAIRE 1. — Soit Fe k [X] un polynéme normique. Alors, quel que
soit a € k, I’équation F (X) = a admet au moins une solution dans k". Autre-
ment dit, la fonction polynomiale associée a un polynéme normique est sur-
jective.

Si on applique ce corollaire 1 au polyndme P défini par (4.1.1) (sect. 4.1),
on retrouve le fait, démontré différemment au chapitre 1, que la norme rela-
tive a I’extension K/k est surjective.

4.3. Terminons ce paragraphe en montrant que I'inégalité N > g" ¢

du théoré¢me 3 est la meilleure possible; de fagon précise: quels que soient
n, et d < n, il existe un polynome F € k [X], de degré d, et tel que l’équation
F = 0 admette exactement q"~* solutions dans k". En effet, soit P un poly-
ndme normique de degré d (donc & d variables) sur k£ (I’existence d’un tel P
est assurée par I'’exemple de la section 4.1, avec d au lieu de #); posons alors
F(X .y Xy) = P(Xy, ..., Xp) (les variables X, 4, ..., X, ne figurent donc
pas dans F); pour que F(x) = 0 (x € k"), il est évidemment nécessaire et
suffisant que les d premiéres composantes de x soient nulles; mais les points
x de k" possédant cette propriété sont exactement en nombre ¢" ¢, et
'assertion ci-dessus se trouve démontrée. Remarquons qu’un raisonnement
analogue permet d’ailleurs plus généralement de prouver le résultat suivant:

THEOREME 5. — Soit Fek [X] un polynéme a n variables, et soit N le
nombre de zéros de F dans k". Si m variables seulement figurent explicitement
dans F, alors N est divisible par q"~ ™.
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