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Passons à la démonstration du théorème 3, et distinguons deux cas:

(1) Il existe au moins une variété W de dimension d telle que card W rv F)
=é 0 (modp): le lemme 1 montre alors que pour toute variété W' parallèle

à W et de même dimension d, on a également card (W n F) ^ 0 (mod p);
comme il existe exactement qn~d telles variétés W' (W comprise), qu'elles

forment une partition de kn, et que chacune d'elles contient évidemment au

moins un point de F, l'inégalité N > qn~d se trouve immédiatement établie

dans ce premier cas.

(2) Pour toute variété W de dimension d, on a card (WnV) =0 (mod p);
puisque V contient (par hypothèse) au moins un point, on peut cependant

affirmer ceci: il existe un entier m (1 < m < d) possédant la propriété
suivante :

pour toute variété M de dimension m, on a card (M n V) 0 (mod p),
mais il existe une variété L de dimension m — 1 telle que card (LnF)
fé 0 (mod p).

Fixons une telle variété L, et désignons par a le reste de division de

card (L n V) par p; on a donc 1 < a < p — 1. Considérons maintenant les

variétés M de dimension m passant par L ; il y en a exactement

(qn-m+1 — i)/(^r — i) qn'm + + q + 1

(nombre de points rationnels sur k dans l'espace projectif de dimension

n — m); chacune de ces variétés M contient au moins a points de V (ceux

qui sont dans L n F), et comme par ailleurs card (MnF) 0 (mod p),
chaque différence ensembliste M — L contient au moins p — a > 1 points
de V; mais les différences M — L forment une partition de kn — L; ainsi,

N card (F) > qn~m + + q + 1 > qn~d

ce qui règle le second cas et achève de prouver le théorème 3.

3.2. On verra au paragraphe suivant (sect. 4.3) que, sous les hypothèses
du théorème 3, l'inégalité N > qn~d est la meilleure possible.

§ 4. Polynômes normiques et théorème de Terjanian.

4.1. Le théorème 1 utilise de façon essentielle l'hypothèse n > d. Si

n < d, il tombe en défaut, comme on peut le voir sur l'exemple suivant (dans
cet exemple et dans tout le reste de ce chapitre, on se limite au cas d'un seul
polynôme: ^ 1):



soit n un entier > 1, et soit K l'unique extension de degré n de k, c'est-
à-dire le corps ¥qn; soit œ1, con une base de K sur k, et posons

(4.1.1) P (X) "n (cV% +... + œfjXn) ;

j=o

les (0 <y < tz — 1) étant les conjugués de cot dans l'extension galoi-
sienne Kjk (chap. 1, prop. 8), P est à coefficients dans k\ de plus, P est un
polynôme de degré n, k n variables (on a donc n d, n étant d'ailleurs
quelconque); enfin, P n'admet dans kn que le zéro trivial x (0,..., 0):
en effet, si x (xl9..., xn) est un point de kn, et si on pose £ co^x
4- + conxn, il est évident (voir chap. 1, sect. 3.3) que P(x) est égal à la
norme de £ dans l'extension K/k ; l'égalité P (x) 0 ne peut donc avoir lieu

que si £ — 0, c'est-à-dire si xx xn — 0. Ainsi, si N désigne le

nombre de solutions dans kn de l'équation P 0, on sl N 1, et A ^ 0

(mod p), comme annoncé.

(Notons au passage que le théorème 3 reste vrai si n < d, mais qu'il perd
alors tout intérêt, puisqu'il se réduit à l'énoncé suivant: si N > 0, on a

N>llqd~n).

4.2. L'exemple donné dans la section 4.1 justifie la définition ci-dessous :

Définition 1. — On appelle polynôme normique de degré n sur k tout
polynôme F de degré n à n variables, à coefficients dans k, et ayant pour
seul zéro dans kn le point (0, 0) (un polynôme normique est donc sans

terme constant).

Les polynômes normiques possèdent la propriété suivante, mise en
évidence par Terjanian:

Théorème 4. — Soit F ek [X] un polynôme normique de degré n, et soit
G ek [X\ un polynôme (quelconque) de degré strictement inférieur à n.

Alors l'équation

(4.2.1) F(X) G(X)

admet au moins une solution dans kn.

Démonstration. — Introduisons nq variables notées Xtj (1 < i < n,
1 <7 < q), et, pour tout /, soit St e k [Xn,..., Xiq] un polynôme normique
de degré q (de tels St existent effectivement: utiliser l'exemple donné dans

la section 4.1, avec n q). Introduisons une variable supplémentaire T,

et considérons le polynôme R h n(R) nq + l variables défini par
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RF(SU...,SJ - y«"1.

Son degré rf(jR) est < nq9 d'où n (R) > d(R); de plus, R n'a pas de terme

constant, puisque F et les St n'en ont pas, et que G (Su Sn) se trouve

multiplié par Yq~K Le théorème de Chevalley montre alors que R admet

dans knq+1 un zéro non trivial (xll9 y); si on pose ^ St (xiL,

xi3), on a

(4.2.2) F($u...,Sn) - G^,...^)/"1 =0.

Mais y n'est certainement pas nul: sinon, on aurait F(sl9..., sn) 0, donc

(F étant normique) sl sn 0, donc (les St étant eux-mêmes nor-
miques) xxl 0, et en définitive (xll9xnq, y) (0,..., 0, 0)

dans knq+1, ce qui est exclu par hypothèse. Or, cette propriété (y^ 0)

implique 1 1 ; il résulte alors de (4.2.2) que (sl9..., sn) est une solution
de (4.2.1) dans kn9 et le théorème 4 est démontré.

Corollaire 1. — Soit Fek [X] un polynôme normique. Alors, quel que
soit aek, l 'équation F (X) a admet au moins une solution dans kn. Autrement

dit, la fonction polynomiale associée à un polynôme normique est sur-

jective.

Si on applique ce corollaire 1 au polynôme P défini par (4.1.1) (sect. 4.1),

on retrouve le fait, démontré différemment au chapitre 1, que la norme relative

à l'extension K\k est surjective.

4.3. Terminons ce paragraphe en montrant que l'inégalité N > qn~d

du théorème 3 est la meilleure possible; de façon précise: quels que soient

«, et d < 72, il existe un polynôme Fek [X]9 de degré d, et tel que l 'équation
F 0 admette exactement qn~d solutions dans kn. En effet, soit P un
polynôme normique de degré d (donc à d variables) sur k (l'existence d'un tel P
est assurée par l'exemple de la section 4.1, avec d au lieu de n); posons alors

F(XU Xn) P(XU Xd) (les variables Xd+l9..., Xn ne figurent donc

pas dans F); pour que F(x) 0 (xekn)9 il est évidemment nécessaire et
suffisant que les d premières composantes de x soient nulles ; mais les points
x de kn possédant cette propriété sont exactement en nombre qn~d, et
l'assertion ci-dessus se trouve démontrée. Remarquons qu'un raisonnement
analogue permet d'ailleurs plus généralement de prouver le résultat suivant:

Théorème 5. — Soit Fek [X] un polynôme à n variables, et soit N le
nombre de zéros de F dans kn. Si m variables seulement figurent explicitement
dans F, alors N est divisible par qn~m.
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