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§3. Le «second» théorème de Warning.

3.1. Il s'agit du résultat suivant, établi par Warning, en même temps
que le théorème 1, dans son article déjà cité (Warning (1935)):

Théorème 3. — Mêmes données et hypothèses (en particulier n > d)
que dans le théorème 1. Alors, si N > 0 (donc si le système (1.1.1 admet au
moins une solution), on a en fait N > qn~d.

Démonstration. — Plaçons-nous dans l'espace affine kn, et soit toujours
F l'ensemble des solutions de (1.1.1); pour abréger, convenons (dans cette
section seulement) de dire variété au lieu de sous-variété affine de kn\ alors :

Lemme 1. — Si Wx et W2 sont deux variétés parallèles de dimension d
dt + + ds (voir th. 1J, on a la congruence

(3.1.1) card(W±nF) card(W2nF) (mod p).

Prouvons ce lemme. On peut se limiter au cas où W1 =£ W2, puis, quitte
à effectuer un changement de coordonnées dans kn (ce qui ne modifie pas
les dj), supposer que et W2 sont définies respectivement par les systèmes

d'équations X1 0, X2 0, ...,Xn_d 0, et Xx 1, X2 0, Xn_d
0. Introduisons le polynôme (à une seule variable T)

R(T) - 1 n (T-a),
aek*

puis le polynôme (à n variables Xu Xn, mais ne dépendant en fait que de

G(X) (-1 )"-"R(X2)...R(Xn_ä)n&i-a);
aï 0,1

G est un polynôme de degré total (n — d)(q— 1) — 1; de plus, il vaut
évidemment — 1 sur Wt, 1 sur W2 et 0 ailleurs; F désignant toujours le
polynôme défini par (1.1.2) (sect. 1.1), H GF est donc un polynôme à n

variables, de degré total (n — d)(q— 1) — 1 + d(q— 1) n(q— 1) — 1

< n(q— 1), et ce polynôme vaut — 1 sur Wt n F, 1 sur W2 n F, et 0

partout ailleurs; d'où:

(3.1.2) Y, ^(x) (card(IF2nF) - card(IF1nF)). 1 ;
xefc»

mais le théorème 2 est applicable à H: le second membre de (3.1.2) est donc

égal à 0, dans le corps k de caractéristique p, ce qui équivaut à (3.1.1), et

prouve le lemme 1.
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Passons à la démonstration du théorème 3, et distinguons deux cas:

(1) Il existe au moins une variété W de dimension d telle que card W rv F)
=é 0 (modp): le lemme 1 montre alors que pour toute variété W' parallèle

à W et de même dimension d, on a également card (W n F) ^ 0 (mod p);
comme il existe exactement qn~d telles variétés W' (W comprise), qu'elles

forment une partition de kn, et que chacune d'elles contient évidemment au

moins un point de F, l'inégalité N > qn~d se trouve immédiatement établie

dans ce premier cas.

(2) Pour toute variété W de dimension d, on a card (WnV) =0 (mod p);
puisque V contient (par hypothèse) au moins un point, on peut cependant

affirmer ceci: il existe un entier m (1 < m < d) possédant la propriété
suivante :

pour toute variété M de dimension m, on a card (M n V) 0 (mod p),
mais il existe une variété L de dimension m — 1 telle que card (LnF)
fé 0 (mod p).

Fixons une telle variété L, et désignons par a le reste de division de

card (L n V) par p; on a donc 1 < a < p — 1. Considérons maintenant les

variétés M de dimension m passant par L ; il y en a exactement

(qn-m+1 — i)/(^r — i) qn'm + + q + 1

(nombre de points rationnels sur k dans l'espace projectif de dimension

n — m); chacune de ces variétés M contient au moins a points de V (ceux

qui sont dans L n F), et comme par ailleurs card (MnF) 0 (mod p),
chaque différence ensembliste M — L contient au moins p — a > 1 points
de V; mais les différences M — L forment une partition de kn — L; ainsi,

N card (F) > qn~m + + q + 1 > qn~d

ce qui règle le second cas et achève de prouver le théorème 3.

3.2. On verra au paragraphe suivant (sect. 4.3) que, sous les hypothèses
du théorème 3, l'inégalité N > qn~d est la meilleure possible.

§ 4. Polynômes normiques et théorème de Terjanian.

4.1. Le théorème 1 utilise de façon essentielle l'hypothèse n > d. Si

n < d, il tombe en défaut, comme on peut le voir sur l'exemple suivant (dans
cet exemple et dans tout le reste de ce chapitre, on se limite au cas d'un seul
polynôme: ^ 1):
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