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§ 3. Le «second» théoréme de Warning.

3.1. 1II s’agit du résultat suivant, établi par Warning, en méme temps
que le théoréme 1, dans son article déja cité (Warning (1935)):

THEOREME 3. — Mémes données et hypothéses (en particulier n > d)
que dans le théoréme 1. Alors, si N > 0 (donc si le systeme (1.1.1) admet au
moins une solution), on a en fait N > q" .

Démonstration. — Plagons-nous dans I’espace affine k", et soit toujours
V I'ensemble des solutions de (1.1.1); pour abréger, convenons (dans cette
section seulement) de dire variété au lieu de sous-variété affine de k"; alors :

LEMME 1..— Si W, et W, sont deux variétés paralléles de dimension d
=d; + ..+ d (voir th. 1), on a la congruence '
(3.1.1) - card (W, nV) = card (W,nV) (mod p).

- Prouvons ce lemme. On peut se limiter au cas ou W, # W,, puis, quitte
a effectuer un changement de coordonnées dans k" (ce qui ne modifie pas
les d;), supposer que W et W, sont définies respectivement par les systémes
d’¢quations X; =0, X, =0,..,X,_,=0,et X, =1, X, =0, .., X,_,
= (. Introduisons le polyndme (2 une seule variable 7") ’

R(T) = Tt —1 = [[(T-a),

ack*
puis le polynéfne (a2 n variables X 15 ...‘, X,, mais ne dépendant en fait que de
Xl, ey Xn_d) v '
G(X) = (=D""R(X) ... R(X,_)) 1_[ (Xy—a);

a¥0,1

G est un polynéme de degré total (n—d)(g—1) — 1; de plus, il vaut évi-
demment — 1 sur W, 1 sur W, et 0 ailleurs; F désignant tdujours le poly-
néme défini par (1.1.2) (sect. 1.1), H = GF est donc un polyndme 3 n
variables, de degré total (n—d)(g—1) — 1+ d(g—1) =n(g—1) — 1
<n(g—1), et ce polynome vaut — 1 sur W, nV, 1 sur W, nV, et 0
partout ailleurs; d’ou:
3.1.2) Y. H(x) = (card(W,nV) — card (W,nV)).1;

xekn ? ‘
mais le théoréme 2 est applicable & H: le second membre de (3.1.2) est donc
égal a 0, dans le corps k de caractéristique p, ce qui équivaut a (3.1.1), et
prouve le lemme 1. ‘




— 21 —

Passons & la démonstration du théoréme 3, et distinguons deux cas:

(1) 1 existe au moins une variété W de dimension d telle que card (W ' V)
= 0 (mod p): le lemme 1 montre alors que pour toute variété W' paralléle
3 W et de méme dimension d, on a également card (W' nV) = 0 (mod p);
comme il existe exactement g" ¢ telles variétés W' (W comprise), qu’elles
forment une partition de k", et que chacune d’elles contient évidemment au
moins un point de V, 'inégalité N > ¢"~¢ se trouve immédiatement établie
dans ce premier cas. | |

(2) Pour toute variété W de dimension d, on a card (WnV) = 0 (mod p);
puisque ¥ contient (par hypothése) au moins un point, on peut cependant
affirmer ceci: il existe un entier m (1 <m << d) possédant la propriété
suivante:

pour toute variété M de dimension m, on a card (M nV) = 0 (mod p),
mais il existe une variété L de dimension m — 1 telle que card (LnV)

= 0 (mod p).

Fixons une telle variété L, et désignons par a le reste de division de
card (LN V) par p; on a donc 1 << a <p — 1. Considérons maintenant les
variétés M de dimension m passant par L; il y en a exactement

(@ =Dlg-1D =q¢""+ ... +q+1

(nombre de points rationnels sur k dans I’espace projectif -de dimension
n — m); chacune de ces variétés M contient au moins a points de V (ceux
qui sont dans L n V), et comme par ailleurs card (MnV) = 0 (mod p),
chaque différence ensembliste M — L contient au moins p — a > 1 points
de V'; mais les différences M — L forment une partition de k" — L; ainsli,

N=card(V) >¢" ™+ ... + ¢+ 1> ¢4,

ce qui regle le second cas et achéve de prouver le théoréme 3.

3.2. On verra au paragraphe suivant (sect. 4.3) que, sous les hypothéses
du théoréme 3, I'inégalité N > ¢" ¢ est la meilleure possible.

§ 4. Polynémes normiques et théoréme de Terjanian.

4.1. Le théoréme 1 utilise de fagon essentielle I’hypothése n > d. Si
n < d, il tombe en défaut, comme on peut le voir sur I’exemple suivant (dans

cet exemple et dans tout le reste de ce chapitre, on se limite au cas d’un seul
polyndme: s = 1):
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