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PrOPOSITION 1. — Si un corps commutatif K posséde la propriété (C,),
alors il posséde la propriété (B,).

Démonstration. — Soit en effet L un corps gauche de centre K et de degré
fini #n sur K. On sait que n est un carré (soit n=d?) et que si ey, ..., e, est
une base de L sur K (en tant qu’espace vectoriel), la norme réduite Nrd,g(x)
d’un élément quelconque x = x,e, + ... + x,e, de L est un polynéme
homogene et de degré d, a coefficients dans K, par rapport aux composantes
X1, .- X, de X, qui sont dans K (voir par exemple Bourbaki, Algébre, chap.
VIII, § 12; dans le cas bien connu du corps H des quaternions ordinaires
sur R, rapporté 2 la base canonique 1, 7, j, k, on a n = 4 = 2% et Nrdy r(X)
= x;2 4+ %% + x3% + x,%); cette norme réduite ne s’annule que pour
x = 0, donc pour x; = ... = x, = 0; comme K est supposé¢ posséder la
propriété (C,), on a nécessairement n = d*> <d, donc d =1, n =1 et
L = K, C.QF.D.

Redémontrons alors le théoréme de Wedderburn; soit L un corps fini,
non supposé commutatif, et soit k son centre; k est un corps fini commutatif,
et il posséde la propriété (C,) (cor. 2), donc la propriété (B,) (prop. 1);
mais comme L est évidemment de degré fini sur k, on a alors L = k (par |
définition de (B,)), et par conséquent L est commutatif, C.Q.F.D.

§ 2. Seconde démonstration du théoréme de Chevalley-Warning.

2.1. Cette seconde démonstration, indépendante de la théorie des
polyndmes réduits, repose sur le théoréme suivant (dont on aura également
besoin au § 3):

THEOREME 2. — Soit Fe k [X] un polynéme a n variables, et de degré d.
Alors, si d < n(g—1), on a
(2.1.1) Y, F(x) =0.
xekn

Démonstration. — Par linéarité, on peut se ramener au cas ou F est un
mondme X, ... X,*", avecd = u; + ... + u, < n(g—1); on a alors

n
(2.1.2) YF® = [1(Y x");
xekn i=1 x;ek
I’inégalité relative & d montre que pour un i au moins, ¥; < g — 1, et il
suffit évidemment de prouver que, dans (2.1.2), le i-¢me facteur du membre
de droite est alors nul, ce qui résulte du lemme suivant:
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LEMME 1. — Soit u un entier >0, et posons S, = Y x“; alors

xek
(i) si u est non nul et divisible par ¢ — 1, S, = — 1;
(i1) sinon, S, = 0.

En particulier, siu < q — 1, S, = 0.

Prouvons ce lemme; comme x? = x pour tout x € k, on ne restreint pas
la généralité de la démonstration en supposant 0 << u < g — 1; on est ainsi
amené a distinguer trois cas:

(1) u = 0:8S, est alors somme de ¢ termes égaux a 1; comme ¢ est divi-
sible par la caractéristique p de k, on a bien S, = 0;

(2) u=gq — 1: alors x* = 0 pour x = 0, et x* = 1 sinon; S, est donc
somme de ¢ — 1 termes égaux a 1, et on conclut comme en (1);

(3) 0 <u<g— 1:la proposition 7 (chap. 1) avec d = u montre qu’il
existe dans £* un élément a tel que @* # 1;comme x > ax est une bijection
de k sur k, on peut écrire S, = Y, (ax)* = a"S,; mais ceci donne (a*—1) S,

xek

= 0, donc, en simplifiant par a* — 1 # 0, S, = 0, C.Q.F.D.

On aurait également pu régler les cas (2) et (3) de la fagon suivante: soit
g un générateur de k*; les éléments x de k sont alors O, et les g* avec 0 < i
<q —2; S, est donc égal & la somme de la progression géométrique
1 +g"+ g+ .. +g@ 2 dou §,=0-g" Y%(1—-g"), ce qui
vaut bien 0, puisque g?' = 0. Remarquons par ailleurs que la nullité
des ¢ — 2 quantités S, (O<u<g—1) équivaut, compte tenu des formules
de Newton, a la nullité des g — 2 fonctions symétriques élémentaires des
éléments de k* autres que le produit (voir chap. 1, sect. 1.1).

2.2. Utilisons maintenant le théoréme 2 pour redémontrer le théoréme
de Chevalley-Warning. Considérons le polyndme F défini par (1.1.2)
(sect. 1.1); il est de degré d(g—1) < n(g—1), puisqu’on a supposé n > d;
le théoréme 2 permet donc d’écrire

(2.2.1) Y F(x) = 0;

xekn
mais F (x) vaut 1 si xe V, et 0 si x ¢ V; d’olt une seconde égalité:
(2.2.2) Y F(x) = N.1;

xekn

(2.2.1) et (2.2.2) donnent alors N.1 = 0, soit, puisque & est de caractéristique
p, N = 0 (mod p), C.Q.F.D.
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