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Proposition 1. — Si un corps commutatif K possède la propriété (C^),
alors il possède la propriété (B0).

Démonstration. — Soit en effet L un corps gauche de centre Ket de degré
fini n sur K. On sait que n est un carré (soit n d2) et que si eu en est

une base de L sur K (en tant qu'espace vectoriel), la norme réduite NrdLjK(x)
d'un élément quelconque x xlel + + xnen de L est un polynôme
homogène et de degré d, à coefficients dans K, par rapport aux composantes

xu xn de x, qui sont dans K (voir par exemple Bourbaki, Algèbre, chap.

VIII, § 12; dans le cas bien connu du corps H des quaternions ordinaires

sur R, rapporté à la base canonique 1, i,j, k, on a n 4 22 et ArJH/R(x)
x±2 + x22 + x32 + x42); cette norme réduite ne s'annule que pour

x 0, donc pour xl xn 0; comme K est supposé posséder la

propriété (C^), on a nécessairement n d2 < d, donc d 1, n 1 et

L — K, C.Q.F.D.
Redémontrons alors le théorème de Wedderburn; soit L un corps fini,

non supposé commutatif, et soit k son centre ; k est un corps fini commutatif\
et il possède la propriété (Ci) (cor. 2), donc la propriété (B0) (prop. 1);
mais comme L est évidemment de degré fini sur k, on a alors L k (par
définition de (R0))> et par conséquent L est commutatif, C.Q.F.D.

§ 2. Seconde démonstration du théorème de Chevalley- Warning.

2.1. Cette seconde démonstration, indépendante de la théorie des

polynômes réduits, repose sur le théorème suivant (dont on aura également
besoin au § 3) :

Théorème 2. — Soit F ek [X] un polynôme à n variables, et de degré d.

Alors, si d < n(q— 1), on a

(2.1.1) Y,F(x) 0.
xekn

Démonstration. — Par linéarité, on peut se ramener au cas où F est un
monôme Xx"1... X"n, avec d ui+ + u„1); on a alors

(2.1.2) X F(x)f[( Y xiui);
xekn i= 1 X{ek

l'inégalité relative à d montre que pour un i au moins, ut< q — 1, et il
suffit évidemment de prouver que, dans (2.1.2), le z-ème facteur du membre

de droite est alors nul, ce qui résulte du lemme suivant:
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Lemme 1. — Soit uun entier > 0, et posons Su ^ x" : alors
xek

(i) si u est non nul et divisible par q — 1, Su — 1 ;

(ii) sinon, Su 0.

En particulier, si u < q — 1, Su 0.

Prouvons ce lemme ; comme xq — x pour tout xek, on ne restreint pas

la généralité de la démonstration en supposant 0 < u < q — 1 ; on est ainsi

amené à distinguer trois cas:

(1) u 0 : Su est alors somme de q termes égaux à 1 ; comme q est divisible

par la caractéristique p de k, on a bien Su 0;

(2) u — q — 1 : alors xu — 0 pour x 0, et xu 1 sinon ; Su est donc

somme de q — 1 termes égaux à 1, et on conclut comme en (1);

(3) 0 < u < q — 1 : la proposition 7 (chap. 1) avec d — u montre qu'il
existe dans k* un élément a tel que au # 1 ; comme x \-+ ax est une bijection
de k sur k, on peut écrire Su £ (ax)u auSu; mais ceci donne (au— 1) Su

xek
0, donc, en simplifiant par au — 1 ^ 0, Su 0, C.Q.F.D.

On aurait également pu régler les cas (2) et (3) de la façon suivante : soit

g un générateur de A:* ; les éléments x de k sont alors 0, et les g1 avec 0 < i
< q — 2 ; Su est donc égal à la somme de la progression géométrique
1 + gu + g2u + + d'où (l-g(q-1)u)/(l-ga% ce qui
vaut bien 0, puisque gq~x 0. Remarquons par ailleurs que la nullité
des q — 2 quantités Su (0<u<q— 1) équivaut, compte tenu des formules
de Newton, à la nullité des q — 2 fonctions symétriques élémentaires des

éléments de k* autres que le produit (voir chap. 1, sect. 1.1).

2.2. Utilisons maintenant le théorème 2 pour redémontrer le théorème
de Chevalley-Warning. Considérons le polynôme F défini par (1.1.2)
(sect. 1.1); il est de degré d(q— 1) < n (q— 1), puisqu'on a supposé n > d;
le théorème 2 permet donc d'écrire

(2.2.1) £i?(x) 0;
xelt»

mais F (x) vaut 1 si x 6 V,et0 si x £ V;d'oùune seconde égalité:

(2.2.2) Y F(x) N.l;
xekn

(2.2.1) et (2.2.2) donnent alors N.1 =0, soit, puisque est de caractéristique
p, N 0 (mod p), C.Q.F.D.
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